中考圆压轴题

合集下载

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

压轴题05圆的综合目录题型一切线的判定题型二圆中求线段长度题型三圆中的最值问题题型四圆中的阴影部分面积题型五圆中的比值(相似)问题下图为二次函数图象性质与几何问题中各题型的题型一切线的判定解题模板:技巧:有切点,连半径,证垂直(根据题意,可以证角为90°,如已有90°角,可以尝试证平行) 没切点,作垂直,证半径(通常为证全等,也可以通过计算得到与半径相等)【例1】1.(2023-四川攀枝花-中考真题)如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【变式1-1】(2023-辽宁-中考真题)如图,ABC 内接于O ,AB 是O 的直径,CE 平分ACB ∠交O 于点E ,过点E 作EF AB ∥,交CA 的延长线于点F .求证:EF 与O 相切;【变式1-2】(2023-辽宁-中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF与O相切;(2)若41sin5BF AFE=∠=,,求BC的长.【变式1-3】(2023-湖北鄂州-中考真题)如图,AB为O的直径,E为O上一点,点C为EB的中点,过点C作CD AE⊥,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是O的切线;题型二圆中求线段长度解题模板:【例2】(2023-西藏-中考真题)如图,已知AB为O的直径,点C为圆上一点,AD垂直于过点C的直线,交O于点E,垂足为点D,AC平分BAD∠.(1)求证:CD 是O 的切线; (2)若8AC =,6BC =,求DE 的长.【变式2-1】(2023-内蒙古-中考真题)如图,AB 是⊙O 的直径,E 为⊙O 上的一点,点C 是AE 的中点,连接BC ,过点C 的直线垂直于BE 的延长线于点D ,交BA 的延长线于点P .(1)求证:PC 为⊙O 的切线;(2)若PC =,10PB =,求BE 的长.【变式2-2】(2023-辽宁大连-中考真题)如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF ∥交AB 于点G .若AD =4DE =,求DG 的长.【变式2-3】(2023-湖北恩施-中考真题)如图,ABC 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O 于点E ,O 与AC 相切于点D .(1)求证:BC是O的切线;(2)延长CO交O于点G,连接AG交O于点F,若AC FG的长.题型三圆中的最值问题解题模板:技巧精讲:1、辅助圆模型【例3】(2023-湖南长沙-三模)如图1:在O 中,AB 为直径,C 是O 上一点,3,4AC BC ==.过O 分别作OH BC ⊥于点H ,OD AC ⊥于点D ,点E 、F 分别在线段BC AC 、上运动(不含端点),且保持90EOF ∠=︒.(1)OC =______;四边形CDOH 是______(填矩形/菱形/正方形); CDOH S =四边形______; (2)当F 和D 不重合时,求证:OFD OEH ∽;(3)⊙在图1中,P 是CEO 的外接圆,设P 面积为S ,求S 的最小值,并说明理由;⊙如图2:若Q 是线段AB 上一动点,且1QAQB n =∶∶,90EQF ∠=︒,M 是四边形CEQF 的外接圆,则当n 为何值时,M 的面积最小?最小值为多少?请直接写出答案.【变式3-1】(2023-安徽-模拟预测)如图,半圆的直径4AB =,弦CD AB ∥,连接,,,AC BD AD BC .(1)求证:ADC BCD △≌△;(2)当ACD 的面积最大时,求CAD ∠的度数.【变式3-2】(2023-四川-中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是 ;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.【变式3-3】(2023-陕西西安-模拟预测)【问题情境】如图1,在ABC 中,120A ∠=︒,AB AC =,BC =ABC 的外接圆的半径值为______; 【问题解决】如图2,点P 为正方形ABCD 内一点,且90BPC ∠=︒,若4AB =,求AP 的最小值; 【问题解决】如图3,正方形ABCD 是一个边长为的书展区域设计图,CE 为大门,点E 在边BC 上,CE =,点P 是正方形ABCD 内设立的一个活动治安点,到B 、E 的张角为120︒,即120BPE ∠=︒,点A 、D 为另两个固定治安点,现需在展览区域内部设置一个补水供给点Q ,使得Q 到A 、D 、P 三个治安点的距离和最小,试求QA QD QP ++的最小值.(结果精确到0.1m 1.7≈,214.3205≈)题型四 圆中的阴影部分面积【例4】(2024-西藏拉萨-一模)如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线; (2)若6AB =,求阴影部分的面积【变式4-1】(2023-陕西西安-一模)如图,正六边形ABCDEF 内接于O .(1)若P 是CD 上的动点,连接BP ,FP ,求BPF ∠的度数;(2)已知ADF △的面积为O 的面积.【变式4-2】(2023-浙江衢州-中考真题)如图,在Rt ABC △中,90,ACB O ∠=︒为AC 边上一点,连结OB .以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =.(2)若,2OB OA AE ==.⊙求半圆O 的半径.⊙求图中阴影部分的面积.【变式4-3】(2023-辽宁阜新-中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【变式4-4】(2023-山东枣庄-中考真题)如图,AB 为O 的直径,点C 是AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).题型五 圆中的比值(相似)问题 技巧精讲:【例5】(2024-陕西西安-模拟预测)如图,AB 为O 的直径, 点 D 为O 上一点, 过点 B 作O 切线交AD 延长线于点 C ,CE 平分ACB ∠,CE BD ,交于F .(1)求证:BE BF =;(2)若O 半径为2,3sin 5A =,求DF 的长度. 【变式5-1】(2023-湖南湘西-二模)如图,AB 是O 的直径,点C ,D 在O 上,AD 平分CAB ∠,交BC 于点E ,连接BD .(1)求证:BED ABD △△.(2)当3tan 4ABC ∠=,且10AB =时,求线段BD 的长.(3)点G 为线段AE 上一点,且BG 平分ABC ∠,若GE =,3BG =,求CE 的长.【变式5-2】(2024-陕西西安-一模)如图,AB 是O 的直径CD 与O 相切于点C ,与BA 的延长线交于点D ,连接BC ,点E 在线段OB 上,过点E 作BD 的垂线交DC 的延长线于点F ,交BC 于点G .(1)求证:FC FG =;(2)若220AO AD ==,点E 为OB 的中点,求GE 的长.【变式5-3】(2024-陕西西安-一模)如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,4AB =,求BF 的长.一、解答题1.(2024-云南-模拟预测)如图,四边形ABCD 内接于O ,对角线AC 是O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,F 为CE 的中点,连接BD ,DF ,BD 与AC 交于点P .(1)求证:DF 是O 的切线;(2)若45DPC ∠=︒,228PD PB +=,求AC 的长.2.(2024-湖北黄冈-模拟预测)如图,PO 平分APD ∠,PA 与⊙O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为4,5OC =,求PA 的长.3.(2024-江苏淮安-模拟预测)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点 P ,点 B 是O 上一点,连接BP 并延长,交直线l 于点 C ,使得AB AC =.(1)判断直线AB 与O 的位置关系并说明理由;(2)4PC OA ==,求线段 PB 的长.4.(2024-四川凉山-模拟预测)如图,CD 是O 的直径,点P 是CD 延长线上一点,且AP 与O 相切于点A ,弦AB CD ⊥于点F ,过D 点作DE AP ⊥于点E .(1)求证:∠∠EAD FAD =;(2)若4PA =,2PD =,求O 的半径和DE 的长.5.(2024-四川凉山-模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若30A ∠=︒,3DF =,求CE 长.6.(2024-山东泰安-一模)如图,AB CD ,是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC BD ,.(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.7.(2024-福建南平-一模)如图1,点D 是ABC 的边AB 上一点.AD AC =,CAB α∠=,O 是BCD △的外接圆,点E 在DBC 上(不与点C ,点D 重合),且90CED α∠=︒-.(1)求证:ABC 是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2CE =,折线ADF 是由折线ACE 绕点A 顺时针旋转α得到. ⊙当30α=︒时,求CDE 的面积;⊙求证:点C ,D ,F 三点共线.8.(2023-四川甘孜-中考真题)如图,在Rt ABC △中,=90ABC ∠︒,以BC 为直径的O 交AC 边于点D ,过点C 作O 的切线,交BD 的延长线于点E .(1)求证:=DCE DBC ∠∠;(2)若=2AB ,=3CE ,求O 的半径.9.(2023-湖北黄石-中考真题)如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求AF AB的值.10.(2023-辽宁鞍山-中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE =,2sin 3BDC ∠=,求O 的半径.11.(2023-湖南湘西-中考真题)如图,点D ,E 在以AC 为直径的O 上,ADC ∠的平分线交O 于点B ,连接BA ,EC ,EA ,过点E 作EH AC ⊥,垂足为H ,交AD 于点F .(1)求证:2AE AF AD =⋅;(2)若sin 5ABD AB ∠==,求AD 的长. 12.(2023-辽宁沈阳-中考真题)如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______ .13.(2023-黑龙江大庆-中考真题)如图,AB 是O 的直径,点C 是圆上的一点,CD AD ⊥于点D ,AD 交O 于点F ,连接AC ,若AC 平分DAB ∠,过点F 作FG AB ⊥于点G ,交AC 于点H ,延长AB ,DC 交于点E .(1)求证:CD 是O 的切线;(2)求证:AF AC AE AH ⋅=⋅;(3)若4sin 5DEA ∠=,求AH FH的值.14.(2023-四川雅安-中考真题)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 与AC 交于点D ,点E 是BC 的中点,连接BD ,DE .(1)求证:DE 是O 的切线;(2)若2DE =,1tan 2BAC ∠=,求AD 的长;(3)在(2)的条件下,点P 是O 上一动点,求PA PB +的最大值.15.(2023-辽宁营口-中考真题)如图,在ABC 中,AB BC =,以BC 为直径作O 与AC 交于点D ,过点D 作DE AB ⊥,交CB 延长线于点F ,垂足为点E .(1)求证:DF 为O 的切线;(2)若3BE =,4cos 5C =,求BF 的长.。

