[新人教版七年级上册课件]科学计数法课件
合集下载
人教版七年级数学上册第一章科学计数法课件

此答案有 何问題?
此数不可大于 或等于10!
此数亦不 可小于1!
例1:将下列各数用科学记数法表示
230000 =2.3×100000 =2.3×105 =9.99×1000000000 =9.99×109
9990000000 15800……000 31个0
=1.58×10…….000 =1.58×1033 33个0
人教版七年级上册第一章 有理数
1.5.2科学计数法
请读出下面的数据来,说出表示数 据的感受
1 300 000 000 人 300 000 000 米/秒
696 000 000米
数太大,读写不方 便,怎么办?
有没有使得这些 大数易写,易读, 易于计算的一种 表示方法呢?
探究新知
☞
1.计算: 102=( 100 ),103=( 1000 ),
104=(10000),105=( 100000 ),……
2. 1000 000=( 106 ) 100 000 000 000=( 1011 )
2×104
得出结论:
指数为2,幂的最末有2个零,指数为3,幂 的最末有3个零,指数为4,幂的最末有4个零, 指数为5,幂的最末有5个零,一般地指数为n, 幂的最末有n个零,反之亦然。
解:
0.5×(1.3×109)
按一年为365天计算
6.5×108×365
=6500000000×365 =2.3725×1011
(kg)
=0.5×1300000000
=650000000 =6.5×108
(kg)
答:全国每天大约需要粮食6.5×108kg,一年大 约需要粮食2.3725×1011kg。
2 3 4 10 , 10 , 10 你知道 分别等于多少吗? 10n 的意义和规
人教版七年级上册1.科学记数法课件

④-510 000
(2)已知下列用科学记数法表示的数,写出本来的数.
①2.01×104 ②6.070×105
③6×105
④104
(3)用科学记数法表示下列各小题中的量: ①银河系中的恒星约有160 000 000 000颗; ②地球离太阳大约有一亿五千万千米.
思考:等号左边整数的位数与右边10的指数有 什么关系?用科学记数法表示一个n 位整数,其中
10的指数是 n-1.
2.下列各数是否是用科学记数法表示的?
2 400 000 0.24107 × 2 400 000 2.4106
3 100 000 31105 ×
3 100 000 3.1106
整数数位只有一位
例如:90 000 = 9×10 000 = 9×104
读作:9乘10的4次方(幂)
696 000 = 6.96×100 000 = 6.96×105
300 000 000 = 3×100 000 000 = 3×108
7 000 000 000= 7×1 000 000 000 =7×109
书写简短,便于读数.
?
探析建构
用简单方法表示大数
696 000 km 300 000 00m/s
6.96×105 千米 3×107 米
你知道 102,103,104 分别等于多少吗?
10n 的意义和规律是什么?
10的乘方有如下的特点: 102 100 103 1 000 104 10 000 …
一般地,10的n次幂等于10···0(在1的后 面有n个0),所以就可以用10的乘方表示一 些大数.
2.下列用科学记数法写出的数,本来分别是什 么数?
1×107 =10 000 000 4×103 =4 000 8.5×106 =8 500 000 7.04×105 =704 000
《科学记数法》PPT课件

当堂训练
基础巩固题
1.用科学记数法表示下列各数.
80000
56000000
7400000
8×104
5.6×107
7.4×106
2.下列用科学记数法表示的数,原来各是什么数?
4×103
8.5×106 7.04×105 3.96×104
4000
8500000
704000
39600
当堂训练
3. 四川省公布了2017年经济数据GDP排行榜,绵阳市排名全
讨论:1.指数与运算结果中的0的个数有什么关系? 2.指数与运算结果的位数有什么关系?
探究新知
归纳总结
反之,1后面有多少个0,10的幂指数就是多少.
探究新知
【试一试】
1. 把下列各数写成10的幂的形式:100 ,10000,100000000,
即写成10( )
100=102 10000=104 100000000=108
当堂训练
能力提升题
已知光的传播速度为300000000 m/s,太阳光到达地球 的时间大约是500 s,试计算太阳与地球的距离大约是多少 千米.(结果用科学记数法表示)
答案:1.5×108km
当堂训练 拓广探索题
已知1平方千米的土地1年内从太阳得到的能量相当于燃 烧1.3亿千克煤所产生的能量,那么我国960万平方千米土地 上1年内从太阳得到的能量相当于燃烧a×10n千克煤所产生 的能量,求a,n的值.
