人教版(黔东南专用)七年级数学上册习题课件:第四章 几何图形初步 综合测试卷(共18张PPT)

合集下载

七年级数学上第四章《几何图形初步》测试卷人教版

七年级数学上第四章《几何图形初步》测试卷人教版

p B第四章《几何图形初步》测试题一、选择(每小题3分,共30分)1、以下平面图形不能折成正方体的是( )(A )(C ) (D )2、如图1,下列说法错误的是( ) (A )点P 为直线AB 外一点(B )直线AB 不经过点P(C )直线AB 与直线BA 是同一条直线 图1(D )点P 在直线AB 上。

3、如图2,下列说法正确的是( )(A )射线OA 与OB 是同一条射线; (B )射线OB 与AB 是同一条射线 图2(C )射线OA 与AO 是同一条射线;(D )射线AO 与BA 是同一条射线4.经过任意三点中的两点共可画出( )(A ).1条直线 (B ).2条直线(C ).1条或3条直线 (D ).3条直线5、长为22cm 的线段AB 上有一点C ,那么AC 、BC 的中点间的距离是( )(A )12cm (B )11cm ,(C )10cm (D )9cm6、如果线段AB=6cm,BC=3cm,A 、C 两点间距离为d ,那么( )(A )d=9cm (B )d=3cm ,(C )d=9cm 或3cm (D )以上答案都不是7. 如图3所示,从O 点出发的五条射线,可以组成小于平角的角的个数是( ).(A )10个 (B )9个 (C )8个 (D )4个图3 图48.已知:如图4,直线CD 经过点O ,∠AOB =90°,∠AOC =130° ,则∠BOD =( )(A ).30° (B ).35° (C ).40° (D ).50°9、任意一个锐角的补角与这个角的余角的差是( )(A )180º, (B )90º, (C )45º, (D )不能确定10、在海上灯塔位于一艘船的北偏东40º方向,那么这艘船位于灯塔的( )(A ).南偏西40º方向,(B ).南偏西50º方向(C ).北偏东40º方向 (D ).北偏东50º方向1 65 4 3 2 16 5 4 3 2 1 6 5 4 3 2 O A C D二、填空题(每小题3分,共15分)11.45°= 直角= 平角.12.如图5,图中小于平角的角共有 个, 其中能用一个大写字母表示的角是 . 图513.时钟指示2点30分,它的时针和分针所成的锐角是___________.14.如图6,∠AOB 是直角,已知∠AOC ︰∠COD ︰∠DOB=2︰1︰2,那么∠COB=__________.图615.如图7,若CB = 4 cm ,DB = 7 cm ,且D 是AC 的中点,则AC =_________________.B C D A图7三、解答题16.(6分)根据下列要求画图:(1)连接线段AB(2)画射线OA ,射线OB ;(3)在线段AB 上取一点C ,在射线OA 上取一点D (点C 、D 不与点A 重合),画直线CD ,使直线CD 与射线OB 交于点E.17(6分)如图,已知线段,a ,b ,c 用圆规和直尺画线段,使它等于.2c b a +-B C AA B O18、计算(10分)(1)49°38′+ 66°22′ (2)180°- 22°16′× 519、(8分)一个角的补角加上10°后等于这个角的余角的3倍,求这个角20、(8分)如图8,已知2BOC AOC =∠∠,OD 平分AOB ∠,且20COD =∠,求AOB ∠的度数.21、(8分)如图9,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,AO CD B图8若∠AOD =14°,求∠DOE 、∠BOE 的度数.22、(9分)如图10,B ,C 两点把线段AD 分成2:4:3三部分,点P 是AD 的中点,CD=6,求线段PC 的长图10P B C D A。

人教版数学七年级(上) 第4章 《几何图形初步 》 单元综合练习卷(含答案)

人教版数学七年级(上) 第4章 《几何图形初步 》 单元综合练习卷(含答案)