中考数学压轴题专题圆的综合的经典综合题附详细答案

中考数学压轴题专题圆的综合的经典综合题附详细答案

中考数学压轴题专题圆的综合的经典综合题附详细答案中考数学压轴题专题:圆的综合一、圆的综合1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E。

1) 求证:AC∥OD;2) 如果DE⊥BC,求AC的长度。

答案】(1) 证明见解析;(2) 2π。

解析】试题分析:(1) 由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2) BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度。

试题解析:1) 证明:因为OC=OD,所以∠OCD=∠XXX。

因为CD平分∠ACO,所以∠XXX∠ACD。

因此,∠ACD=∠ODC,即可证得AC∥OD。

2) 因为BC切⊙XXXC,所以XXX。

因为DE⊥BC,所以OC∥DE。

因为AC∥OD,所以四边形ADOC是平行四边形。

因为OC=OD,所以平行四边形ADOC是菱形,所以OC=AC=OA。

因为△AOC是等边三角形,所以∠AOC=60°,因此弧AC的长度为2π。

点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式。

此题难度适中,注意掌握数形结合思想的应用。

2.(类比概念) 三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切。

以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形。

性质探究) 如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系。

猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号):A:平行四边形;B:菱形;C:矩形;D:正方形。

中考压轴题圆的切线证明与计算(中考真题)

中考压轴题圆的切线证明与计算(中考真题)

中考压轴题圆的切线证明与计算(中考真题)1.(24年湖北中考)Rt ABC 中,90ACB ︒∠=,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .(1)求证:AB 是O 的切线。

(2)连接OB 交O 于点F ,若1AD AE ==,求弧CF 的长.2.(24年成都中考)如图,在Rt ABC ∆中,90C ︒∠=,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于,E F 两点,连接,,BE BF DF .(1)BC DF BF CE ⋅=⋅(2)若,A CBF ∠=∠tan BFC AF ∠==,求CF 的长和O 的直径.3.(24年浙江中考)如图,在圆内接四边形ABCD中,AD<AC,ADC BAD∠<∠,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使AFE ADC∠=∠.(1)若60O∠的度数.∠=,CD为直径,求ABDAFE(2)求证:①EF∥BC ②EF=BD.4.(24年辽宁中考)如图,O是ABC的外接圆,AB是O的直径,点D在BC上,AC BD=,E ∠=∠.在BA的延长线上,CEA CAD(1)如图1,求证:CE是O的切线OA=,求BD的长.(2)如图2,若2CEA DAB∠=∠,85.(24年安徽中考)如图,O 是ABC ∆的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点,.F FA FE =(1)求证:;CD AB ⊥(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.6.(24年新疆中考)如图,在O 中,AB 是O 的直径,弦CD 交AB 于点E,AD BD =.(1)求证:△ACD ∽△ECB.(2)若AC=3,BC=1,求CE 的长.7.(24年江西中考)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线.(2)当3BC =时,求AC 的长.8.(24年呼伦贝尔中考)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=,求扇形OBD 的面积.9.(24年扬州中考)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD ,BD ,CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________【一般化探究】(2)如图2,若60ACB ∠=︒,点C ,D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由【拓展性延伸】(3)若ACB α∠=,直接写出AD ,BD ,CD 满足的数量关系.(用含α的式子表示)10.(24年赤峰中考)如图,ABC中,90ACB∠=︒,AC BC=,O经过B,C两点,与斜边AB交于点E,连接CO并延长交AB于点M,交O于点D,过点E作EF CD∥,交AC于点F.(1)求证:EF是O的切线;(2)若BM=,1tan2BCD∠=,求OM的长.11.(24年绥化中考)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的O 与AD相切于点E,与AC相交于点F.(1)求证:AB与O相切.(2)若正方形ABCD1,求O的半径.(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN OC⊥交CE于点N.当:1:4CM FM=时,求CN的长.12.(24年河北中考)已知O的半径为3,弦MN=ABC中.∠=︒==在平面上,先将ABC和O按图1位置摆放(点B与点N重90,3,ABC AB BC合,点A在O上,点C在O内),随后移动ABC,使点B在弦MN上移动,点A始终在O上=.随之移动,设BN x(1)当点B与点N重合时,求劣弧AN的长.(2)当OA MN∥时,如图2,求点B到OA的距离,并求此时x的值.(3)设点O到BC的距离为d.①当点A在劣弧MN上,且过点A的切线与AC垂直时,求d的值.①直接写出d的最小值.13.(24年滨州中考)【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: 如图,在锐角ABC 中,探究sin a A ,sin b B ,sin c C之间的关系.(提示:分别作AB 和BC 边上的高.)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C ===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A,B,D 三点的圆的半径.14.(24年苏州中考)如图,ABC 中,AB =为AB 中点,BAC BCD ∠=∠cos ADC ∠=. O 是ACD 的外接圆.(1)求BC 的长(2)求O 的半径.15.(24年乐山中考)如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D,点E 为CB 上一点,且AC CE =.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.16.(24年武汉中考)如图,ABC ∆为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.17.(24年甘肃武威中考)如图,AB 是O 的直径,BC BD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.18.(24年深圳中考)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥(2)若AB =5BE =,求O 的半径.19.(24年盐城中考)如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l,过点A 作AD l ⊥,垂足为D,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.20.(24年广西中考)如图,已知O 是ABC ∆的外接圆,AB AC =.点D,E 分别是BC ,AC 的中点,连接DE 并延长至点F,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形(2)求证:AF 与O 相切(3)若3tan 4BAC ∠=,12BC =,求O 的半径. 21.(24年四川广安中考)如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.22.(24年四川南充中考)如图,在O 中,AB 是直径,AE 是弦,点F 是AE 上一点,AF BE =,,AE BF 交于点C,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==求O 的半径长.23.(24年四川泸州中考)如图,ABC ∆是O 的内接三角形,AB 是O 的直径,过点B 作O 的切线与AC 的延长线交于点D,点E 在O 上,AC CE =,CE 交AB 于点F .(1)求证:CAE D ∠=∠;(2)过点C 作CG AB ⊥于点G,若3OA =,BD =求FG 的长.24.(24年四川德阳中考)已知O 的半径为5,B C 、是O 上两定点,点A 是O 上一动点,且60,BAC BAC ∠=︒∠的平分线交O 于点D .(1)证明:点D 为BC 上一定点;(2)过点D 作BC 的平行线交AB 的延长线于点F .①判断DF 与O 的位置关系,并说明理由;①若ABC 为锐角三角形,求DF 的取值范围.25.(24年四川宜宾中考)如图,ABC 内接于O ,10AB AC ==,过点A 作AE BC ∥,交O 的直径BD 的延长线于点E,连接CD .(1)求证:AE 是O 的切线;(2)若1tan 2ABE ∠=,求CD 和DE 的长.26.(24年内蒙古通辽中考)如图,ABC 中,90ACB ∠=︒,点O 为AC 边上一点,以点O 为圆心,OC 为半径作圆与AB 相切于点D ,连接CD .(1)求证:2ABC ACD ∠=∠;(2)若8AC =,6BC =,求O 的半径.27.(24年四川达州中考)如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.28.(24年四川遂宁中考)如图,AB 是O 的直径,AC 是一条弦,点D 是AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM .①求证:AM 是O 的切线;①若6DG =,5DF =,求O 的半径.29.(24年包头中考)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =求O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)30.(24年四川自贡中考)在Rt ABC △中,90C ∠=︒,O 是ABC 的内切圆,切点分别为D,E,F .(1)图1中三组相等的线段分别是CE CF =,AF =________,BD =________;若3AC =,4BC =,则O 半径长为________;(2)如图2,延长AC 到点M,使AM AB =,过点M 作MN AB ⊥于点N .求证:MN 是O 的切线.31.(24年山东枣庄中考)如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===. 以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线(2)求图中阴影部分面积.(结果保留π)32.(24年青海中考) 如图,直线AB经过点C,且OA OB=.=,CA CB(1)求证:直线AB是O的切线;(2)若圆的半径为4,30∠=︒,求阴影部分的面积.B中考压轴题圆的切线证明与计算答案1.(24年湖北中考)【答案】(1)略 (2)弧CF 的长为3π2.(24年成都中考)【答案】(1)略(2)CF =;O 的直径为3.(24年浙江中考)【答案】(1)30o (2)证明略4.(24年辽宁中考)【答案】(1)见详解 (2)2π5.(24年安徽中考)【答案】(1)略 (2).6.(24年新疆中考)【答案】(1) 略 (2)CE =.7.(24年江西中考)【答案】(1)见解析 (2)2π8.(24年呼伦贝尔中考)【答案】(1)略 (2)43π 9.(24年扬州中考)【答案】(1)AD BD CD -=.(2)AD BD CD -=(3)当D 在BC 上时,2sin 2CD AD BD α⋅=-.当D 在AB 上时,2sin 2CD AD BD α⋅=+10.(24年赤峰中考)【答案】(1)略 (2)OM =11.(24年绥化中考)【答案】(1)证明略 (2)12.(24年河北中考)【答案】(1)π (2)点B 到OA 的距离为2;3 (3)①3d =2313.(24年滨州中考)【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:6R =.14.(24年苏州中考)【答案】(1)4BC = (2)O 的半径为715.(24年乐山中考)【答案】(1)略 (2)3π-16.(24年武汉中考)【答案】(1)略 (2)4517.(24年甘肃武威中考)【答案】(1)略 (2)tan 3AEB ∠=18.(24年深圳中考)【答案】(1)略 (2)19.(24年盐城中考)【答案】(1)略 (2)25620.(24年广西中考)【答案】(1)略 (2)略 (3)1021.(24年四川广安中考)【答案】(1)略 (2)1422.(24年四川南充中考)【答案】(1)略 (2)23.(24年四川泸州中考)【答案】(1)证明略 (2)45 24.(24年四川德阳中考)【答案】(1)证明略(2)①DF 与O 相切,理由见解析;①DF 的取值范围为2DF <<25.(24年四川宜宾中考)【答案】(1)略 (2)CD =DE =. 26.(24年内蒙古通辽中考)【答案】(1)证明略 (2)327.(24年四川达州中考)【答案】(1)证明略 28.(24年四川遂宁中考)【答案】(1)证明略 (2)①证明略,①O 的半径为203. 29.(24年包头中考)【答案】(1)3 (2)略30.(24年四川自贡中考)【答案】(1)AD ;BE ;1 (2)略31.(24年山东枣庄中考)【答案】(1)略 3π32.(24年青海中考) 【答案】(1)详见解析 (2) 83S π=阴影。

