人教A版选修1-2之2.1.1类比推理

合集下载

高中数学人教A版选修1-2第二章 2.1 2.1.1 合情推理课件

高中数学人教A版选修1-2第二章 2.1 2.1.1 合情推理课件
合情推理与演绎推理
2.1.1 合情推理
预习课本 P22~29,思考并完成下列问题
(1)归纳推理的含义是什么?有怎样的特征? (2)类比推理的含义是什么?有怎样的特征? (3)合情推理的含义是什么?
[新知初探]
1.归纳推理和类比推理
[点睛] (1)归纳推理与类比推理的共同点:都是从具体事 实出发,推断猜想新的结论.
[解] 如图所示,在四面体 P-ABC 中,S1,S2, S3,S 分别表示△ PAB,△ PBC,△ PCA,△ ABC 的面积,α,β,γ 依次表示平面 PAB,平面 PBC, 平面 PCA 与底面 ABC 所成二面角的大小.
我们猜想射影定理类比推理到三维空间,其表现形式应为
S=S1·cos α+S2·cos β+S3·cos γ.
1.类比推理的步骤 (1)找出两类对象之间可以确切表述的相似性(或一致性). (2)用一类对象的性质去推测另一类对象的性质,从而得 出一个猜想. (3)检验这个猜想.
2.平面图形与空间图形类比如下
[活学活用] 1.在△ABC 中,D 为 BC 的中点,则 AD=12(AB+ AC ),将命题
类比到四面体中去,得到一个命题为:________________ _____________________________________.
[典例] (1)观察下列各式:
a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,
则 a10+b10=
()
A.28
B.76
C.123
D.199
(2)已知 f(x)=1-x x,设 f1(x)=f(x),fn(x)=fn-1(fn-1(x))(n>1, 且 n∈N*),则 f3(x)的表达式为________,猜想 fn(x)(n∈N*)的表 达式为________.

人教A版高中数学选修1-2《2.1.1合情推理》课件

人教A版高中数学选修1-2《2.1.1合情推理》课件

以上属于什么推理?
答案 推理.
答案
属于归纳推理 .符合归纳推理的定义特征,即由部分对
象具有某些特征,推出该类事物的全部对象都具有这些特征的
梳理
(1)定义:由某类事物的 部分对象 具有某些特征,推出该类事物的 全部 对象 都具有这些特征的推理,或者由个别事实 概括出 一般结论 的 推理,称为归纳推理. (2)特征:由 部分 到 整体 ,由个别到 一般 .
答案
梳理
(1)定义:由两类对象具有某些 类似 特征和其中一类对象的某些 已知 特征, 推出 另一类对象 也具有这些特征的推理称为类比推理. (2)特征:由 特殊 到 特殊 的推理.
知识点三
合情推理
思考1
归纳推理与类比推理有何区别与联系? 答案 区别:归纳推理是由特殊到一般的推理;而类比推理是
由个别到个别的推理或是由特殊到特殊的推理.
1
2
3
4
5
解析
答案
规律与方法
1.合情推理主要包括归纳推理和类比推理 .数学研究中,在得到一个新结
论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合
情推理常常能为证明提供思路与方向.
2.合情推理的过程概括为
从具体问题出发 ― → 观察、分析、比较、联想 ― → 归纳、类比 ― → 提出猜想
跟踪训练 2
黑白两种颜色的正六边形地面砖按如图的规律拼成若干个
图案,则第n个图案中黑色地面砖的块数是________. 5n+1
解析
观察图案知,从第一个图案起,每个图案中黑色地面砖的个数组
成首项为 6 ,公差为5 的等差数列,从而第n 个图案中黑色地面砖的块数
为6+(n-1)×5=5n+1.