《几何图形初步》单元综合练习卷一.选择题1.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A.1个B.2个C.3个D.4个2.下列四个图形中是如图展形图的立体图的是()A.B.C.D.3.如图,若CB=4,DB=7,且D是AC的中点,则AC的长为()A.3B.6C.9D.114.下列图形中不是正方体的平面展开图的是()A.B.C.D.5.钟表在2点半时,其时针和分针所成的角是()A.60°B.75°C.105°D.120°6.将一副三角板按如图所示的位置摆放,其中∠α和∠β一定互余的是()A.B.C.D.7.下列说法正确的有()句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC=BC,则C为线段AB的中点;④线段AB就是点A与点B之间的距离;⑤平面上有三点A、B、C,过其中两点的直线有三条或一条.A.0B.1C.2D.38.下列标注的图形名称与图形不相符的是()A.球B.长方体C.圆柱D.圆锥9.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB 10.如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7B.6C.5D.411.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A′,B′,E在同一直线上,则∠CED的度数为()A.90°B.75°C.60°D.95°12.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm2二.填空题13.一个棱柱有20个顶点,每条侧棱长6cm,底面每条边长是2m,则所有侧棱长是.14.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.15.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.16.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.17.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c= .18.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.三.解答题19.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.20.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写作法)21.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体125个,那么应该将此正方体的棱等分.22.已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.23.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.24.数学课上,李老师出示了如下框中的题目.如图1,在∠AOB的内部有一条射线OC把∠AOB分成两个角,射线OM、ON分别平分∠AOC、∠BOC,试探究∠MON与∠AOB之间的数量关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论:①请你在下表中填上当∠AOB为60°、90°、120°时∠MON的大小:②探索发现:无论∠AOB的度数是多少,∠MON与∠AOB的数量关系是不变的,请你直接写出结论:∠MON ∠AOB.(2)特例启发,解答题目:如图2,如果∠AOB=α,请你求∠MON的大小(用α表示).(3)拓展结论,设计新题:如图3,把一张报纸的一角斜折过去,使A点落在E点处,BC为折痕,BD是∠EBM的平分线,求∠CBD的度数.参考答案一.选择题1.解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选:B.2.解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.3.解:∵CB=4,DB=7,∴DC=DB﹣CB=7﹣4=3,∵D是AC的中点,∴AC=DC×2=3×2=6.故选:B.4.解:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.5.解:时针转过的角度是(2+)×30°=75°,分钟转过的角度是30×6°=180°,所以钟表在2点半时,其时针和分针所成的角是180°﹣75°=105°,故选:C.6.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β互余,故本选项正确;C、∠α与∠β不互余,故本选项错误;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:B.7.【解答】解:①由一个点出发的两条射线组成的图形叫角,故①错误;③若AC=BC,此时点C在线段AB的垂直平分线上,故③错误;④线段AB的长度是点A与点B之间的距离,故④错误;故选:C.8.解:长方体是立体图形,选项B中缺少遮挡的虚线,所以B图形名称与图形不相符.故选:B.9.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.10.解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选:C.11.解:由题意知∠AEC=∠CEA′,∠DEB=∠DEB′,则∠A′EC=∠AEA′,∠B′DE=∠B′EB,所以∠CED=∠AEB=×180°=90°,故选:A.12.解:六棱柱的侧面积为:4×5×6=120(cm2).故选:C.二.填空题(共6小题)13.解:∵一个棱柱有20个顶点,每条侧棱长6cm,∴底面为10边形,有10条侧棱,∴所有侧棱长的和是10×6=60cm,故答案为:60cm.14.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°15.解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.16.解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.17.解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.18.解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.三.解答题(共6小题)19.解:(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∴∠DOE=∠BOD=69°,∴∠COE=69°﹣48°=21°.20.解:如图所示:PD→DE→EP才能以最短距离回到住地.21.解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7.22.解:(1)∵AC=6cm,BC=14cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=7cm,∴MN=MC+NC=10cm;(2)MN=(a+b)cm.理由是:∵AC=acm,BC=bcm,点M、N分别是AC、BC的中点,∴MC=cm,NC=cm,∴MN=MC+NC=(a+b)cm.23.解:每对一问得(3分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(3分)(2)过点P作PR⊥CD,垂足为R.(6分)24.解:(1)①∵∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB,当∠AOB=60°时,∠MON=×60°=30°,当∠AOB=90°时,∠MON=×90°=45°,当∠AOB=120°时,∠MON=×120°=60°;②由①知,∠MON=∠AOB,故答案为:①30°,45°,60°;②;(2)由(1)②知,∠MON=∠AOB,∴∠MON=α;(3)∵A点落在E点处,BC为折痕,∴∠CBA=∠CBE=∠ABE,∵D是∠EBM的平分线,∴∠EBD=∠DBM=∠MBE,∴∠CBE+∠EBD=(∠ABE+∠MBE)=∠ABM=×180°=90°.。