中考压轴题圆含答案

中考压轴题圆含答案

中考压轴题(一)--------与圆有关压轴题1.如图,在M 中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系.(1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积; (4)在(2)中的抛物线上是否存在一点P ,使PAB △和ABC △相似?若存在,求出点P 的坐标;若不存在,请说明理由. [解] (1)如图(1),连结MA MB ,.则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=,OB(01)C B ∴-,,.113c a ∴=-=,2113y x ∴=-.(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M 与y 轴的交点,如图1.2111222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,30ABABC BC∠=,ABC PAB∴△∽△等价于302336PA B B A B P A P B∠=====,. 设()P x y ,且0x >,则c o s 33323x PA=--=·,sin303y PA ==·.又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△. 由抛物线的对称性,知点(-也符合题意.∴存在点P ,它的坐标为或(-. 图2方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=, ∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将((01)A M ,代入,解得 1.k b ⎧=⎪⎨⎪=⎩∴直线AM 的解析式为1y =+.解方程组21113y y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得P .又tan PBx ∠=,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. 方法3:如图3,ABC △为等腰三角形,且ABBC=()P x y ,则 图3 ABC PAB △∽△等价于PB AB ==6PA ==.当0x >时,得 6.==解得P .又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】1.(2019•阿坝州)如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.2.(2019•德阳)如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F,且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=,求EG的长.3.(2019•雅安)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.4.(2019•内江)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB=5,OB 与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.5.(2019•广元)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.6.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.7.(2019•资阳)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.8.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.9.(2019•乐山)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C 是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.10.(2019•泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.11.(2019•乐山)已知关于x的一元二次方程x2﹣(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.12.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.13.(2019•巴中)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.14.(2019•广安)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD 交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.15.(2019•达州)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.16.(2019•凉山州)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.17.(2019•遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF =2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.18.(2019•宜宾)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.19.(2019•南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.20.(2019•自贡)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.参考答案1.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴DH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.2.(1)证明:如图,连结OC,∵OE⊥BC,∴∠OHB=90°,∴∠OBH+∠BOD=90°,∵OB=OC,∴∠OBH=∠OCB,∵∠BOD=∠BCD,∴∠BCD+∠OCB=90°,∴OC⊥CD,∵点C为⊙O上一点,∴DF为⊙O的切线;(2)解:∵∠OCD=90°,∴∠ECG+∠OCE=90°,∵OC=OE,∴∠OCE=∠OEC,∴∠ECG+∠OEC=90°,∵∠OEC+∠HCE=90°,∴∠ECG=∠HCE,在△CHE和△CGE中,,∴△CHE≌△CGE(AAS);(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵DF为⊙O的切线,∴∠OCA+∠FCA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠FCA=∠ABC,∴sin∠ABC=sin∠FCA=,设AC=a,则AB=3a,∴BC===a,∵∠FCA=∠ABC,∠AFC=∠CFB,∴△ACF∽△CFB,∴===,∵AF=1,∴CF=,∴BF==2,∴BF﹣AF=AB=1,∴OC=,BC=,∵OE⊥BC,∴CH=BC=,∴OH===,∴HE=OE﹣OH=﹣,∵△CHE≌△CGE,∴EG=HE=﹣.3.(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.4.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l,∴∠BCA+∠BPC=90°,∵OA=OP,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.。

2024数学中考压轴题-圆(九大题型和解题方法)

2024数学中考压轴题-圆(九大题型和解题方法)