2021年优指导高中数学人教A版选修1-2课件课件:2.1.1.2类比推理

2021年优指导高中数学人教A版选修1-2课件课件:2.1.1.2类比推理
第2课时 类比推理
-1-
第2课时 类比推理
首页
课前预习案 课堂探究案
-2-
第2课时 类比推理
首页
课前预习案 课堂探究案
1.类比推理 (1)类 比推理的含义:由两类对 象具有某些类似特征和其中一类对 象的某些已知特征,推出另一类对 象也具有这些特征的推理称为 类 比推理(简 称类比).简 言之,类 比推理是由特殊到特殊的推理. (2)类 比推理的特点:
课前预习案 课堂探究案
分析:这是解题方法上的类比问题,分析已经给出的问题的解题 方法与步骤可知,应首先设出欲求值的式子,然后根据式子的循环 与周期性进行求解.
答案:C
-17-
第2课时 类比推理
首页
探究一
探究二
探究三思维辨析Leabharlann 当堂检测课前预习案 课堂探究案
-18-
第2课时 类比推理
首页
探究一
探究二
做一做3 下列说法正确的是( )
A.合情推理的结论 一定正确 B.合情推理的结论 一定不正确 C.归 纳 推理和类比推理都属于合情推理 D.合情推理是由一般到特殊的推理 答案:C
-7-
第2课时 类比推理
首页
课前预习案 课堂探究案
思考辨析 判断下列说法是否正确,正确的在后面的括号内打“√”,错 误 的打 “×”.
-9-
第2课时 类比推理
首页
探究一
探究二
探究三
思维辨析 当堂检测
课前预习案 课堂探究案
解:空间中,类似的结论是:如果一个平行六面体的体对角线相等,
那么这个平行六面体是直平行六面体.
证明如下:如图,在平行六面体ABCD-A1B1C1D1中, 若对角线A1C与AC1相等, 则四边形ACC1A1是矩形, 因此A1A⊥AC. 同理,由BD1=B1D可得四边形BB1D1D是矩形, 因此D1D⊥DB,即A1A⊥DB. 又因为AC与BD相交,

