《高数微积分》PPT课件
合集下载
微积分ppt课件

和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。
大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
高等数学(微积分)ppt课件

,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
高等数学《微积分基本定理》课件

5.3 微积分基本定理
5.3.1 积分上限函数及其导数 5.3.2 微积分的基本定理
5.3.1 积分上限函数及其导数
1、 问题的提出
在变速直线运动中,) v(t)
物体在时间间隔
内经过的路程为 T2v(t)dt T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
又由
~
b0
,得 c1 2
故a 1
例4.
证明
只要证
在
内为单调递增函数 .
F ( x) 0
证:
x
x
f (x)0
f (t)dt
x
f (x)0 t
f (t)dt
x 0
f
(t )d t
2
x
f
(
x
)
(
0
x
t
)
f (t)dt
x
0
f
(t )d t
2
0
例 5 设 f ( x)在[0,1]上连续,且 f ( x) 1.证明
b a
f
( x)dx
F
(
x
)
b a
F (b)
F (a)
★ 微积分基本定理
牛顿——莱布尼兹公式
b
a f ( x)dx
f ( )(b a) F ( )(b a) F(b) F(a)
积分中值定理
微分中值定理
通常把这一公式又叫微积分基本定理
例1 求
2 (2cos x sin x 1)dx.
所以f ( x)在[a, b]上连续
定理 2 如果 f ( x)在[a, b]上连续,则积分上限的函
数( x)
x
a
f
5.3.1 积分上限函数及其导数 5.3.2 微积分的基本定理
5.3.1 积分上限函数及其导数
1、 问题的提出
在变速直线运动中,) v(t)
物体在时间间隔
内经过的路程为 T2v(t)dt T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
又由
~
b0
,得 c1 2
故a 1
例4.
证明
只要证
在
内为单调递增函数 .
F ( x) 0
证:
x
x
f (x)0
f (t)dt
x
f (x)0 t
f (t)dt
x 0
f
(t )d t
2
x
f
(
x
)
(
0
x
t
)
f (t)dt
x
0
f
(t )d t
2
0
例 5 设 f ( x)在[0,1]上连续,且 f ( x) 1.证明
b a
f
( x)dx
F
(
x
)
b a
F (b)
F (a)
★ 微积分基本定理
牛顿——莱布尼兹公式
b
a f ( x)dx
f ( )(b a) F ( )(b a) F(b) F(a)
积分中值定理
微分中值定理
通常把这一公式又叫微积分基本定理
例1 求
2 (2cos x sin x 1)dx.
所以f ( x)在[a, b]上连续
定理 2 如果 f ( x)在[a, b]上连续,则积分上限的函
数( x)
x
a
f
《高中数学微积分课件》

参数方程的概念
介绍参数方程的定义、优 点和应用。
参数方程下的微分
讨论参数方程下的导数和 微分的计算方法。
极坐标系下的微积分
讲解极坐标系下的导数和 微分,以及极坐标曲线的 性质。
微积分中的常见问题及解答
常见微积分问题
介绍微积分中常见的问题和挑 战,如极限计算、曲线图像分 析等。
问题解答与技巧
提供解决微积分问题的方法、 技巧和策略。
曲线的图像
坐标系和曲线的绘 制
讲解如何构建坐标系以及绘 制曲线的方法和步骤。
常见曲线的特征
介绍常见曲线的特征,如直 线、抛物线、椭圆、双曲线 等。
曲线与方程的关系
探讨曲线和方程之间的关系, 如方程求解和曲线的性质。
定积分的定义与性质
1 定积分的概念
引入定积分的概念及其 几何意义。
2 定积分的性质
极限和连续
1 极限的定义
引入极限概念,探讨函数在 某一点的极限及无穷远处的 极限。
2 连续函数
介绍连续函数的定义和性质, 并讨论连续函数的运算法则。
3 函数的间断点
讲解函数的间断点及间断类型,如可去间断、跳跃间断和无穷间断。
导数和微分
导数的定义
微分的概念
切线和切线方程
探索导数的定义及其几何意义, 并讲解导数与函数变化率的关 系。
计算工具的使用
介绍常见计算工具在微积分中 的应用,如计算器、软件等。
介绍微分的概念和微分运算, 以及微分在近似计算中的应用。
讨论切线的概念及其方程,以 及如何求解切线方程。
高阶导数与导数的应用
1
高阶导数
介绍高阶导数的概念,如二阶导数、
曲线的凹凸性
2
三阶导数等。
高等数学微积分第一章函数及其图形(共44张PPT)