专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。

目录:题型1:圆与三角形综合题型2:圆与四边形综合题型3:圆有关的动态问题题型4:圆与坐标系或函数题型5:以实际问题为背景,求圆与三角形、四边形综合问题题型6:最值问题题型7:在解三角形、四边形中作辅助圆题型8:定值问题题型9:在圆综合中求解三角函数值题型1:圆与三角形综合1.(2024·黑龙江哈尔滨·一模)已知,AD 、BC 为O 两条弦,AD BC ⊥于点E ,连接OE ,AE CE =.(1)如图1,连接OE ,求AEO ∠的度数;(2)如图2,连接AC ,延长EO 交AC 于点N ,点F 为AC 上一点,连接EF ,在EF 上方作等腰直角三角形EFG ,且90EGF ∠=︒,连接NG ,求证:NG BC ∥;(3)在(2)的条件下,连接AB ,CD ,当点G 落在线段AB 上时,过点O 做OL OE ⊥,交CD 于点L ,交CE于点T ,若2OE EG CL ==,求O 半径的长.2.(2024·黑龙江哈尔滨·一模)已知:AB 为O 的直径,点C 为 AB 上一点,连接AC ,点D 为 BC上一点,连接AD ,过点D 作AB 的垂线,垂足为点F ,交O 于点E ,连接CE ,分别交AD 和AB 于点H 和点K ,且90AHE =︒∠.(1)如图1,求证:CAD BAD ∠=∠;(2)如图2,连接HF ,过点H 作HF 的垂线交AB 于点T ,求证:2AB FT =;(3)如图3,在(2)的条件下,连接BC 交AD 于点G ,延长CD 交AB 的延长线于点M ,若CM AG =,5FT =,求CG 的长.3.(2024·黑龙江哈尔滨·一模)如图1,在O 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,HF =EN 的长.4.(2024·浙江·模拟预测)如图1,ABC 内接于O ,作AD BC ⊥于点D .(1)连结AO ,BO .求证:2180AOB DAC ∠+∠=︒;(2)如图2,若点E 为弧AC 上一点,连结BE 交AD 于点F ,若2BAD CAD ∠∠=,490DBF CAD ∠+∠=︒,连结OF ,求证:OF 平分AFB ∠;(3)在(2)的条件下,如图3,点G 为BC 上一点,连结EG ,2BGE C ∠=∠.若AD =3BD EG +=,求DF 的长.题型2:圆与四边形综合5.(2024·浙江杭州·模拟预测)如图,四边形ABCD 内接于O ,AC 为O 的直径,DE AC ⊥于点F 交BC 于点E .(1)设DBC α∠=,试用含α的代数式表示ADE ∠;(2)如图2,若3BE CE =,求BDDE的值;(3)在(2)的条件下,若,AC BD 交于点G ,设FGx CF=,cos BDE y ∠=.①求y 关于x 的函数表达式.②若BC BD =,求y 的值.6.(2024·广东珠海·一模)如图1,F 为正方形ABCD 边BC 上一点,连接AF , 在AF 上取一点O , 以OA 为半径作圆, 恰好使得O 经过点B 且与CD 相切于点E .(1)若正方形的边长为4时,求O 的半径;(2)如图2, 将AF 绕点A 逆时针旋转45︒后,其所在直线与O 交于点G ,与边CD 交于点H ,连接DG BG ,.①求ADG ∠的度数;②求证:··²AB BF AG FG BG +=.题型3:圆有关的动态问题7.(2024·广东·一模)综合探究:如图,已知10AB =,以AB 为直径作半圆O ,半径OA 绕点O 顺时针旋转得到OC ,点A 的对应点为C ,当点C 与点B 重合时停止.连接BC 并延长到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,连接AD ,AC .(1)如图1,当点E 与点O 重合时,判断ABD △的形状,并说明理由;(2)如图2,当1OE =时,求BC 的长;(3)如图3,若点P 是线段AD 上一点,连接PC ,当PC 与半圆O 相切时,判断直线PC 与AD 的位置关系,并说明理由.8.(2024·浙江湖州·一模)如图,在ABCD Y 中,∠B 是锐角,AB =10BC =,在射线BA 上取一点P ,过P 作PE BC ⊥于点E ,过P ,E ,C 三点作O .(1)当3cos 5B =时,①如图1,若AB 与O 相切于点P ,连结CP ,求CP 的长;②如图2,若O 经过点D ,求O 的半径长.(2)如图3,已知O 与射线BA 交于另一点F ,将BEF △沿EF 所在的直线翻折,点B 的对应点记为B ',且B '恰好同时落在O 和边AD 上,求此时PA 的长.9.(2024·云南昭通·模拟预测)如图,在O 中,AB 是O 的直径,点M 是直径AB 上的一个动点,过点M 的弦CD AB ⊥,交O 于点C 、D ,连接BC ,点F 为BC 的中点,连接DF 并延长,交AB 于点E ,交O 于点G .图1 图2 备用图(1)如图1,连接CG ,过点G 的直线交DC 的延长线于点P .当点M 与圆心O 重合时,若PGC MDE ∠=∠,求证:PG 是O 的切线;(2)在点M 运动的过程中,DE kDF =(k 为常数),求k 的值;(3)如图2,连接BG OF MF 、、,当MOF △是等腰三角形时,求BGD ∠的正切值.题型4:圆与坐标系或函数10.(2024·福建龙岩·一模)如图,抛物线234y x x =-++与x 轴分别交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C .(1)直接写出A 、B 、C 三点的坐标;(2)如图(1),P 是抛物线上异于A ,B 的一点,将点B 绕点P 顺时针旋转45︒得到点Q ,若点Q 恰好在直线AP 上,求点P 的坐标;(3)如图(2),MN 是抛物线上异于B ,C 的两个动点,直线BN 与直线CM 交于点T ,若直线MN 经过定点()1,3,求证:点T 的运动轨迹是一条定直线.11.(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q 为平面内不重合的两个点,其中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.12.(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy 中,抛物线23y ax bx =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,已知点A 的坐标为(10)-,,点B 的坐标为(30),.(1)求出这条抛物线的函数表达式;(2)如图2,点D 是第一象限内该抛物线上一动点,过点D 作直线l y 轴,直线l 与ABD △的外接圆相交于点E .①仅用无刻度直尺找出图2中ABD △外接圆的圆心P .②连接BC 、CE ,BC 与直线DE 的交点记为Q ,如图3,设CQE △的面积为S ,在点D 运动的过程中,S是否存在最大值?如果存在,请求出S 的最大值;如果不存在,请说明理由.13.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =--∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =-,②41y x =-,③23y x =-+,④31y x =--中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号)(2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =-+是函数2)304(2y x x x =-++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.题型5:以实际问题为背景,求圆与三角形、四边形综合问题14.(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ;【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积;【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.15.(2024·陕西西安·一模)【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______;【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值;【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.题型6:最值问题16.(2024·湖南长沙·三模)如图1,,,A B C 为O 上不重合的三点,GC 为O 的切线,1902G A ∠+∠=︒.(1)求证:GB 为O 的切线;(2)若ABC 为等腰三角形,345,tan 4BAC BAC ∠<︒∠=,求BC AG的值;(3)如图2,若AB 为直径,M 为线段AC 上一点且GM GB ⊥,2223880AM OB GB GB +-+-=,02GB <<,求MGBA S 四边形的最大值.17.(2024·重庆·模拟预测)如图,在直角ABC 中,90BAC ∠=︒.点D 为ABC 内一点,且60ADB ∠=︒,E 为线段BD 的中点,连接AE .(1)如图1,若AB AC ==,2AD =,求BE 的长;(2)如图2,连接CD ,若AB AC =,BAE ACD ∠=∠,过点E 作EF AD ⊥交于F ,求证:AE =;(3)如图3,过点D 作DM AC ⊥于点M ,DN BC ⊥于点N ,连接MN ,若AB =4AC =,求MN 的最小值.题型7:在解三角形、四边形中作辅助圆18.(2024·福建泉州·一模)如图1,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,F 是CD 上一点,且DF DE =.(1)求证:BE EF ⊥;(2)如图2,若120A ∠=︒,FG BC ⊥于点G ,H 是BF 的中点,连接DG ,EH ,EG ,且EG 与BF 相交于点K .①求证:DG EH =;②若2CF DF =,求KFGK的值.题型8:定值问题19.(2024·浙江·模拟预测)如图1,E 点为x 轴正半轴上一点,E 交x 轴于A 、B 两点,P 点为劣弧 BC上一个动点,且(1,0)A -、(1,0)E .(1) BC的度数为 °;(2)如图2,连结PC ,取PC 中点G ,则OG 的最大值为 ;(3)如图3,连接AC 、AP 、CP 、CB .若CQ 平分PCD ∠交PA 于Q 点,求AQ 的长;(4)如图4,连接PA 、PD ,当P 点运动时(不与B 、C 两点重合),求证:PC PDPA+为定值,并求出这个定值.题型9:在圆综合中求解三角函数值20.(2024·湖南长沙·一模)如图1,在Rt ABC △中,90ABC ∠=︒,30C ∠=︒,B C =,D 是BC 的中点.经过A ,B ,D 三点的O 交AC 于点E ,连接BE .(1)求AE 和BE 的长;(2)如图2,两动点P 、Q 分别同时从点A 和点C 出发匀速运动,当点P 运动到点E 时,点Q 恰好运动到点B ,P 、Q 停止运动,连接PQ .①记AP x =,当PQC △的面积最大时,求x 的值;②如图3,连接BP 并延长交O 于点F ,连接AF 、FE .当BE 平分FBC ∠时,求sin ABF ∠的值.21.(2024·上海杨浦·一模)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,连接OF .(1)如图1,当FE 的延长线经过点A 时,求CDAF的值;(2)如图2,作FG AB ⊥,垂足为点G ,连接EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG 是等腰三角形,且4sin 5COD ∠=,求OE OD的值.专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。