省第二,GDP总量为2075亿元,将2075亿用科学记数法表示
为( B )
A.0.2075×1012
B.2.075×1011
C.20.75×1010
D.2.075×1012
当堂训练
人教版七年级数学上册课件:科学记数法PPT完整版

科学记数法
课前复习:
1.什么叫乘方? 求几个相同因数的积的运算,叫做乘方。
记作: ,其中a为
, n为
,(n是
2.什么叫幂? 乘方的结果叫做幂
3.填空 负数的奇次幂为
负数的偶次幂为
0的任何次幂为 73 400 000 000亿吨
太阳的半径约为 696 000 000吨
人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT ) 人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT )
•
1.有感情地朗读课文,体会作者对海底世界 的喜爱 之情, 激发学 生热爱 大自然 、探索 自然奥 秘的兴 趣。
•
2.引导学生凭借生动形象的语言文字,了解 海底是 个景色 奇异、 物产丰 富的世 界。
•
3.在品读文字中,继续巩固总分的构段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。
•
4.第五节讲只要细心观察就能获得更多的知 识。从 植物妈 妈的办 法中, 学生能 感受到 大自然 的有趣 ,生发 了解更 多植物 知识的 愿望, 培养留 心观察 身边事 物的习 惯。
•
5.根据诗歌内容,课文中配有相应的插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
下列用科学记数法表示的数,原数是什么?
(1)7.4 103 (2) 3.006 104 (3)8.3005 102 (4)1.502 105
人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT )
人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT )
练习三
课前复习:
1.什么叫乘方? 求几个相同因数的积的运算,叫做乘方。
记作: ,其中a为
, n为
,(n是
2.什么叫幂? 乘方的结果叫做幂
3.填空 负数的奇次幂为
负数的偶次幂为
0的任何次幂为 73 400 000 000亿吨
太阳的半径约为 696 000 000吨
人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT ) 人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT )
•
1.有感情地朗读课文,体会作者对海底世界 的喜爱 之情, 激发学 生热爱 大自然 、探索 自然奥 秘的兴 趣。
•
2.引导学生凭借生动形象的语言文字,了解 海底是 个景色 奇异、 物产丰 富的世 界。
•
3.在品读文字中,继续巩固总分的构段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。
•
4.第五节讲只要细心观察就能获得更多的知 识。从 植物妈 妈的办 法中, 学生能 感受到 大自然 的有趣 ,生发 了解更 多植物 知识的 愿望, 培养留 心观察 身边事 物的习 惯。
•
5.根据诗歌内容,课文中配有相应的插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
下列用科学记数法表示的数,原数是什么?
(1)7.4 103 (2) 3.006 104 (3)8.3005 102 (4)1.502 105
人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT )
人教版七年级数学上册课件:1.5.2科 学记数 法(共1 5张PPT )
练习三
2024年秋季新人教版七年级上册数学教学课件 2.3.2 科学计数法

想一想 对于小于 -10 的数能否用类似的科学记数法表示? 若能怎么表示? -567 000 000 = -5.67 ×100 000 000 = -5.67×108 .
回顾导入 如何用科学记数法来表示数:
小数点原来的位置
小数点最后 的位置
696000
小数向左移动了 5 次
696000 = 6.96×105
有理数 的运算
新知一览
有理数的加法 与减法
有理数的乘法 与除法
有理数的乘方
有理数的加法 有理数的减法 有理数的乘法 有理数的除法
乘方 科学记数法
近似数
第二章 有理数的运算
2.3.2 科学计数法
人教版七年级(上)
教学目标
1. 能用科学记数法表示大数. 2. 会把用科学记数法表示的大数还原. 3. 通过探究活动,用科学记数法方便、简洁地表示大
问题2:把下列各数写成 10 的幂的形式.
1000 =_1_0_3_,
1 000 000 =__1_0_6_,
10 000 000 =__1_0_7_, 1000···0(n 个 0) =_1_0_n____.