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_18

2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。

人教版选修【1-2】2.1.1《合情推理》习题及答案

人教版选修【1-2】2.1.1《合情推理》习题及答案

数学·选修1-2(人教A版)2.1 合情推理与演绎推理2.1.1 合情推理►达标训练1.数列2,5,11,20,x,47,…中的x等于( )A.28 B.32C.33 D.27答案:B2.已知三角形的三边长分别是a,b,c,其内切圆的半径为r,则三角形的面积为:S=12(a+b+c)r,利用类比推理,可以得出四面体的体积为( )A.V=13 abcB.V=13 ShC.V=13(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别是四面体四个面的面积,r为四面体内切球的半径)D.V=13(ab+bc+ca)h(h为四面体的高)解析:根据类比的一般原理,三角形的边长和面积分别类比于四面体的面积和体积,因而可以得出答案C.答案:C3.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析:由数塔呈现的规律知,结果是各位都是1的7位数. 答案:B 4.等比数列{}a n 满足:m ,n ,p ,q ∈N *,若m +n =p +q ,则a m ·a n=a p ·a q .由此类推可得,在等差数列{}a n 中,若有m ,n ,p ,q ∈N *,且m +n =p +q ,则有( )A .a m ·a n =a p ·a qB .a m +a n =a p +a qC.a m a n =a pa qD .a m -a n =a p -a q答案:B5.下面使用类比推理正确的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c=a c +bc (c ≠0)”D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”答案:C6.如右图所示,面积为S 的凸四边形的第i 条边的边长记为a i (i= 1,2,3,4),此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a11=a22=a33=a44=k,则∑i=14(a i h i)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i 个面的距离记为H i(i= 1,2,3,4),若S1 1=S22=S33=S44=K,则∑i=14(S i H i)=( )A.4VKB.3VKC.2VKD.VK解析:从平面类比到空间,通常是边长类比为面积,面积类比为体积,又凸四边形中,面积为S=12(a1h1+a2h2+a3h3+a4h4),而在三棱锥中,体积为V=13(S1H1+S2H2+S3H3+S4H4),即存在系数差异,所以,上述性质类比为B.答案:B►素能提高1.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n个图案中需用黑色瓷砖________块(用含n的代数式表示).解析:第(1),(2),(3),…个图案黑色瓷砖数依次为:15-3=12,24-8=16,35-15=20,…由此可猜测第n个图案黑色瓷砖数为:12+(n -1)×4=4n +8.答案:4n +82.图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推,设第n 个图中三角形被剖分成a n 个三角形,则第4个图中最小三角形的边长为________;a 100=________.…图1 图2 图3答案:182983.观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为_____________________________.解析:观察不等式的左边发现,第n 个不等式的左边=1+122+132+…+1(n +1)2,右边=2(n +1)-1n +1,所以第五个不等式为1+122+132+142+152+162<116. 答案:1+122+132+142+152+162<1164.(2013·广州二模)数列{a n }的项是由1或2构成,且首项为1,在第k 个1和第k +1个1之间有2k -1个2,即数列{a n }为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列{a n }的前n 项和为S n ,则S 20=______;S 2013=______.答案:36 39815.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)的变量,请你写出类似于①的式子②:_______________________________________.②式可以用语言叙述为:_______________________________.解析:V (R )=43πR 3,又⎝ ⎛⎭⎪⎫43πR 3′=4πR 2,故②式可填=4πR 2,用语言叙述为“球的体积函数的导数等于球的表面积函数”.答案:⎝ ⎛⎭⎪⎫43πR 3′=4πR 2 球的体积函数的导数等于球的表面积函数6.(2013·江门佛山二模)将集合{2s +2t |0≤s <t 且s ,t ∈Z}中的元素按上小下大,左小右大的原则排成如图的三角形数表,将数表中位于第i 行第j 列的数记为b ij (i ≥j >0),则b 43=________.答案:207.在等差数列{}a n 中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,在等比数列{}b n 中,若b 9=1,则有等式______________________成立.解析:a 10是等差数列{}a n 的前19项的中间项,而b 9是等比数列{}b n 的前17项的中间项.所以答案应为:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)8.在平面内观察发现:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜测凸n 边形有几条对角线.解析:凸四边形有2条对角线;凸五边形有5条对角线,比凸四边形多3条对角线; 凸六边形有9条对角线,比凸五边形多4条对角线;…归纳猜测:凸n 边形的对角线条数,比凸n -1边形多对角线,于是得到凸n 边形的对角线条数为2+3+4+…+(n -2)=12n (n -3)(n ≥4,n ∈N *).►品味高考1.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过下图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示).解析:由以上规律可知三角形数1,3,6,10,…的一个通项公式为a n =n (n +1)2,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,发现其中能被5整除的为10,15,45,55,105,120,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15. 从而由上述规律可猜想:b 2k =a 5k +=5k (5k +1)2(k 为正整数),b 2k -1=a 5k -1=(5k -1)(5k -1+1)2=5k (5k -1)2,故b 2 012=b 2×1 006=a 5 030,即b 2 012是数列{a n }中的第5 030项.答案:(1)5 030 (2)5k (5k -1)2点评:本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.2.(2013·陕西卷)观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________________________.答案:(n +1)(n +2)·…·(n +n )=2n ×1×3×5×…×(2n -1) 3.(2013·湖北卷)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________; (2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)四边形DEFG是一个直角梯形,观察图形可知:S=(2+22)×2×12=3,N=1,L=6.(2)由(1)知,S四边形DEFG=a+6b+c=3.S△ABC=4b+c=1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S=4,N=1,L=8.则S=a+8b+c=4.联立解得a=1,b=12,c=-1.∴S=N+12L-1,∴若某格点多边形对应的N=71,L=18,则S=71+12×18-1=79. 答案:(1)3,1,6(2)79。