中考压轴题~~圆含答案解析

中考压轴题(一)--------与圆有关压轴题1.如图,在M 中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积; (4)在(2)中的抛物线上是否存在一点P ,使PAB △若存在,求出点P 的坐标;若不存在,请说明理由. [解] (1)如图(1),连结MA MB ,.则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+. 1OC MC MO =-=,OB =(01)C B ∴-,,.113c a ∴=-=,2113y x ∴=-.(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M 与y 轴的交点,如图1.2111222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,30ABABC BC∠=,yxBAM POxABC PAB ∴△∽△等价于306PAB PB AB PA ∠=====,.设()P x y ,且0x >,则cos30x PAAO =-==·sin303y PA ==·. 又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=, ∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将((01)A M ,代入,解得 1.k b ⎧=⎪⎨⎪=⎩∴直线AM的解析式为1y x =+.解方程组21113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得P .又tan PBx ∠=,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点P ,使ABCPAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. 方法3:如图3,ABC △为等腰三角形,且ABBC,设()P x y ,则 图3 ABC PAB △∽△等价于PB AB ==6PA ==.当0x >时,得 6.=解得P .又P 的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点P ,使ABC PAB △∽△.由抛物线的对称性,知点(-也符合题意.∴存在点P,它的坐标为或(-. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

中考数学圆-经典压轴题(含答案)

初三中考数学与圆有关的压轴题1.如图,△ABC内接于⊙O,AB为⊙O的直径,D为的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:△BFG≌△DCG;(2)若AC=10,BE=8,求BF的长;(3)在(2)的条件下,P为⊙O上一点,连接BP,CP,弦CP交直径AB于点H,若△BPH与△CPB相似,求CP的长.2.如图,AB为⊙O的直径,D是的中点,BC与AD,OD分别交于点E,F.(1)求证:OD∥AC;(2)求证:DC2=DE•DA;(3)若⊙O的直径AB=10,AC=6,求BF的长.3.如图1,以△ABC的边AB为直径作⊙O,交AC于点E,BD平分∠ABE交AC于F,交⊙O于点D,且∠BDE=∠CBE.(1)求证:BC是⊙O的切线;(2)如图2,延长ED交直线AB于点P,若P A=AO,DE=2,求的值及AO的长.4.如图,已知直角△ABC中,∠ABC=90°,BC为⊙O的直径,D为⊙O与斜边AC的交点,作∠ECB使得CA平分∠ECB,且CE⊥DE;DE与AB交与点F.(1)猜想并证明直线DE与⊙O的位置关系;(2)若DE=3,CE=4,求⊙O的半径;(3)记△BCD的面积为S1,△CDE的面积为S2,若S1:S2=3:2.求sin∠AFD的值.5.如图,AB是⊙O的直径,点C是⊙O上一点,过点C作⊙O的切线与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)利用尺规作图,过点A作AD⊥CP于点D(保留作图痕迹,不写作法);(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.6.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,F为CE的中点,连接BD,DF,BD与AC交于点P.(1)求证:DF是⊙O的切线;(2)若AC=2DE,求tan∠ABD的值;(3)若∠DPC=45°,PD2+PB2=8,求AC的长.7.如图,四边形ABCD内接于⊙O,AB=AC,∠BAD=90°,延长AD、BC交于点F.点E在BF上,且DE=EF.(1)求证:DE是⊙O的切线;(2)已知CE=3,EF=5,求AB的长;(3)在(2)的条件下,求图中阴影部分的面积.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)求证:DN2=BN•(BN+AC);(3)若BC=6,cos C=,求DN的长.1【解答】解:(1)∵D是的中点,则,∵AB为⊙O的直径,DF⊥AB,∴,∴,∴BF=CD,又∵∠BFG=∠DCG,∠BGF=∠DGC,∴△BFG≌△DCG(AAS);(2)如图1,连接OD交BC于点M,∵D为的中点,∴OD⊥BC,∴BM=CM,∵OA=OB,∴OM是△ABC的中位线,∴OM=AC=5,∵,∴,∴OE=OM=5,∴OD=OB=OE+BE=5+8=13,∴EF=DE==12,∴BF===4;(3)如图2,∵弦CP交AB于点H,则点P与点C在直径的两侧,则∠CBP>∠HBP,∵△BPH与△CPB相似,∴∠ABP=∠PCB,又∵∠CPB=∠BPH,∴∠ACP=∠BCP,∵AB是直径,则∠ACB=∠APB=90°,∴∠ACP=∠BCP=45°,过点B作BN⊥PC于点N,由(2)得AB=26,在Rt△CBN中,CN=BN=BC=12,∵∠CAB=∠CPB,∴tan∠CAB=tan∠CPB=,即,故PN=5,∴PC=CN+PN=5+12=17.2【解答】解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵D是的中点,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵AB为⊙O的直径∴∠ACB=90°,在Rt△ACB中,BC=.=8,∵OD∥AC,∴△BOF∽△BAC,∴,即=,∴BF=4.即BF的长为4.3【解答】(1)证明:如图1中,连接BE.∵AB是直径,∴∠AEB=90°,∴∠A+∠ABE=90°,∵∠A=∠D=∠EBC,∴∠ABE+∠EBC=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)如图2中,连接OD、BE.∵BD平分∠ABE,∴D是的中点,∴OD⊥AE,∵AE⊥BE,∴BE∥OD,∵P A=OA=OB,∴OP=2OB,∴==2,∴PD=2DE=4,∵△PDB∽∠P AE,∴=,∴PD•PE=P A•PB,∴.4【解答】解:(1)直线DE与⊙O相切,证明如下:连接OD,∵CA平分∠ECB,∴∠ECD=∠OCD,∵OD=OC,∴∠OCD=∠ODC,∴∠ODC=∠ECD,∴OD∥CE,∴OD⊥DE,∵D为⊙O与斜边AC的交点,∴直线DE与⊙O相切;(2)如图2,连接BD,OD,在Rt△CED中,DE=3,CE=4,∴DC==5,∵BD为直径,∴∠BDC=90°,∵CE⊥DE,∴∠E=90°∴∠BDC=∠E=90°,∵由(1)知∠ECD=∠DCB,∴△BDC∽△DEC,∴,即,∴BC=,即⊙O的半径为;(3)在四边形BODF中,∠FBO=∠FDO=90°,∴∠BFD+∠BOD=180°=∠BFD+∠AFD,∴∠BOD=∠AFD,∴sin∠BOD=sin∠AFD,∵△BDC∽△DEC,∴=,,∴,设BC=2,CD=2,∴BD===2,过点D作DG⊥BC于G,如图3,∵S△EDC=BC•DG=BD•CD,∴2×DG=2×2.∴DG=,在Rt△ODG中,sin∠GOD=,∴sin∠AFD=.5【解答】(1)解:如图,(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵PD切⊙O于点C,∴OC⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF,即△PCF是等腰三角形;(3)解:连接AE,∵CE平分∠ACB,∴=,∴AE=BE,∵AB是⊙O的直径,∴∠AEB=90°,∴△ABE是等腰直角三角形,∵BE=7,∴AB=BE=14,∵∠P AC=∠PCB,∠CPB=∠APC,∴△P AC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.6、【解答】证明:(1)证明:如图,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠EDC=90°,∵F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠ODC=∠OCD,∵AC⊥CE,∴∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠FCD=∠OCF=90°,即DF⊥OD,∴DF是⊙O的切线;(2)∵∠CAE+∠E=90°,∠CAE+∠ACD=90°,∴∠E=∠ACD,又∠ACE=∠ADC=90°,∴△ACE∽△ADC,∴,即AC2=AD•AE.设DE=x,则AC=x,即(x)2=AD(AD+x).整理,得AD2+AD•x﹣20x2=0.解得AD=4x或AD=﹣5x(舍去).∴DC==2x.∴tan∠ABD=tan∠ACD===2;(3)如图,过点O作OG⊥BD于点G,由垂径定理,得BG=DG,设BG=DG=m,则PD=m+PG,PB=m﹣PG,∵PD2+PB2=8,∴(m+PG)2+(m﹣PG)2=8,整理,得2m2+2PG2=8,即m2+PG2=4.∵∠DPC=45°,∴OG=PG.∴OD2=DG2+OG2=m2+PG2=4,∴⊙O的半径为2.∴AC=4.7、【解答】证明:(1)连接BD,∵∠BAD=90°,∴BD是直径,∠ABF+∠F=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠ADB,∴∠ADB=∠ABC,∴∠ADB+∠F=90°,∵DE=EF,∴∠F=∠EDF,∴∠ADB+∠EDF=90°,∴∠BDE=90°,∴DE⊥BD,又∵BD是直径,∴DE是⊙O的切线;(2)∵BD是直径,∴∠BCD=90°=∠DCE,∵CE=3,DE=EF=5,∴CD===4,∴DF===4,∵∠F+∠ADB=90°,∠ADB+∠ABD=90°,∴∠F=∠ABD,又∵∠BAD=∠DCF=90°,∴△DCF∽△DAB,∴,∴AB=2AD,∵∠ABD=∠F,∠BAD=∠BAD,∴△ABD∽△AFB,∴,∴==,∴AB=;(3)∵AB=,AB=2AD,∴AD=,∴BD===,∴BO=∵S阴影=×π×()2﹣×AB×AD=π﹣××,∴S阴影=π﹣.8、【解答】证明:(1)如图,连接OD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD,∠BAD=∠CAD,∵AO=BO,BD=CD,∴OD∥AC,∵DM⊥AC,∴OD⊥MN,又∵OD是半径,∴MN是⊙O的切线;(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠BAD=90°,∠ACB+∠CDM=90°,∴∠BAD=∠CDM,∵∠BDN=∠CDM,∴∠BAD=∠BDN,又∵∠N=∠N,∴△BDN∽△DAN,∴,∴DN2=BN•AN=BN•(BN+AB)=BN•(BN+AC);(3)∵BC=6,BD=CD,∴BD=CD=3,∵cos C==,∴AC=5,∴AB=5,∴AD===4,∵△BDN∽△DAN,∴==,∴BN=DN,DN=AN,∴BN=(AN)=AN,∵BN+AB=AN,∴AN+5=AN∴AN=,∴DN=AN=.。