探究:等号左边整数中 0 的个数与右边 10 的指数 有什么关系?
10 ···0 = 10n,n 恰好是 1 后面 0 的个数. n个0
ቤተ መጻሕፍቲ ባይዱ
3. 一个整数 815550···0 用科学记数法表示 8.1555×1010, 则原数中“0”的个数为___6___个.
4. 用科学记数法表示的数 -1.96×104 则它的原数是( D )
A. 0.000196
B. -1960
C. 196000
D. -19600
一个绝对值大于 10 的数都可记
回顾导入 如何用科学记数法来表示数:
小数点原来的位置
小数点最后 的位置
696000
小数向左移动了 5 次
696000 = 6.96×105
有理数 的运算
新知一览
有理数的加法 与减法
有理数的乘法 与除法
有理数的乘方
有理数的加法 有理数的减法 有理数的乘法 有理数的除法
乘方 科学记数法
近似数
第二章 有理数的运算
2.3.2 科学计数法
人教版七年级(上)
教学目标
1. 能用科学记数法表示大数. 2. 会把用科学记数法表示的大数还原. 3. 通过探究活动,用科学记数法方便、简洁地表示大
问题2:把下列各数写成 10 的幂的形式.
1000 =_1_0_3_,
1 000 000 =__1_0_6_,
10 000 000 =__1_0_7_, 1000···0(n 个 0) =_1_0_n____.
探究:等号左边整数中 0 的个数与右边 10 的指数 有什么关系?
10 ···0 = 10n,n 恰好是 1 后面 0 的个数. n个0
ቤተ መጻሕፍቲ ባይዱ
3. 一个整数 815550···0 用科学记数法表示 8.1555×1010, 则原数中“0”的个数为___6___个.
4. 用科学记数法表示的数 -1.96×104 则它的原数是( D )
A. 0.000196
B. -1960
C. 196000
D. -19600
一个绝对值大于 10 的数都可记
人教版初一上册数学1.5.2科学计数法.课件

解: 2×0.05×60×60×4 =1440 =1.44×103(毫升)
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
科学计数法课件(人教版)(共10张PPT)

本节课你有什么(shén me)收获? ⑵ 100000=___; ⑷ -32500=___;
地表示一个数的整数部分的位数 1.什么叫做(jiàozuò)科学计数法?
(1)北京故宫的占地面积约为7. 1、A本 课本P47 习题1.
如.:6·74×105的原数有____位整数
(zhěngshù);-3·251×107原数有____位
科学(kēxué) 计数法
第一页,共10页。
第二页,共10页。
太阳(tàiyáng)半径约 696000千米
第三页,共10页。
世界(shìjiè)人口 约6100000000人
生产生活以及(yǐjí)科学研究 中,我们经常会遇到象这样的较 大的数,在读、写时都很不方便
第四页,共10页。
观察的乘方有如下的特点:
10 2 100, 10 3 1000 10 4 10000 , ...
一般的,10的n次幂等于 10(0在 1的后面有n个0),所以可以 (kěyǐ)利用10的乘方表示一些大数 5 ,例6如70 5 0 .60 7 1000000 5 0 .60 7 10 8000
把一个数写成a×10n(其中1≤︱a︱< 10,n为正整数),这种形式的记数方 法(fāngfǎ)叫做科学计数法。
14300=____; ⑷ -32500=___; ⑸ - 804·05=___ ⑹ 200·001=___ . 100=102 1000= 103 = 106
(3)全球每年大约有5. 5 ×1013个红细胞;
用科学计数法表示(biǎoshì)一个 77 ×1014米3的水从海 洋和陆地转化为大气中的水汽.
1.什么叫做(jiàozuò)科学计数法?
2.灵活运用科学计数法,注意解题技巧,总 结解题规律,用科学记数法
地表示一个数的整数部分的位数 1.什么叫做(jiàozuò)科学计数法?
(1)北京故宫的占地面积约为7. 1、A本 课本P47 习题1.