2017-2018学年高中数学人教A版选修1-2课件:2-1-1合情

2017-2018学年高中数学人教A版选修1-2课件:2-1-1合情
由 a1 求 a2 → 由 a2 求 a3 → 由 a3 求 a4 → 由 a4 求 a5 → 分析 a1,a2,a3,a4,a5 的结构特征 → 猜想 通项公式 an
解:(1)由已知 a1=1,an+1=2an+1,得 a2=2×1+1=3,a3=2×3+1=7,a4=2×7+1=15,a5=2×15+1=31. (2)由 a1=1=21-1,a2=3=22-1, a3=7=23-1,a4=15=24-1,a5=31=25-1, 可归纳猜想出 an=2n-1(n∈N*).
2.1
合情推理与演绎推理
2.1.1
合情推理
1.了解合情推理的含义,能利用归纳推理和类比推理等进行简单 的推理. 2.了解合情推理在数学发现中的作用.
1.归纳推理和类比推理
归纳推理 类比推理 由两类对象具有某些类似特征和其中一类 对象的某些已知特征,推出另一类对象也 具有这些特征的推理称为类比推理(简称 类比) 类比推理是由特殊到特殊的推理
: ������ ∥ ������,������ ∥ ������ ⇒ a ∥ c.
前提 结论
推理可以写成:“因为……,所以……”“如果……,那么……”“根 据……,可知……”等,其中“因为”“如果”“根据”等的后面是前提,“所 以”“那么”“可知”等的后面是结论.
【做一做2】 已知在数列{an}中,a1=3,an-an· an+1=1(n∈N*),An表 示数列{an}的
由某类事物的部分对象具有某些特征,推出该类事物 的全部对象都具有这些特征的推理,或者由个别事实 概括出一般结论的推理,称为归纳推理(简称归纳)
特 征
归纳推理是由部分到整体、由个别到一般的推理

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。

是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。

2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。

(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。

(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。

2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。

3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。

人教A版高中数学选修122.合情推理类比推理课件

人教A版高中数学选修122.合情推理类比推理课件

圆的概念和性质
圆的周长 S=2πR
圆的面积 S =πR2
圆心与弦(非直径)中点的连 线垂直于弦
球的概念和性质
球的表面积 S=4πR2
球的体积 V = 4 π R 3
3
球心与不过球心的截面(圆面) 的圆点的连线垂直于截面
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等
与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积
猜想: 1+3+…+(2n-1)=n2.
练习2:已知两个圆①x2+y2=1:与②x2+(y-3)2=1, 则由①式减去②式可得上述两圆的对称轴方 程.将上述命题在曲线仍然为圆的情况下加 以推广,即要求得到一个更一般的命题,而已 知命题应成为所推广命题的一个特例,推广 的命题为----------------------- 设圆的方程为①
2
1
3
n=1时, f (1) 1
n=2时, f (2) 3 n=3时, f (3) 7
2
1
3
n=1时, f (1) 1
n=2时, f (2) 3
n=3时, f ( 3 ) 3 1 3
f(2)1f(2)
2
1
3
n=1时, f (1) 1
n=2时, f (2) 3 n=3时, f (3) 7 f(2)1f(2)
可以从不同角度确定类比对象:
构成几何体的元素数目:四面体
三角形
例2类比平面内直角三角形的勾股定理,试给出
空间中四面体性质的猜想. A