(完整版)中考数学专题复习圆压轴八大模型题(学生用)(最新整理)

(2)连接 EB 交 CD 于点 G,过点 G 作 GH⊥AB 于点 H,若 PC=4 ,PB=4,求 GH 的长.
2.(2018·云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点 C,AD 交⊙O 于点 F,∠AC 平分∠BAD,连接 BF. (1)求证:AD⊥ED; (2)若 CD=4,AF=2,求⊙O 的半径.
圆压轴题八大模型题(二)
引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
直线 CM 是⊙O 的切线.
【变式运用】
1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE⊥AB 于点 E 且 DE 交 AC 于点 F,DB 交 AC 于点 G,若 = ,则
= .
(图 1-2)
2.(2018·泸州)如图,在平行四边形 ABCD 中,E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠BAD 和∠ADC。(1)求证:AE⊥DE;(2)设以 AD 为直径的半圆交 AB 于 F,连接 DF
求 PA 和 AD.
求 AD、PD、PA 的长.
【典例】 (2018·四川乐山)如图,P 是⊙O 外的一点,PA、PB 是⊙O 的两条切线,A、B 是切点,PO 交 AB 于点 F,延长 BO 交⊙O 于点 C,交 PA 的延长交于点 Q,连结 AC. (1)求证:AC∥PO;
(2)设 D 为 PB 的中点,QD 交 AB 于点 E,若⊙O 的半径为 3,CQ=2,求 的值.

2024年中考数学压轴题型-专题03 与圆有关问题的压轴题之五大题型(解析版)