如果A,B互相包含,即A B且B A,则称A与B相等,记为A=B。
如果把 y看作自变量,x 看作因变量,按照函数的定义就得到一个新的函数,这个新函数称为函数y=f(x)的反函数,记作 x=j(y)。
解: 要使函数有意义,必须x 0,且x2-4³0。
如果A,B互相包含,即A B且B A,则称A与B相等,记为A=B。
1
O
x
3.对数函数
指数函数y=ax的反函数叫做对数函数,记为
y=logax(a>0,a 1). 对数函数的定义域是区间(0,+ ).
单调性:
若a>1,则logax单调增加; 若0<a<1,则logax单调减少.
性质见书P34
y y=ax
1
O
y=logxax
a>1
4.三角函数
U(a)。 设>0,则称区间(a-, a+)为点a 的邻域,记作U(a, ),
即 U(a, ) ={x|a-<x<a+} ={x| |x-a|<}。
其中点 a 称为邻域的中心, 称为邻域的半径。
O a-
a+ x
去心邻域:
U
(a,)
={x
|0<|
x-a
|<}。
O a- a a+ x
左(右)邻域、M领域的概念见书中第七页。
bx
[a, b]={x|axb}称为闭区间。
[a, b]
Oa
bx
[a, b)={x|ax<b}及 (a, b]={x|a<xb}称为
半开区间。 [a, b)
Oa
bx
(a, b]
Oa
bx
大学微积分课件(PPT版)

