人教版七下数学期末考试试卷带答案
2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
人教版七年级数学下册期末测试题及答案解析(共六套)

B ′D ′DB人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费 短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
新人教版七年级数学下册期末考试题【含答案】

新人教版七年级数学下册期末考试题【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一5的绝对值是( )A .5B .15C .15-D .-55.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.若+x x-有意义,则+1x=___________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:3531 132x x-+ -=2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、A5、B6、B7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、-74、15、16、48三、解答题(本大题共6小题,共72分)1、3x .2、3 53、(1)(4,-2);(2)作图略,(3)6.4、60°5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。
新人教版七年级数学下册期末考试(含答案)

新人教版七年级数学下册期末考试(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.下列图形具有稳定性的是( )A .B .C .D .5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+27.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④ 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.2的相反数是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x y x y --=⎧⎨-=⎩2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.光华中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天. (1)若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅?(2)若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?(3)学校需要每天支付甲修理组、乙修理组修理费分别为80元,120元.任务完成后,两修理组收到的总费用为1920元,求甲修理组修理了几天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、B6、D7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、203、0.4、205、﹣2.6、7三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、50°.4、36平方米5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)需8天可以修好这些套桌椅;(2)甲修理组离开6天;(3)甲修理组修理了6天.。
新人教版七年级数学下册期末考试及答案【完美版】

新人教版七年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.如果23a b -=,那么代数式22()2a b a b a a b +-⋅-的值为( ) A .3 B .23 C .33 D .437.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A.B. C. D.10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、D6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、40°3、70.4、a≤2.5、40°6、②.三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、8 53、(1)90°;(2)①α+β=180°;②α=β.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。
人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。
人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
人教版七年级数学下册期末试卷(共4套:含答案)

人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 实数−2,0.3,17,√2,−π中,无理数的个数是( )A.2B.3C.4D.52. 如图,按各组角的位置判断错误的是( ) A.∠1与∠A 是同旁内角B.∠3与∠4是内错角C.∠5与∠6是同旁内角D.∠2与∠5是同位角3. 若a 2=9,√b 3=−2,则a +b =( ) A.−5 B.−11 C.−5或−11 D.±5或±114. 已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A.(3, 0)B.(0, 3)C.(0, 3)或(0, −3)D.(3, 0)或(−3, 0)5. 下列各式中,正确的个数是( )①±65是11125的平方根;①√93=3;①√179=±43;①√(−3)2的算术平方根是3;①√0.4=0.2.A.1个B.2个C.3个D.4个6. 