如.:6·74×105的原数有____位整数
(zhěngshù);-3·251×107原数有____位
科学(kēxué) 计数法
第一页,共10页。
第二页,共10页。
太阳(tàiyáng)半径约 696000千米
第三页,共10页。
世界(shìjiè)人口 约6100000000人
生产生活以及(yǐjí)科学研究 中,我们经常会遇到象这样的较 大的数,在读、写时都很不方便
第四页,共10页。
观察的乘方有如下的特点:
10 2 100, 10 3 1000 10 4 10000 , ...
一般的,10的n次幂等于 10(0在 1的后面有n个0),所以可以 (kěyǐ)利用10的乘方表示一些大数 5 ,例6如70 5 0 .60 7 1000000 5 0 .60 7 10 8000
把一个数写成a×10n(其中1≤︱a︱< 10,n为正整数),这种形式的记数方 法(fāngfǎ)叫做科学计数法。
14300=____; ⑷ -32500=___; ⑸ - 804·05=___ ⑹ 200·001=___ . 100=102 1000= 103 = 106
(3)全球每年大约有5. 5 ×1013个红细胞;
用科学计数法表示(biǎoshì)一个 77 ×1014米3的水从海 洋和陆地转化为大气中的水汽.
1.什么叫做(jiàozuò)科学计数法?
2.灵活运用科学计数法,注意解题技巧,总 结解题规律,用科学记数法
科学计数法课件(人教版)

科学计数法课件(人教版)
科学计数法课件(人教版)简介,介绍了科学计数法的概述、表示方法、四 则运算以及应用领域。本课件将帮助您深入了解科学计数法的作用和优点。
科学计数法概述
什么是科学计数法?
科学计数法是一种表示极大数值或极小数值的简便方法。
作用和优点
科学计数法使得处理大量数据更加方便,并且减少了数字过长造成的误读。
基本原则
科学计数法的基本原则是将数字表示为一个定点数(1至10之间)与10的幂的乘积。
科学计数法的表示方法
科学记数法表示法
使用标准形式表示科学计数 法的数字,如1.23 x 10^4。
底数为10的科学计 数法
底数为10的科学计数法使用 10作为定点数,如1.23e+4。
底数不为10的科学 计数法
底数不为10的科学计数法将 定点数设为1至10之间的数, 如2.34 x 10^6。
科学计数法的四则运算
1
加减法
进行科学计数法的加减法时,对准点后的数字相加或相减,指数不变。
2
乘法
进行科学计数法的乘法时,将定点数相乘,指数相加。
3
除法
进行科学计数法的除法时,将定点数相除,指数相减。
科学计数法的应用
在工程实践中的应用
科学计数法在工程实践中帮助 准确表示物理量,如长度、重 量和电流。
在科学研究中的应用
科学计数法在科学研究领域中 使用广泛,方便表示极大和极 小的测量值。
在经济金融领域的应用
科学计数法帮助表示和计算巨 额的金融数据,如国民经济总 量和公司市值。
结语
本课件的总结和回 顾
科学计数法是处理大量数据 时非常有用的工具,它意义 和价值
科学计数法提供了一种精确 表示极大和极小数值的方式, 使得科学与工程领域的计算 更加便捷。
科学计数法课件(人教版)简介,介绍了科学计数法的概述、表示方法、四 则运算以及应用领域。本课件将帮助您深入了解科学计数法的作用和优点。
科学计数法概述
什么是科学计数法?