人教版初中数学七年级上册第四章《几何图形初步》综合测试(含答案)

人教版初中数学七年级上册第四章《几何图形初步》综合测试(含答案)

人教版初中数学七年级上册第四章《几何图形初步》综合测试(含答案)一、耐心选一选(每题3分,共24分)1、下列说法正确的是( ).A .直线的一半是射线;B .直线上两点间的部分叫做线段;C .线段AB 的长度就是A ,B 两点间的距离;D .若点P 使PA=AB ,则P 是AB 的中点. 2、下列图中角的表示方法正确的个数有 ( )A .1个B .2个C .3个D .4个3.左边的图形绕着虚线旋转一周形成的几何体是右边的( ).4.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段条数是( ) A .1条 B .2条 C .3条 D .4条5.如图,直线l 1与l 2相交于点O ,1OM l ⊥,若44α∠=︒,则β∠等于( ) A .56︒B .46︒C .45︒D .44︒6、在海面上,灯塔位于一艘船的北偏东40°,那么这艘船位于这个灯塔的( ) A .南偏西50° B .南偏西40° C .北偏东50° D .北偏东40° 7.在8:30时,时钟上的时针和分针之间的夹角为( ).• A .85° B .75° C .70° D .60°8、如图,∠AOC 和∠BOD 都是直角,如果︒=∠150AOB ,那么∠COD=( )A 、︒30B 、︒40C 、︒50D 、︒60 二、填空题9、植树时只要先定两个树坑的位置,•就能确定一行树所在的位置,其根据是___________. 10、如图,O 为直线AB 上一点2630'COB ∠=︒,则∠1= 度.11、课桌上按照右图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),图3.1.-13描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序:正确的顺序是: 、 、 、 .12、 一个长方形长为4厘米,宽为2厘米,以它的长边为轴,把长方形转一周后,得到一个立体图形的体积是____________立方厘米。

七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)

七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)

七年级数学上册第四章《几何图形初步》综合测试卷-人教版(含答案)一、单选题(本大题共10小题,每小题3分,共30分)1.下图中, 是正方体的展开图是( )2.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA+BC >AB ,其依据是( )A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长3.若∠P=21°18′,∠Q=21.12°,∠R=21.3°,则( )A. ∠P=∠QB. ∠Q=∠RC. ∠P=∠RD. ∠P=∠Q=∠R4.(成都中考)期末如图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面和右面所标数字相等,则x 的值是( )A. 6B. 1C.-21D. 05.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是( )A B C DA. B.C. D.6.(成都期末)如图,∠AOC和都∠BOD是直角,如果∠DOC=28°,那么∠AOB的度数是( )A. 62°B. 152°C. 118°D. 无法确定7已知线段AB=10cm,在直线AB上,若AC=8cm,若M,N分别为AB,AC的中点,那么M,N 两点之间的距离为()A. 9 cmB. 1 cmC.9或 1 cmD. 无法确定8.(仁怀期末)如图用一副三角板可以画出15°的角,用它们还可以画出其它一些特殊角,不能利用这副三角板直接画出的角度是()A.55°B.75°C.105°D.135°9.(东莞期末)将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.10.(山西太原期末)如图,∠AOB=60°,,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP的度数为()A.15°B.45°C.15°或30°D.15°或45°二.填空题(共8小题,每小题3分,共24分)11.如图所示,若图中共有m条线段,n条射线,则n-m=______ .12.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD的中点,则MN=________cm.13.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是_____2cm.14.已知数轴上A、B两点所表示的数分别为-6和4,则AB中点表示的数是_____。