a
c
s1 os2 s3

b
c2=a2+b2

B
猜想:S2△ABC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
P
VP A'B 'C ' VP ABC
PA'PB'PC ' PA PB PC
例1:已知 ABC 三边长为a , b, c , 面积为S,则
2S ABC内切圆半径r= ___________ . abc
分析:面积法
1 由2r(a+b+c)=S 2S r= a+b+c
类比推理
由特殊到特殊的推理
类比推理
以旧的知识为基础,推测新 的结果,具有发现的功能
注意 类比推理的结论不一定成立
归纳推理
由部分到整体、特殊到一般的推理; 以观察分析为基础,推测新的结论; 具有发现的功能; 结论不一定成立.
类比推理
由特殊到特殊的推理; 以旧的知识为基础,推测新的结果; 具有发现的功能; 结论不一定成立.
n=1时,
2
1
3
f (1) 1 f (2) 3 f (3) 7 f (2) 1 f (2) n=4时, f (4) f (3) 1 f (3) 15
n=1时, n=2时, n=3时,
2
1
3
f (1) 1 f (2) 3 f (3) 7 f (2) 1 f (2) n=4时, f (4) 15 f (3) 1 f (3)
3V S1 S2 S3 S4
O
O B
D
C
a1+a2+„+an 1.已知数列{an}是等差数列,则{ } n 是等差数列。若已知数列{bn}(bn>0, n∈N*)是 等比数列,类比上述等差数列,则 是 等比数列?
例2.
答:数列{
n
a1a2„an}是等比数列.
再 见
不等式 或,且,非运算
交集,并集,补集
1、进行类比推理的步骤: (1)找出两类对象之间可以确切表述的相似特征; (2)用一类对象的已知特征去猜测另一类对象 的特征,从而得出一个猜想; (3)检验这个猜想. 观察、比较 联想、类推 猜想新结论 2、类比推理的一般模式: A类事物具有性质a,b,c,d, B类事物具有性质a’,b’,c’, (a,b,c与a’,b’,c’相似或相同) ’ 所以B类事物可能具有性质d .
小结

观察、分析、 比较、联想 归纳、 类比 提出 猜想
归纳推理和类比推理的过程
从具体问 题出发
归纳推理 合情推理 类比推理
通俗地说,合情推理是指“合乎情理”的推理.
例题5:传说在古老的印度有一座神庙,神庙中有三根针和 套在一根针上的64个圆环.古印度的天神指示他的僧侣们按下列 规则,把圆环从一根针上全部移到另一根针上,第三根针起“过 渡”的作用. 1.每次只能移动1个圆环; 2.较大的圆环不能放在较小的圆环上面. 如果有一天,僧侣们将这64个圆环全部移到另一根针上, 那么世界末日就来临了. 请你试着推测:把 n个圆环从1号针移到3号针,最少需要移 动多少次?
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕 轴自转 轴自转 有大气层 有大气层 一年中有四季的变更 一年中有四季的变更 大部分时间的温度适合地 球上某些已知生物的生存
温度适合生物的生存
有生命存在
可能有生命存在
火星与地球类比的思维过程:
存在类似特征
地球
火星
地球上有生命存在
猜测火星上也可能有生命存在
n=1时, n=2时, n=3时, 归纳:
f (n) 2 1
n
n1 1, f (n) 2 f (n 1) 1, n 2
S PA 'B' PA'PB' B' 2.由上图(左)有面积关系: S PAB PA PB
B
B'
则由上图(右),则类似的结论是:
A' A
a+b=b+a 运算律 (交换律和 (a+b)+c=a+(b+c) 结合律) 逆运算 加法的逆运算是减法,使得 方程a+x=0有唯一解x=-a
单位元
a+0=a
应用类比推理常常要先寻找合适的类比对象
探究:你认为平面几何中的哪一类图形可以 作为四面体的类比对象?
四面体 由最少的4个面围成 三角形 平面内最少的3条线围城
由 两类对象具有 某些类似特征 和其中 一类对象的某些已知特征 ,推出另一类对象也
具有这些特征的推理称为类比推理.
例3 类比实数的加法和乘法,列出它们相似的运算性质.
类比角度 运算结果 实数的加法 若a,b∈R,则a+b∈R 实数的乘法 若a,b∈R,则ab∈R ab=ba (ab)c=a(bc) 乘法的逆运算是除法, 使得ax=1有唯一解 x=1/a a· 1=a
2
1
3
n=1时,
f (1) 1
2
1
3
f (1) 1 n=2时, f (2) 3
n=1时,
2
1
3
f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
n=1时,
2
1
3
f (1) 1 n=2时, f (2) 3 n=3时, f (3) 3 1 3 f (2) 1 f (2)
1,3,5,7,…,由此你猜想出第 n
2n 1 个数是_______.
这就是从部分到整体,从个别到一般的归纳推理.
一年夏天,鲁班上山砍树,因为坡陡路滑,而且横七竖八地长满 了小树、杂草,行走非常不便。鲁班只好搀着树木、拽着茅草往上 爬。忽然,脚底一滑,身体便顺着山坡往下滚去,鲁班急中生智, 急忙抓住一把茅草,由于没有抓牢,反而感到手掌心疼痛无比。滑 到山脚,鲁班狼狈地爬了起来,伸开手掌一看,掌心已是鲜血淋漓。 鲁班非常惊奇,为何一把茅草能够划破人的手掌。鲁班顾不得疼痛, 沿着滑下来的山坡,爬上去一看,这丛茅草与别的草没有两样。鲁 班不甘心,便揪下一根茅草仔细地观察起来。这茅草的叶子很怪, 叶子两边都长着锋利的小细齿,人手握紧它一拽,手掌就会被划破。 鲁班又试着用茅草在他的手指上拉了一下,果然又划开一道血口。 鲁班从这件事中得到启发,心想:如果仿照茅草细齿,来做一件 边缘带有细齿的工具,用它来锯树,岂不比斧砍更快、更好吗?鲁 班忘记疼痛,转身下山,做起试验来。在金属工匠的帮助下,鲁班 做了一把带有许多细齿的铁条。鲁班将这件工具拿去锯树,果然又 快又省力。锯子就这样发明了。
变式: 已知 ABC 三边长为a , b, c , 面积为S,则 2S ABC内切圆半径r= . abc 根据类比推理的方法, 若一个四面体A-BCD四个面的 A 面积分别为S1 , S2 , S3 , S4 , 体积为V ,
则四面体的内切球半径 R ________________ .
S2△PEF =S2△PED+S2△PFD+S2△DEF 猜想:
几何中常见的类比对象 平面图形(二维) 立体图形(三维) 点或线