科学计数法是一种表示极大数值或极小数值的简便方法。
作用和优点
科学计数法使得处理大量数据更加方便,并且减少了数字过长造成的误读。
基本原则
科学计数法的基本原则是将数字表示为一个定点数(1至10之间)与10的幂的乘积。
科学计数法的表示方法
科学记数法表示法
使用标准形式表示科学计数 法的数字,如1.23 x 10^4。
底数为10的科学计 数法
底数为10的科学计数法使用 10作为定点数,如1.23e+4。
底数不为10的科学 计数法
底数不为10的科学计数法将 定点数设为1至10之间的数, 如2.34 x 10^6。
科学计数法的四则运算
1
加减法
进行科学计数法的加减法时,对准点后的数字相加或相减,指数不变。
2
乘法
进行科学计数法的乘法时,将定点数相乘,指数相加。
3
除法
进行科学计数法的除法时,将定点数相除,指数相减。
科学计数法的应用
在工程实践中的应用
科学计数法在工程实践中帮助 准确表示物理量,如长度、重 量和电流。
在科学研究中的应用
科学计数法在科学研究领域中 使用广泛,方便表示极大和极 小的测量值。
在经济金融领域的应用
科学计数法帮助表示和计算巨 额的金融数据,如国民经济总 量和公司市值。
结语
本课件的总结和回 顾
科学计数法是处理大量数据 时非常有用的工具,它意义 和价值
科学计数法提供了一种精确 表示极大和极小数值的方式, 使得科学与工程领域的计算 更加便捷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/
0 0 0
0 0 0
3 0 0
0 0 0
6 9 6
0 0 0
0 0 0
秒
米
米
人
/
0 0 0
0 0 0
3 0 0
0 0 0
6 9 6
0 0 0
0 0 0
秒
米
米
人
1 300 000 000 696 000 300 000 000
• 1 300 000 000=1.3×( 100000000 ) 9 =1.3×___; 10 (如何做?学生说教师再加以处理)体 现转化的数学思想。 5 10 100000 • 696 000 =6.96×__________=6.96 ×____ • 300 000 000=3×1000000000 ___ 8 =3×___ 10 (分两步做)
• 100 000 000 =
10
8
同 学 们 , 加 油 啊 !
练一练:
• 1、把下列各数写成10的幂的形式: 1 000, 10 000 000, 100 000 000 000; 10n • 100…0= (方法小结:10的指数=1 • 后面0的个数)
n个0
︸
2、同学们能否用这种方法将下列各 数表示出来?
此答案有 何问題?
此数不可大于 或等于10!
此数亦不 可小于1!
练一练
• 用科学记数法表示下列各数 (1)1000 000 (2)57 000 000, (3)123 000 000 000(4)170.25; 6 7 (1) 1×10 (2)5.7 ×10 11 2 (3)1.23 ×10(4)1.7025 ×10
注意:
• a必须是一位整数,即1≤ a < 10, n是正整数,n等于原数的整数位数 减1。如果一位数是6位整数,用科 学记数法表示时,10的指数是多少? 如果一个数是9位整数呢?n位整数 呢?
例1. 用科学记数法表示下列各数
• 21300000 ; -212000 ; -234.1 • 提示:用科学记数法表示一个数时,要先看 这个数的整数部分有几位,确定 a 时要注 意它是只有一位整数的数,确定 n 时,它 等于原数的整数位数减1。要注意符号。 解:21300000=2.13×107; • -212000 =-2.12×10 5 ; 2 • -234.1 =-2.34 ×10 ;
7 6 8 9 B. A. C . D . 51 . 2 10 512 10 5 . 12 10 0.512 10
2.(重庆市北碚区 2004 )据《重庆经济报》2004年 4 月 22日报道,今年我国要确保粮食产量达到 4550亿 千克 .则该产量用科学记数法表示正确的是 (A) A 4.55 ×103亿千克 B 0.455× 104亿千克 C 45.5 ×102亿千克 D 455 ×10亿千克
• 如:567 000 000=5.67×10 ,读作“5.67 乘10的8次方或8次幂”.
8
1 a 10
n 是正整数
将下列数值写成科学记数法 a × 10n 。
(a) 400 000 =4× 100 000 =4× 105
(b)
400 000 = 40 × 10 000 = 40 × 104
300 000 000 50 000
8
3 500 000
10 , • 3× • 因为300 000 000=3×100 000 000, 8 而100 000 000=10 , 8 10 ; • 所以300 000 000=3× 6 5 4 10 和3.5× 10 • 5× ;35× 10
3、利用前面学过的知识,你能把刚才材料中的数 表示成整数数位只有一位的数乘以10的多少次幂的 形式吗 ?