人教版初中数学七年级上册第四章《几何图形初步》单元测试卷(含答案)

人教版初中数学七年级上册第四章《几何图形初步》单元测试卷(含答案)

人教版初中数学七年级上册第四章《几何图形初步》测试题一、选择题(每小题3分,共30分) 1、如图,下列几何语句不正确的是( )A 直线AB 与直线BA 是同一直线 B 射线OA 与射线OB 是同一射线C 射线OA 与射线AB 是同一射线D 线段AB 与线段BA 是同一线段2、如图,下列说法正确的是( )A ∠1就是∠ABCB ∠1就是∠DCBC 以B 点为顶点的角有两个D 图中有两个角能用一个大写字母表示3、在同一平面内,如果两条直线和第三条直线相交,则( ) A 这两条直线平行 B 这两条直线相交 C 这两直线平行或相交 D 不能确定4、下列说法错误的是( )A 不相交的两条直线叫做平行线B 直线外一点与直线上各点连接的所有线段中,垂线段最短C 平行于同一条直线的两条直线平行D 平面内,过一点有且只有一条直线与已知直线垂直5、同一平面内两两相交的三条直线,如果最多有m 个交点,最少有n 个交点,那么m+n 是( )A 1B 2C 3D 46、在同一平面内,有三条直线a ,b ,c ,如果a c ⊥,b c ⊥,那么a 与b 的位置关系是( ) A 相交 B 平行 C 垂直 D 不能确定7、点到直线的距离是指( )A 直线外一点与这条直线上任意一点的距离B 直线外一点到这条直线的垂线的长度C 直线外一点到这条直线的垂线段D 直线外一点到这条直线的垂线段的长度8、把一条弯曲的高速路改为直道,可以缩短路程,其道理用几何知识解释应为()A 两点确定一条直线B 两点之间,线段最短C 垂线段最短D 平面内过一点有且只有一条直线与已知直线垂直 9、如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下面等式不正确的是( )A AB CD 31=B DB AC CD -= C BD AB CD -=21D BC AD CD -=10甲、乙、丙、丁四位同学在判断时钟的时针和分针互相垂直的时刻,他们每个人都说两个时刻,其中说对的是( )A 甲说3时整和3时30分B 乙说6时15分和6时45分C 丙说9时整和12时15分D 丁说3时整和9时整 二、填空题(每小题3分,共计30分.)11、要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,其依据是 。

七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)

七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)