专题03与圆有关问题的压轴题之五大题型目录【题型一与圆中三角形全等的有关问题】 (1)【题型二与圆中三角形相似问题的有关问题】 (5)【题型三与圆中证明直线是切线的有关问题】 (29)【题型四与圆中求弧长、扇形面积的有关问题】 (40)【题型五与圆中求函数表达式的有关问题】 (50)【题型一与圆中三角形全等的有关问题】【变式训练】(1)求证:CD BF =.(2)若14BE BF ==,,求GE 的长.(3)连结GO OF ,,如图2,求证:122+EOG AOF ∠∠=【答案】(1)见解析(2)的长为3,由(1)得: CFBD =,FBC BCD ∴∠=∠,BG CG ∴=,AB 为O 的直径,CD 12DE CE CD ∴===,,AF AF =,12AOF OBF ∴∠=∠,在OCG 和OBG △中,OC OB =⎧⎪【题型二与圆中三角形相似问题的有关问题】例题:(2023·浙江宁波·校考一模)如图,已知BC 是O 的直径,点D 为BC 延长线上的一点,点A 为圆上一点,且AB AD =,AC CD =.(1)求证:ACD BAD ∽ ;(2)求证:AD 是O 的切线.【答案】(1)见解析(2)见解析【分析】(1)根据等腰三角形的性质得到CAD B ∠=∠,由于D D ∠=∠,于是得到ACD BAD ∽ ;(2)连接OA ,根据等腰三角形的性质得到B OAB ∠=∠,得到OAB CAD ∠=∠,由BC 是O 的直径,得到90BAC ∠=︒,即可得到结论.【详解】(1)证明:(1)∵AB AD =,∴B D ∠=∠,∵AC CD =,∴CAD D ∠=∠,∴CAD B ∠=∠,∵D D ∠=∠,∴ACD BAD ∽ ;(2)连接OA ,∵OA OB =,∴B OAB ∠=∠,∴OAB CAD ∠=∠,∵BC 是O 的直径,∴90BAC ∠=︒,∴OA ⊥AD ,∴AD 是O 的切线.【点睛】本题考查了相似三角形的判定和性质,切线的判定,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.【变式训练】(1)求证:BDE DCE △∽△.(2)若2,DE C =为BE 中点,求【答案】(1)见解析(2)3AC =【分析】(1)根据CD 平分∠BDE DCE △∽△;(2)由BDE DCE △∽△得BE DE 在由Rt DCE V 中,cos ACD ∠【详解】(1)∵CD 平分ACE ∠∴ACD DCE∠=∠∵AB DE ∥,(2)∵BDE DCE △∽△,∴BE DE DE CE=,∵点C 为BE 中点,设BC =则2a DE DE a=,∴22D E a ==,即1a =∵90ABC ∠=︒,∴90E ADC ∠=∠=︒在Rt DCE V 中,1CE CD =,∴cos cos ACD DCE ∠=∠=∴3AC =.【点睛】此题主要考查了相似三角形的判定和性质,三角形的外接圆等,解答此题的关键是熟练掌握相似三角形的判定方法,理解相似三角形的对应边成比例,难点是正确的作出辅助线.2.(2023·浙江杭州·杭州市公益中学校考三模)如图,AC ,BD 交于点E ,P 为DB(1)求证:ABE DBA∽;的切线;(2)求证:PA是O(3)若E为BD的中点,求tan 【答案】(1)见解析(2)见解析(3)2(1)求B D ∠-∠的值.(2)当75B ∠=︒时,求(3)若BC CE =,DOE 【答案】(1)45︒∵AB是O的直径,半径∴OAD ODA∠=∠=∵ AC AC=,∴ABC ADC∠=∠,(3)解:如图所示,连接∵ BDBD =,∴12BCD BOD =∠∠∵BC CE =,∴B CEB ∠=∠67.5=(1)求BGC ∠的度数.(2)①求证:AF BC =.②若AG DF =,求tan GBC ∠的值,(3)如图2,当点O 恰好在BG 上且1OG =时,求AC 的长.【答案】(1)90︒(2)①证明见解析;②15tan 5GBC ∠=;(3)3172+∵OB OC =,∴CBE OBC OCB ∠=∠=∠,∴OC BE ∥,∵BD CD =,BDE CDN ∠=∠∴EBD NCD ≌,∴BE CN =,DB DG = ,DBG DGB ∠=∠∴.又,DBG CAG BGD ∠=∠∠=∠ CAG AGM ∴∠=∠,MA MG ∴=.OB OC = ,OBC OCB ∴∠=∠,(1)求ACB ∠的大小(用α,β表示);(2)连接CF ,交AB 于H (如图2).若45β=︒,且BC EF AE CF ⨯=⨯.求证:(3)在(2)的条件下,取CH 中点M ,连接OM 、GM (如图3),若OGM ∠①求证:GM BC ∥,12GM BC =;②OM∵AF AG =,∴AFG AGF ∠∠==∴ACF AGF ∠∠==∵FAB ∠β=,∴ACB ACF ∠=∠+∠∵AF AG =,45β=︒,∴AFG G ACH ∠=∠=∠∵EAF FAC ∠=∠,∴EAF FAC ∽,∴EF AE CF FA=,∴AE CF EF FA ⨯=⨯,∵BC EF AE CF ⨯=⨯,∴BC EF EF AF ⨯=⨯,∴BC AF =,∴ AF BC=,∴45BAC AGF ∠=∠=︒,∴180454590AHC ∠=︒-︒-︒=︒,∴2AHC BAC ∠=∠;(3)①证明:如图3中,连接CG ,延长GM 交AB 于点I .∵245OGM α∠=-︒,45AGF ∠=︒,∴2AGM α∠=,∵45AFG G ACH ∠=∠=∠=︒,∴90FAG ∠=︒,∴FG 是直径,∴90FCG ∠=︒,∵90AHC ∠=︒,∴180AHC GCH ∠+∠=︒,∴AB CG ∥,∴MHI MCG ∠=∠,∵MH MC =,HMI CMG ∠∠=,∴ASA MHI MCG ≌(),∴MI MG =,HI CG =,MGC HIM ∠=∠,∵90FAG ∠=︒,∴90FAG BAF BAG BAG α∠=∠+∠=+∠=︒,在AIG V 中,180AGM BAG HIM ∠+∠+∠=︒,∴2180BAG HIM α+∠+∠=︒即()22BAG HIM BAG αα+∠+∠=+∠,∴HIM BAG ∠=∠,又45BAC ∠=︒,【点睛】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.(2023·浙江·统考中考真题)如图,在径CE 交AB 于点F ,连结(1)求证:AD HC ∥;(2)若2OG GC=,求tan FAG ∠的值;(3)连结BC 交AD 于点N ,若O ①若52OF =,求BC 的长;②若10AH =,求ANB 的周长;∠=∠.∴BAD CAD∴52CF =.∴54CG FG ==,∴154OG =,∴22574AG OA OG =-=.∵CE AD ⊥,∴5272AD AG ==.∵ ==AC CDDB ,∴ AD CB=,∵,AD HC FG GC =∥,∴AH AF =.∵90HCF ∠=︒,∴10AC AH AF ===.设CG x =,则,5FG x OG ==-由勾股定理得222AG AO OG =-2225(5)10x x --=-,设CG x =,则,5FG x OG x ==-由勾股定理得222AG AO OG =-2222210AF AG FG x x x =+=-+∵,AD HC FG GC =∥,∴12AH AF HF ==,∴12AG HC =.(1)设E ∠为α,请用α表示BAC ∠的度数.(2)如图1,当BE AD ⊥时,①求证:DE BG =.②当3tan ,54ABE BG ∠==时,求半径的长.(3)如图2,当BE 过圆心O 时,若tan ABE k ∠=90 ABC ADC∴∠=∠=又AB AD=,AC=∴ABC ADC△≌△.∴12 BAC CAD∠=∠=∠E BADα∠=∠=,3tan 4ABE ∠=,BG =∴3tan 4FDE ∠=,DE 3EF FG ∴==,FD =8BF BG GF ∴=+=.AB AD = ,BAC ∠AC BD ∴⊥,【题型三与圆中证明直线是切线的有关问题】(1)求证:DE 为圆O 的切线;(2)连接OC 交DE 于点F ,若cos ABC ∠O为AB中点,D为BC中点,OD AC∴∥.DE AC⊥,DE OD∴⊥,且点D在O上,DE∴是O的切线;OD AC∥,∴OF OD FC EC=.AB为O的直径,90ADB ADC∴∠=∠=︒.又D为BC的中点,【变式训练】1.(2023·浙江台州·台州市书生中学统考一模)如图,直线AB 经过O 上的点M ,并且,OA OB MA MB ==,OA 交O 于点N .(1)求证:直线AB 是O 的切线;(2)当ON AN =时,求AOB ∠的度数.【答案】(1)见解析(2)120AOB ∠=︒【分析】(1)连接OM ,根据等腰三角形的性质与判定推出OM AB ⊥,即可证明结论;(2)连接MN ,根据直角三角形的性质和圆的基本性质得出OMN 是等边三角形,从而得到60MON ∠=︒,即可求解.【详解】(1)连接OM ,∵OA OB =,∴OAB 是等腰三角形,∵MA MB =,∴OM AB ⊥,又点M 在O 上,∴直线AB 是O 的切线;(2)连接MN ,∵,OM AB ON AN ⊥=,∴MN AN ON ==,又OM ON =,∴OMN 是等边三角形,∴60MON ∠=︒,∴906030A B ==︒-︒=︒∠∠,∴120AOB ∠=︒.【点睛】本题考查了圆的性质,圆的切线证明,等腰三角形的性质与判定,等边三角形的性质与判定,直角三角形的性质等知识点,熟练掌握相关知识点是解题的关键.2.(2023·浙江金华·校联考模拟预测)如图,BC 是O 的直径,PB 是O 的切线,切点为B ,连接PO ,过点C 作AC PO 交O 于点A ,连接PA .(1)求证:AP是O的切线;(2)若4cos5APO∠=,O的半径为∵OA OC=,∴OAC OCA∠=∠.∵O 的半径为3,∴3,6OA BC ==.∵POB POA △≌△,(1)求证:DG 是O 的切线.(2)已知3DG =,1EG =,求【答案】(1)见解析(2)O 的半径为5【分析】(1)连接OD ,根据(2)解:∵OD DG ⊥∴四边形ODGF 为矩形,∴3OF DG ==,OD 设O 的半径为r ,即∵1EG =,(1)求证:DC 为O 的切线;(2)若ACB ∠的角平分线CE 交线段AB 于点F ,交O 于点E ,连接BE ,求CF CE ⋅.OA OC,=∴∠=∠,OAC OCA ,DCB OAC ∠=∠∴∠=∠,OCA DCB 是直径,AB(1)求证:直线AB 是O 的切线;(2)若2BC OC =,①求tan ADB ∠的值;②作CAD ∠的平分线AP 交O 于点P 的代数式表示).∴90OAC OAD ∠+∠=︒,又∵OA OD =,∴OAD ODA ∠=∠,∵BAC ADB ∠=∠,∴OAD BAC ∠=∠,∴90BAC OAC ∠+∠=°,即90BAO ∠=∴AB OA ⊥,又∵OA 为半径,∴直线AB 是O 的切线;(2)解:①解:∵BAC ADB ∠=∠,∴BCA BAD △∽△,∴AC BC AD BA=,2②在Rt CAD △中,22AC AD =,2AC +∴()()222222AC AC CD r +==解得233AC r =,263AD r =,∵AP 平分CAD ∠,∴CAP EAD ∠=∠,又∵APC ADE ∠=∠,∴CAP EAD △∽△,∴AC AP AE AD=,∴2423AE AP AC AD r ⋅=⋅=,∵22AB r k ==,∴24r k =,∴224212386AE AP k k ⋅=⋅=.【点睛】本题考查圆周角定理、切线的判定、等腰三角形的性质、相似三角形的判定与性质、勾股定理、角平分线的定义等知识,熟练掌握相关知识的联系与运用,会利用相似三角形的性质求解是解答的关键.【题型四与圆中求弧长、扇形面积的有关问题】(1)求证:BC BD =.(2)若,2OB OA AE ==.①求半圆O 的半径.②求图中阴影部分的面积.【变式训练】1.(2023·浙江绍兴·校联考三模)如图,已知,在ABC 中,4AB =,以AB 为直径作O ,交边BC 的中点D .DE AC ⊥于点E ,连结AD .(1)求证:DE 是O 的切线.(2)请你给ABC 添加一个条件,并求弧【答案】(1)证明过程见详解(2)添加条件为:60DAB ∠=︒(添加条件不唯一)【分析】(1)如图所示,连接OD 由此即可求证;(2)根据圆周角的性质,可求出∵点D 是BC 的中点,点O 是∴12BD BO BC BA ==,∴OD AC ∥,∴ADO DAE ∠=∠,∵DE AC ⊥,∴90ADE DAE ∠+∠=︒,∴90ADE ADO ∠+∠=︒,∴OD DE ⊥,点D 在O 上,∥;(1)求证:OD ACAB=,求阴影部分的面积.(2)若6【答案】(1)见解析393∵OA OC =,60A ∠=︒,∴AOC 是等边三角形,过点C 作CF AO ⊥,(1)证明: BDCE =;(2)若60A ∠=︒,2BC =,求阴影部分面积.【答案】(1)证明见解析∵AB AC =,∴A ABC CB =∠∠,∵BC 为O 的直径,∵AB AC =,60BAC ∠=︒,OB ∴ABC 为等边三角形,AO ∴60ABC ACB ∠=∠=︒,OB(1)求证:DE AB ⊥.(2)若3DE =,30C ∠=︒,求阴影部分面积.【答案】(1)见解析(2)332π23-∵AC 为直径,∴AD BC ⊥,∵AB AC =,(1)求证:ACD E∠=∠;(2)若3AC=,1AD=,求弧【答案】(1)见解析(2)π3∵直线AC与O相切于点C ∴OC CA⊥,∴190ACD︒∠+∠=,∵ED为直径,【题型五与圆中求函数表达式的有关问题】(1)求CD 的长;(2)如图2,当90PQD ∠=︒时,求PEC 的正切值;(3)如图1,设PE x DF y ==,.①求y 关于x 的函数解析式;②若20PF DQ ⨯=,求y 的值.【答案】(1)8(2)322x 73。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生: 科目: 数 学 教师:知识框架一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系A1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD=④弧BC=弧BD⑤弧AC=弧⊥③CE DEAD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O中,∵AB∥CD∴弧AC=弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB∠和ACB∠是弧AB所对的圆心角和圆周角∴2AOB ACB∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O中,∵C∠、D∠都是所对的圆周角∴C D∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