︸ 1后面就有几个0),
即
n个0
10
n
=100…0
n个0
︸
• 同桌互出10的若干次幂,说出结果各是几 位数. • 说说你们有什么发现
• 10的指数与运算结果的位数关系是:
•指数比运算结果整数的位数少1
或整数位数=指数+1
试一试(小组交流)
• 用适当的方法将100 000 000这个数 字快速而准确地表示出来,使得这 个数字的读和写比较简单、明了和 直观。
典型例题解析
例3、(2002年· 上海)在张江高科技园区的上海超级 计算机中心内,被称为“神威Ⅰ”的计算机的运算速度 为每秒384 000 000 000次,这个速度用科学记数法表
示为每秒
次.
解: (2) 384000 000 000=3.84×1011
例4:(中考题选)
1.( 海淀区 2004)2003 年信息产业部的统计数据表 明,截止到10月底 ,我国的电话用户总数达到 5.12 亿 , 居世界首位.其中 5.12 亿用科学记数法表示 应为 ( ) B
总结方法: • 要将a× 10 还原成整数就是把 n 小数点向右移动n位,即a×10 原数的整数位数等于n+1,如果a 中的位数不够,用“0”补足, 注意符号。
n
学以致用
1、(2004年·山东潍坊)据生物学统计,一个健康的成 年女子体内每毫升血液中红细胞的数量约为420万个, 用科学记数法可表示为 ( C ) A.420×104个 B.4.2×102 个 C.4.2×106个 D.420×105个 2、据中新社报道:2010年我国粮食产量将达到 540 000 000 000千克,用科学记数法表示这个粮食 产量为 5.4×1011 千克。
例2、下列用科学记数ቤተ መጻሕፍቲ ባይዱ表示的数,原 数各是什么数? 5.19×10 ;3.15×10 ;-3.001×10 2 3 8
• 解: 5.19×10 3 =5190 8 • 3.15×10 =315000000 • -3.001×10 2 =-300.1 • 提示:此类题目是逆用科学记数法的写法特点,求 原来的数,先根据10的指数确定原来的整数位数, 再把a的小数点移动n位即得原数。
• 1 300 000 000 人 • 300 000 000 米/秒
696 000 米
归纳:
• 对大数进行读写确实比较麻烦和困难,容易 搞错
计算:
10 ,10 ,10 ,10
2
3
4
8
22 • 观察得到什么规律? 10 是多
少? • 你能很快的写出吗?(小组讨论)
学生交流: 10的几次幂等于100…0(在
练习: 一个正常人的平均心跳速率约 为70次,一年大约跳多少次?用科 学记数法表示这个结果。
解:70×60×24 =36792000
×365
=3.6792 ×10 8 答:一年大约跳3.6792 ×10 次
8
• 1、 将一个较大的数用科学记数法表示 n 成a× 10 形式的必要性。 n • 2、 a×10 形式中,a是整数位数只 有一位的数,即1≤|a|<10。 • 3、 用科学记数法表示一个数时,10 的指数比原数的整数位数少1。
小组讨论:大于10的数可以表示成什么形式?有何注意点? 指数如何确定?
• 归纳(课件展示):像上面这样,把一个大 n 10 于10的数表示成a× 的形式,(其中a是整 数数位只有一位的数,n是正整数),使用的是 科学记数法。这种记数方法叫科学记数法。 这样书写起来比较方便,读起来也容易多了, 这体现了数学中蕴含的简洁美.
科学计数法
我国古代数字的写法:
在敦煌石窟所刻的算经中发现以下文字“一、十、百、 千、万、十万、百万、千万、万万曰亿、一亿、十亿、 百亿、千亿、万亿、百万亿、千万亿、万万亿曰 兆……万万兆曰京……” • 这段文字说明我国在古代表 • 示大数的一种方法。但比这 • 更大的数字怎么表示呢?
青藏铁路建设用于环保的投资大约 这 11亿元。 个 数 据 是 多 少 ?
3、青海湟中县是全省人口最多的县,约为473 500人, 用科学记数法表示为 4.735 ×105 。
4、2003年我国国内生产总值(GDP)为116 694亿元, 用四舍五入法保留三个有效数字,用科学记数法表示 为: 1.17 ×105 亿元。
5、卫星绕地球运行的速度(即第一宇宙速度)是 7.9 103 米 秒,则卫星绕地球运行 2 102 秒走过的 6 路程≈ 1.6 10米 (结果保留两个有效数字)。