今年我县有1200名考生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这1200名考生的数学中考成绩的全体是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本的容量是200.其中说法正确的有( )A.1个B.2个C.3个D.4个7. 如图,把一块含有45∘角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20∘,那么∠2的度数是( )A.30∘B.25∘C.20∘D.15∘8. 已知{x =2y =1 是二元一次方程组{ax +by =7ax −by =1的解,则a −b 的值为( ) A.1B.−1C.2D.39. 导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cmB.23cmC.24cmD.25cm10. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1, 0),(2, 0),(2, 1),(3, 1),(3, 0),(3, −1)…根据这个规律探索可得,第100个点的坐标为()A.(14, 0)B.(14, −1)C.(14, 1)D.(14, 2)二、填空题11.如图,AB // CD,EF⊥AB于E,EF交CD于F,已知∠1=60∘,则∠2=________.12.把“对顶角相等”改写成“如果…那么…”的形式为________.13.若y=√x−2+√2−x−3,则x−y=________.14.A,B两点的坐标分别为(1, 0),(0, 2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2, a),(b, 3),则a+b=________.15.已知关于x的不等式组{x+2>m+nx−1<m−1,的解集为−1<x<2,则(m+n)2020的值是________.16.对于任意实数a,b,定义关于“⊕”的一种运算如下:a⊕b=2a+b.例如:3⊕4=2×3+4=10.若x⊕(−y)=2,且2y⊕x=−1,则x+y=________.三、解答题17.计算:√(−5)2−|2−√2|−√−273.18.(1)解方程组:{4x−3y=11 2x+y=13(2)解不等式组:{3x−5≤113−x3<4x,并把它的解集在数轴上表示出来.19.市消费者协会对销量较大的A,B,C三种奶粉进行了问卷调查,发放问卷540份(问卷由单选和多选题组成),对收回的476份问卷进行了整理,部分数据如下:最近一次购买各品牌奶粉用户的比例如图;用户对各品牌奶粉满意情况如下表:根据上述信息回答下列问题:(1)A品牌奶粉的主要竞争优势是什么?你是怎样看出来的?(2)广告对用户选择品牌有影响吗?请简要说明理由.20.如图,已知AB // CD,∠B=40∘,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.21.在平面直角坐标系中,已知点A(−4, 3)、B(−2, −3)(1)描出A、B两点的位置,并连结AB、AO、BO.(2)△AOB的面积是________.(3)把△AOB向右平移4个单位,再向上平移2个单位,画出平移后的△A′O′B′,并写出各点的坐标.22.如图,∠ADE=∠B,∠1=∠2,FG⊥AB,问:CD与AB垂直吗?试说明理由.23.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.24.如图1,在平面直角坐标系中,A(a, 0),C(b, 2)且满足(a+2)2+√b−2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD // AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)若AC交y轴于Q,而Q的坐标为(0, 1),在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案:一、1-5 ACCDA 6-10 BBBDD二、11.30∘12.如果两个角是对顶角,那么这两个角相等13.514.215.116.13三、17.原式=5−2+√2+3=6+√2.18.{4x−3y=112x+y=13,①+①×3,得:10x=50,解得x=5,将x=5代入①,得:10+y=13,解得y=3,① 方程组的解为{x=5y=3;解不等式3x−5≤1,得:x≤2,解不等式13−x3<4x,得:x>1,则不等式组的解集为1<x≤2,将不等式的解集表示在数轴上如下:19.A品牌奶粉主要竞争优势是质量,可以从以下看出:①对A品牌的质量满意的用户最多;①对A品牌的广告、价格满意的用户不是最多.广告对用户选择品牌有影响,可以从以下看出:①对B、C品牌质量、价格满意的用户相差不大;①对B品牌的广告满意的用户多于C品牌,且相差较大;①购买B品牌的用户比例高于C品牌.20.解:① AB // CD,∠B=40∘,① ∠BCE=180∘−∠B=180∘−40∘=140∘,① CN是∠BCE的平分线,① ∠BCN=12∠BCE=12×140∘=70∘,① CM⊥CN,① ∠BCM=20∘.21.△AOB的面积=4×6−12×2×6−12×2×3−12×3×4=24−6−3−6=24−15=9;B′(2, −(1),O′(4,(2).22.CD与AB垂直,理由为:① ∠ADE=∠B,① DE // BC,① ∠1=∠BCD,① ∠1=∠2,① ∠2=∠BCD,① CD // FG,① ∠CDB=∠FGB=90∘,① CD⊥AB.23.解:(1)设A种产品x件,B种为(10−x)件,x+2(10−x)=14,解得x=6,答:A生产6件,B生产4件.(2)设A种产品x件,B种为(10−x)件,{3x+5(10−x)≤44,x+2(10−x)>14,解得3≤x<6.方案一:A生产3件,B生产7件;方案二:A生产4件,B生产6件;方案三:A生产5件,B生产5件.(3)当x=3时,利润为3×1+7×2=17;当x=4时,利润为4×1+6×2=16;当x=5时,利润为5×1+5×2=15.15<16<17,所以第一种方案获利最大,最大利润是17万元.24.略人教版七年级数学下册期末试卷(含答案)第Ⅱ套一、选择题1. 下列实数中,无理数是()A.0B.