BDB A即:在⊙O中,∵AB是直径或∵90C∠=︒∴90C∠=︒∴AB是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC中,∵OC OA OB==∴△ABC是直角三角形或90C∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O中,∵四边形ABCD是内接四边形∴180C BAD∠+∠=︒180B D∠+∠=︒九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA⊥且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠ 十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割DBA线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅ 十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。

十四、圆内正多边形的计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA = (3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =. 十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=;(2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+ (2)圆柱的体积:2V r h π= (2)圆锥侧面展开图 (1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π=【例题精讲】1如图12所示,四边形ABCD 是以O 为圆心,AB 为直径的半圆的内接四边形,对角线AC 、BD 相交于点E 。

(1)求证:△DEC ~△AEB ;(2)当∠AED =60°时,求△DEC 与△AEB 的面积比。

2 如图13,已知等边三角形ABC,以边BC 为直径的半圆与边AB 、AC 分别交于点D 、 点E ,过点E 作EF ⊥AB ,垂足为点F 。

(1)判断EF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC ,垂足为点H ,若等边△ABC 的边长为8,求FH 的长。

(结果保留根号)3 已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长 为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.4 四川省成都 如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧AB 上的一个动点(不与点A 、点B 重合).连结AC 、BC ,分别与⊙M相交于点D 、点E ,连结DE.若AB=23. (1)求∠C 的度数; (2)求DE 的长; (3)如果记tan ∠ABC=y ,ADDC=x (0<x<3),那么在点C 的运动过程中,试用含x 的代数式表示y.母线长底面圆周长C 1D 1DCBAB1RrCBAOD C OAE5 如图(1),两半径为r 的等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,分别交1O 和2O 于A B ,两点,连结NA NB ,.(1)猜想点2O 与1O 有什么位置关系,并给出证明;(2)猜想NAB △的形状,并给出证明; (3)如图(2),若过M 的点所在的直线AB 不垂直于MN , 且点A B ,在点M 的两侧,那么(2)中的结论是否成立, 若成立请给出证明. 6 在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?7 (2008广州)(14分)如图10,扇形OAB 的半径OA=3,圆心角∠AOB=90°,点C 是AB 上异于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,点G 、H 在线段DE 上,且DG=GH=HE (1)求证:四边形OGCH 是平行四边形 (2)当点C 在AB 上运动时,在CD 、CG 、DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度 (3)求证:223CD CH 是定值8如图,大圆O 的半径OC 是小圆O 1的直径,且有OC 垂直于⊙O 的直径AB 。

⊙O 1的切线AD 交OC 的延长线于点E ,切点为D 。

已知⊙O 1的半径为r ,则AO 1=________;DE_________9 如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交于CA 的延长线于点E , ∠EBC=2∠C.(1)求证:AB=AC ;(2)当BC AB =45时,①求tan ∠ABE 的值;②如果AE=1120,求AC 的值。

O 2 O 1 NMB A 图(1) O 2 O 1 N M BA 图(2)A B C M ND 图 2O A B C MN P 图 1OABCM NP图 3O 图101.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB 的长为23,则a 的值是 2.矩形ABCD 中,AB =8,35BC =,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ). (A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内. 3.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④AB CE CD ⋅=22.⑤S △AEC =2S △DEO ;其中正确结论的序号是 _____.4.如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .5.如图,点A ,B ,C ,D 都在⊙O 上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD 十∠CAO = °.6.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是 ___.7.如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO .以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF .若∠BAC =22o ,则∠EFG =__ ___.8.已知两圆的半径分别为1和3,若两圆相切,则两圆的圆心距为 _____.x y OABy=xP(第3题)ADC OE第4第5题 第7题9.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )(A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆 (D )两个内切的圆10.如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是 ____ 11.已知:如图,三个半圆以此相外切,它们的圆心都在x 轴的正半轴上并与直线y =33x 相切,设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3= ____12.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 和弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .13.如图,相距2cm 的两个点,A B 在在线l 上,它们分别以2 cm/s 和1 cm/s 的速度在l 上同时向右平移,当点,A B 分别平移到点11,A B 的位置时,半径为1 cm 的⊙A 1与半径为1BB的⊙B 相切,则点A 平移到点1A 的所用时间为14.如图,直线333y x =+与x 轴、y 分别相交与A 、B两点,圆心P 的坐标为 (1,0),圆P 与y 轴相切与点O 。

相关文档
最新文档