微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。
《高数微积分》课件

了解级数的定义和基本性质,包括常数
收敛与发散的判别法
2
项级数、幂级数等,掌握级数的收敛与 发散的判别法。
学会使用比较判别法、比值判别法等方
法判定级数收敛与发散,深入理解级数
的性质。
3
微积分基本定理推广
研究级数与函数的关系,探讨级数的一 致收敛性和各种求和方法,推广微积分 基本定理。
应用
应用微分中值定理解决实际问题,例如最 值、图像的性态分析等。
第四章:不定积分
不定积分概念及基本性 质
学习不定积分的定义和基本 性质,深入理解原函数和不 定积分的关系,掌握常见的 积分公式。
常用换元法
揭开换元法的神秘面纱,学 会选择合适的换元方式,并 熟练使用换元法求定积分。
常用分块法
掌握常用的分块法,如分段 函数积分法、齐次性原则等, 解决含有可分段函数的积分 问题。
《高数微积分》PPT课件
探索高数微积分的奥秘,从函数与极限、导数与微分,到定积分、级数等多 个章节,深入浅出地解释概念与性质,并给出丰富的应用示例。
第一章:函数与极限
函数概念及性质
掌握函数的定义与特性,理解函数图像与性态间的关系,为后续章节打下坚实基础。
极限概念及性质
深入研究极限的概念,包括数列极限与函数极限,探索极限的运算法则和极限的存在性。
连续性及分类
学习连续函数的定义、判定与性质,深入探讨不连续点、间断点的分类和特性。
第二章:导数与微分
导数概念及计算方法
从定义出发,探究导数的求解方 法,如极限法、微分法、隐函数 求导法等,理解导数表示的物理 含义。
导数基本性质
研究导数的基本性质,如可导与 连续的关系、导数的四则运算、 导数与函数图像的关系等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
规定 空集为任何集合的子集.
y
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
(2) 取整函数 y=[x]
y
[x]表示不超过 x 的最大整数 4
3
2
-4 -3 -2 -1 1o -11 2 3 4 5 x -2 -3 -4
阶梯曲线
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数. 注:
定义域
例如,
2x 1,
f
(
),
即U 2E (t )
2
当 t (,) 时, U 0.
U
( , E)
2
E
U U (t)是一个分段函数,
其表达式为
o
(,0) t
2
2E t,
U(t)
2E (t
0,
),
t [0, ] 2
t ( ,] 2
t (,)
例2
设f
(
x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
例如,x2 y2 a2.
(x, y)
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
几个特殊的函数举例
(1) 符号函数
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a, ) { x a x a }.
f (x2 )
f (x1)
o
x
I
设函数 f (x)的定义域为D, 区间I D,
如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
y
y f (x)
f (x1)
f (x2 )
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
函数的两要素: 定义域与对应法则.
(x
D
x0 )
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
{x a x b}
称为开区间, 记作 (a,b)
oa
b
x
{x a x b} 称为闭区间, 记作[a,b]
oa
b
x
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
数集分类: N----自然数集 Z----整数集 Q----有理数集 R----实数集
1 x2
解
f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
y M
a
a
a x
点a的去心的邻域, 记作U0 (a, ).
0
U
(a,
)
{
x
0
xa
}.
4.常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
二、函数概念
例 圆内接正多边形的周长
S3
S4
Sn 2nr sin n
n 3,4,5,
S5
S6
圆内接正n 边形
O
r
n
定义 设x 和y 是两个变量,D是一个给定的数集, 如果对于每个数x D , 变量 y 按照一定法则总有 确定的数值和它对应,则称 y 是 x的函数,记作
y f ( x) 数集D叫做这个函数的定义域
因变量
自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
y M
y=f(x)
o
x
有界 X
x0
o
X
x 无界
-M
-M
2.函数的单调性:
设函数 f (x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
x)
x
2
1,
x0 x0
y x2 1
y 2x 1
例1 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U
0
E
0
(t
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
规定 空集为任何集合的子集.
y
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
(2) 取整函数 y=[x]
y
[x]表示不超过 x 的最大整数 4
3
2
-4 -3 -2 -1 1o -11 2 3 4 5 x -2 -3 -4
阶梯曲线
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数. 注:
定义域
例如,
2x 1,
f
(
),
即U 2E (t )
2
当 t (,) 时, U 0.
U
( , E)
2
E
U U (t)是一个分段函数,
其表达式为
o
(,0) t
2
2E t,
U(t)
2E (t
0,
),
t [0, ] 2
t ( ,] 2
t (,)
例2
设f
(
x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
例如,x2 y2 a2.
(x, y)
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
几个特殊的函数举例
(1) 符号函数
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a, ) { x a x a }.
f (x2 )
f (x1)
o
x
I
设函数 f (x)的定义域为D, 区间I D,
如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
y
y f (x)
f (x1)
f (x2 )
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
函数的两要素: 定义域与对应法则.
(x
D
x0 )
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
{x a x b}
称为开区间, 记作 (a,b)
oa
b
x
{x a x b} 称为闭区间, 记作[a,b]
oa
b
x
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
数集分类: N----自然数集 Z----整数集 Q----有理数集 R----实数集
1 x2
解
f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
y M
a
a
a x
点a的去心的邻域, 记作U0 (a, ).
0
U
(a,
)
{
x
0
xa
}.
4.常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
二、函数概念
例 圆内接正多边形的周长
S3
S4
Sn 2nr sin n
n 3,4,5,
S5
S6
圆内接正n 边形
O
r
n
定义 设x 和y 是两个变量,D是一个给定的数集, 如果对于每个数x D , 变量 y 按照一定法则总有 确定的数值和它对应,则称 y 是 x的函数,记作
y f ( x) 数集D叫做这个函数的定义域
因变量
自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
y M
y=f(x)
o
x
有界 X
x0
o
X
x 无界
-M
-M
2.函数的单调性:
设函数 f (x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
x)
x
2
1,
x0 x0
y x2 1
y 2x 1
例1 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U
0
E
0
(t