七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)(全卷100 分,45 分钟完成)班级:座号:姓名:分数:一、选择题(共8小题,满分32分,每小题4分)1.已知28∠的补角的度数是()A∠=︒,则AA.62︒B.78︒C.152︒D.56︒2.甲、乙两座城市,乙城市位于甲城市南偏西25︒的方向上,则甲城市位于乙城市() A.北偏西25︒的方向上B.北偏东25︒的方向上C.北偏西65︒的方向上D.北偏东65︒的方向上3.下列四个图形中的1∠也可用AOB∠表示的是()∠,O第4题A.B.C.D.4.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则(a b+=) A.5-B.4-C.4D.55.下列图形经过折叠不能围成一个棱柱的是()A.B.C.D.6.下列各图中,1∠互为余角的是()∠与2A.B.C.D.7.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是() A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短8.用一副三角板不能拼成的角度是()A.15︒B.55︒C.105︒D.135︒二、填空题(共6小题,满分24分,每小题4分)9.38.15︒= ︒ '.10.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .11.如图,线段3AB =,延长AB 到点C ,使2BC AB =,则AC = . 12.如图,直线a ,b 相交,若1∠与2∠互余,则3∠= .13.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为 度.14.若线段8AB cm =,3BC cm =,且A 、B 、C 三点在同一条直线上,则AC = cm .三、解答题(共5小题,满分44分)15.(8分)①画直线AB ;②画射线CD③连接AD 、BC 相交于点P④连接BD 并延长至点Q ,使DQ BD =16.(8分)已知一个角的补角比这个角的余角的3倍少50︒,求这个角是多少度?17.(8分)如图,OB 是AOC ∠的角平分线,OD 是COE ∠的角平分线,如果40AOB ∠=︒,60COE ∠=︒,则BOD ∠的度数为多少度?第11题 第10题 第12题18.(10分)如图,A、B、C三点在一条直线上,根据右边的图形填空:(1)AC=++;(2)AB AC=-;(3)DB BC-+=AD(4)若8=,D是线段AC中点,B是线段DC中点,求线段AB的长.AC cm19.(10分)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若30∠的度数;DCE∠=︒,求ACB(2)试判断ACE∠的大小关系,并说明理由;∠与BCD(3)猜想ACB∠的数量关系,并说明理由.∠与DCE参考答案一.选择题1.C;2.B;3.B;4.B;5.D;6.C;7.B;8.B;二.填空题9.38、9;10.两点之间线段最短;11.9;12.135︒;13.150;14.11或5;三.解答题(共4小题)15.解:如图所示:16.解:设这个角是x度,则1803(90)50x x-=--,解得:20x=.答:这个角是20度.16.解:OB是AOC∠的角平分线,OD是COE∠的角平分线,40AOB∠=︒,60COE∠=︒,40BOC AOB∴∠=∠=︒,11603022COD COE∠=∠=⨯︒=︒,403070BOD BOC COD∴∠=∠+∠=︒+︒=︒.17.解:(1)AC AD DB BC=++;(2)AB AC BC=-;(3)DB BC AC AD+=-(4)D是AC的中点,8AC=,4AD DC∴==,B是DC的中点,122DB DC∴==,AB AD DB∴=+42=+,6()cm=.∴线段AB的长为6cm.故答案为:AD,DB,BC;BC;AC.18.解:(1)30DCE∠=︒,90ACD∠=︒903060ACE ACD DCE∴∠=∠-∠=︒-︒=︒90BCE∠=︒,ACB ACE BCE∠=∠+∠,9060150ACB∴∠=︒+︒=︒(2)ACE BCD∠=∠,理由如下:90ACD BCE∠=∠=︒,90ACE ECD DCB ECD∠+∠=∠+∠=︒,ACE BCD∴∠=∠(3)180ACB DCE∠+∠=︒,理由如下:ACB DCE ACE DCE BCD DCE∠+∠=∠+∠+∠+∠;90BCD DCE∠+∠=︒9090180ACB DCE∴∠+∠=︒+︒=︒.。