线
线或面
空间直角坐标系
平面直ቤተ መጻሕፍቲ ባይዱ坐标系
几何中常见的类比对象

三角形 四边形

四面体(各面均为三角形) 六面体(各面均为四边形) 代数中常见的类比对象 复数 向量
方程
函数
试将平面上的圆与空间的球进行类比
.
.
圆的定义:平面内到一个定点的距离等于定 长的点的集合. 球的定义:到一个定点的距离等于定长的点 的集合.

弦 直径 周长 面积
截面圆 大圆 表面积 体积

圆的概念和性质
球的类似概念和性质
圆心与弦(非直径)中点连线垂直 球心与截面圆(不经过球心的截面圆) 圆心连线垂直于截面圆. 于弦. 与圆心距离相等的两弦相等;与 与球心距离相等的两截面圆面 圆心距离不等的两弦不等,距圆 积相等;与球心距离不等的两 截面圆面积不等,距球心较近 心较近的弦较长. 的截面圆面积较大. 以点P(x0,y0)为圆心,r为半径的 以点P(x0,y0,z0)为球心,r为半径 圆的方程为(x-x0)2+(y-y0)2=r2. 的球的方程为2 (x-x0)2+(y-y0) +(z-z0)2=r2.
长方体呢?
长方形
例题:4:类比平面内直角三角 形的勾股定理,试给出空间中 四面体性质的猜想。
B
P S1 S2 D S3 F
C
A
E
类比平面内直角三角形的勾股定理,试给出空间中四 面体性质的猜想.
直角三角形
3个面两两垂直的四面体
∠C=90° ∠PDF=∠PDE=∠EDF=90° 3个边的长度a,b,c 4个面的面积S1,S2,S3和S 2条直角边a,b和1条 3个“直角面” S1,S2,S3和1 斜边c 个“斜面” S
相关文档
最新文档