−1C.√3D.132. 如图,∠1与∠2的关系是()A.对顶角B.同位角C.内错角D.同旁内角3. 下列计算正确的是()A.√−4=−2B.√4=±2C.√(−4)2=4D.±√4=24. 下列各组数中,是方程3x−y=1的解的为()A.{x=0y=−1B.{x=1y=−2 C.{x=−1y=−2 D.{x=13y=15. 下列图形中,不能由“基本图案”(小四边形)经过平移得到的图形为()A. B. C. D.6. 若a>b,则下列不等式成立的是()A.a−2<b−2B.2−a>2−bC.12a>12b D.−2a>−2b7. 某校为了解疫情期间3000名学生网上学习的效果,随机抽取了300名学生网上学习效果的检测情况进行统计分析.其中样本容量为()A.3000名学生网上学习的效果B.3000C.抽取的300名学生网上学习的效果D.3008. 估计√10+1的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间9. 如图,有四个条件:①∠1=∠2;①∠1=∠3;①∠2=∠3;①∠2=∠4.其中能判定AB // CD 的条件有()A.1个B.2个C.3个D.4个10. 无论x取何值,点P(x+2, x−1)都不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11. 我国古代数学名著《九章算术》中记载有这样一道题:“今有二马、一牛价过一万,如半马之价;一马二牛价不满一万,如半牛之价.问牛、马价各几何?”其大意是:今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于12匹马的价格;1匹马、2头牛的总价不足10000钱,所差的钱数相当于12头牛的价格.问每头牛、每匹马的价格各是多少?若设每头牛的价格为x钱,每匹马的价格为y钱,则根据题意列方程组正确的为()A.{x+2y=10000−12x2x+y=10000+12yB.{x+2y=10000+12x2x+y=10000−12yC.{2x+y=10000−12xx+2y=10000+12yD.{2x+y=10000+12xx+2y=10000−12y12. 在平面直角坐标系中,对任意两点A(x1, y1)、B(x2, y2),规定运算如下:①A⊕B=(x1+x2, y1+y2);①A⊗B=x1x2+y1y2;①当x1=x2.且y1=y2时,称A=B.则下面命题是假命题的为()A.若A(−1, 2),B(2, 1),则A⊕B=(1, 3),A⊗B=0B.若三点A(x1, y1)、B(x2, y2)、C(x3, y3)满足A⊕B=B⊕C,则A=CC.若三点A(x1, y1)、B(x2, y2)、C(x3, y3)满足A⊗B=B⊗C,则A=CD.任意三点A(x1, y1)、B(x2, y2)、C(x3, y3),恒有(A⊕B)⊕C=A⊕(B⊕C)成立二、填空题13.−8的立方根是________.14.“a的一半与1的差不大于5”用不等式表示为________.15.如图,已知∠1+∠2=180∘,∠3=75∘,则∠4=________.16.在平面直角坐标系中,已知线段MN // x轴,且MN=3,若点M的坐标为(−2, 1),则点N的坐标为________.17.已知a−2b的平方根是±3,a+3b的立方根是−1,则a+b=________.18.在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有________个.三、解答题19.计算:(1)3√5−(5√5−2√5);(2)√16+√−273−|1−√3|.20.解下列方程组:(1){x−2y=5,2x+y=−5,;(2){x2+y3=2,0.3x+0.5y=4.8,.21.园林部门为了对市内某旅游景区内的古树名木进行系统养护,建立了相关的地理信息系统,其中重要的一项工作就是要确定这些古树的位置.已知该旅游景区有树龄百年以上的古松树4棵(S1, S2, S3, S4),古槐树6棵(H1, H2, H3, H4, H5, H6).为了加强对这些古树的保护,园林部门根据该旅游景区地图,将4棵古松树的位置用坐标表示为S1(2, 8),S2(4, 9),S3(10, 5),S4(11, 10).(1)根据S1的坐标为(2, 8),请在图中画出平面直角坐标系;(2)在所建立的平面直角坐标系中,写出6棵古槐树的坐标;(3)已知H5在S1的南偏东41∘,且相距5.4米处,试用方位角和距离描述S1相对于H5的位置?22.如图,已知AB // CD,直线EF与AB、CD相交于H、F两点,FG平分∠EFD.(1)若∠AHE=112∘,求∠EFG和∠FGB的度数;(2)若∠AHE=n∘,请直接写出∠EFG和∠FGB的度数.23.在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动.为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A.从某所普通中学校随机选取200名学生作为调查对象进行调查;B.从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C.从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查.(1)在上述调查方式中,你认为比较合理的一个是________(填番号).(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在1∼2小时之间的人数m=________.(3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在1∼2小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.24.已知不等式组{x2+x+13>0x+5a+43>43(x+1)+a有且只有两个整数解,求实数a的取值范围,并用数轴把它表示出来.25.如图①,已知AB // CD,AC // EF.(1)若∠A=75∘,∠E=45∘,求∠C和∠CDE的度数;(2)探究:∠A、∠CDE与∠E之间有怎样的等量关系?并说明理由.(3)若将图①变为图①,题设的条件不变,此时∠A、∠CDE与∠E之间又有怎样的等量关系,请直接写出你探究的结论.26.