七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版

七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版

七年级数学上册《第四章几何图形初步》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列几何体中,三棱锥是()A.B.C.D.2.在下面的图形中,不是正方体的展开图的是()A.B.C.D.3.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.4.如图,在一个正方体纸盒上切一刀,切面与棱的交点分别为A,B,C,切掉角后,将纸盒剪开展成平面,则展开图不可能是()A.B.C.D.5.已知线段AB=8,BC=3,且A,B,C三点在同一条直线上,则AC的长是()A.5 B.11 C.5或11 D.246.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线D.图中有直线3条,射线2条,线段1条7.如图,一张地图上有A、B、C三地,C地在A地的东南方向,若∠BAC=102°,则B地在A地的()A.南偏西57°方向B.南偏西67°方向C.南偏西33°方向D.西南方向8.已知∠2是∠1的余角,且∠1=35∘,则∠2的补角等于()A.145∘B.125∘C.115∘D.65∘二、填空题9.34.37°=34°′′′.10.如图,用一个平面去截一个三棱柱,截面的形状可能是.①三角形②四边形③五边形④六边形11.已知∠A与∠B互余,且∠A=37°则∠B的补角是度.BC那么AC=.12.点A,B,C在同一条直线上,如果BC=8,AB=1413.如图所示的网格是正方形网格,点 A,B,C,D,O 是网格线交点,那么∠AOB∠COD三、解答题CB,求线段CD和BD的长. 14.如图AB=24,点C为AB的中点,点D在线段AC上,且AD=1315.如图,点O在直线AB上,已知∠AOE=∠COD,且射线OC平分∠BOE,∠EOD=30°求∠AOD 的度数.16.如图是一个正方体的表面展开图,每一个面上都写有一个整数,并且相对两个面上所写的两个互为相反数,求−b a+2ac的值.17.如图,AB是直线OD,OE分别是∠AOC,∠BOC的平分线.(1)∠BOC=72°20′求∠1,∠2,∠DOE的度数.(2)若∠BOC=α,求∠DOE.18.如图1,OC平分∠AOB,OD是∠BOC内部从点O出发的一条射线,OE平分∠AOD.(1)[基础尝试]如图2,若∠AOB=120°,∠COD=10°,求∠DOE的度数;(2)[画图探究]设∠COE=x°,用x的代数式表示∠BOD的度数;(3)[拓展运用]若∠COE与∠BOD互余,∠AOB与∠COD互补,求∠AOB的度数.参考答案1.C2.D3.D4.B5.C6.D7.A8.B9.22;1210.①②③11.12712.6或10或10或613.>或大于14.解:∵点C为AB的中点AB=12∴AC=BC=12CB∵AD=13×12=4∴AD=13∴CD=AC−AD=8∴BD=BC+CD=2015.解:∵∠AOE=∠COD∴∠AOE−∠DOE=∠COD−∠DOE即∠AOD=∠COE∵射线OC平分∠BOE∴∠BOC=∠COE,则∠AOD=∠BOC=∠COE∵∠EOD=30°∴3∠AOD+30°=180°∴∠AOD=50°.16.解:∵a与−3相对,b与2相对,c与1相对,相对两个面上所写的两个互为相反数∴a=3 b=−2 c=−1∴−b a+2ac=−(−2)3+2×3×(−1)=2.故答案为:2.17.(1)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∠BOC=72°20′∴∠1=∠EOB=12∠BOC=36°10′∴∠DOC=∠AOD=12∠AOC=12(180°−∠BOC)=12(180°−72°20′)=53°50′∴∠DOE=∠1+∠2=36°10′+53°50′=90°;(2)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∴∠1=∠EOB=12∠BOC∴∠DOC=∠AOD=12∠AOC∴∠DOE=∠1+∠2=12∠AOC+12∠BOC=90°.18.(1)解:∵∠AOB=120°,OC平分∠AOB ∴∠AOC=∠COB=60°∵∠COD=10°∴∠AOD=60°+10°=70°∵OE平分∠AOD∴∠DOE=35°;(2)解:设∠COD=a∵∠COE=x°∴∠EOD=x°+a∵OE平分∠AOD∴∠AOD=2∠COD=2(x°+a) =2x°+2a∴∠AOC=2x°+a∵OC平分∠AOB∴∠BOC=∠AOC=2x°+a∴∠BOD=∠BOC-∠COD=2x°;(3)解:由上题得∠BOD=2x°∵∠COE与∠BOD互余∴x+2x=90°解得x=30 .∵∠AOB与∠COD互补∴4x+2a+a=180°4×30°+3a=180°a= 20°∴∠AOB=160°。

人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)

人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)

人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档