武汉新冠肺炎疫情发生后,全国人民众志成诚抗疫救灾.某公司筹集了抗疫物资120吨打算运往武汉疫区,现有甲、乙、丙三种车型供运输选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车________辆;(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,且一次性运完所有物资,你能分别求出三种车型的辆数吗?此时的总运费为多少元?参考答案:一、1-5 CBCAD 6-10 CDCAB 11-12 CC二、13.−214.12a−1≤515.105∘16.(1, 1)或(−5, 1)17.318.mnp三、19.原式=3√5−5√5+2√5=0;原式=4−3−(√3−1)=4−3−√3+1=2−√3.20.{x−2y=52x+y=−5,①×2+①得:5x=−5,解得:x=−1,把x=−1代入①得:−1−2y=5,解得:y=−3,所以方程组的解是:{x=−1y=−3;将原方程组化简得:{3x+2y=123x+5y=48,①-①得:3y=36,解得:y=12,把y=12代入①得:3x+24=12,解得:x=−4,所以方程组的解是:{x=−4y=12.22.略23.① ∠1+∠AHE=180∘,∠AHE=112∘,① ∠1=68∘,又① AB // CD,① ∠1=∠EFD,∠FGB+∠DFG=180∘① ∠EFD=68∘,又① FG平分∠EFD,① ∠EFG=∠DFG=12∠EFD=34∘,① ∠FGB=146∘;若∠AHE=n∘时,同理可得:∠EFG=90∘−12n;∠FGB=90∘+12n24.由题意可得,从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;m=200−92−36−18=54,故答案为:54;100×200−92200=54(万),答:全市每天“停课不停学”的学习时间在1∼2小时及以上的人数有54万人;这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.25.解不等式x2+x+13>0得:x>−25,解不等式x+5a+43>43(x+1)+a得:x<2a,则不等式组的解集为:−25<x<2a,① 不等式组{x2+x+13>0x+5a+43>43(x+1)+a有且只有两个整数解,① 两个整数解为:0,1,① 1<2a≤2,<a≤1.解得:12用数轴表示如下:26.在图①中,① AB // CD① ∠A+∠C=180∘,① ∠A=75∘,① ∠C=180∘−∠A=180∘−75∘=105∘,过点D作DG // AC,① AC // EF,① DG // AC // EF,① ∠C+∠CDG=180∘,∠E=∠GDE,① ∠C=105∘,∠E=45∘,① ∠CDG=180∘−105∘=75∘,∠GDE=45∘,① ∠CDE=∠CDG+∠GDE,① ∠CDE=75∘+45∘=120∘;如图①,通过探究发现,∠CDE=∠A+∠E.理由如下:① AB // CD,① ∠A+∠C=180∘,过点D作DG // AC,① AC // EF,① DG // AC // EF,① ∠C+∠CDG=180∘,∠GDE=∠E,① ∠CDG=∠A,① ∠CDE=∠CDG+∠GDE,① ∠CDE=∠A+∠E;如图①,通过探究发现,∠CDE=∠A−∠E.① AB // CD,① ∠A +∠C =180∘, ① AC // EF , ① ∠E =∠CHD ,① ∠CHD +∠C +∠CDE =180∘, ① ∠E +∠C +∠CDE =180∘, ① ∠E +∠CDE =∠A , 即∠CDE =∠A −∠E .27.(1)4(2)设甲种车型需x 辆,乙种车型需y 辆,根据题意得:{5x +8y =120,450x +600y =9600,解得{x =8,y =10,答:甲种车型需8辆,乙种车型需10辆.(3)设甲车有a 辆,乙车有b 辆,则丙车有(14−a −b)辆,由题意得, 5a +8b +10(14−a −b)=120, 即a =4 − 25b ,① a 、b 、14−a −b 均为正整数, ① b 只能等于5, ① a =2, 14−a −b =7,① 甲车2辆,乙车5辆,丙车7辆,则需运费450×2+600×5+700×7=8800(元),答:甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.人教版七年级数学下册期末试卷(含答案)第Ⅲ套一、选择题1. 在,,,,这五个数中,无理数的个数是()A.1B.2C.3D.42. 下列计算中正确的是()A. B. C. D.3. 如图,已知直线被直线c所截,,,则的度数为()A. B. C. D.4. 如图,如果,下面结论正确的是()A. B. C. D.5. 在平面直角坐标系中,在第一象限的点是()A. B. C. D.6. 在平面直角坐标系xoy中,若A点坐标为(−3, 3),B点坐标为(2, 0),则△ABO的面积为()A.15B.7.5C.6D.37. 以下调查中,适宜抽样调查的是()A.调查某班学生的身高B.某学校招聘教师,对应聘人员面试C.对乘坐某班客机的乘客进行安检D.调查某批次汽车的抗撞击能力8. 方程组的解是()A. B. C. D.9. 不等式组的解集是()A. B. C. D.10. 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A. B. C. D.二、填空题11.计算:=________.12.若点在轴上,则=________.13.有一些乒乓球,不知其数,先取12个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有2个做标记,可估计袋中乒乓球有________个.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题加10分,答错(或不答)一道题扣5分,如果小明参加本次竞赛得分要不低于140分,那么他至少答对________道题.15.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马?根据题意,求得大马有________匹.16.下列命题:①相等的角是对顶角;①互补的角就是平角;①互补的两个角一定是一个锐角,另一个钝角;①在同一平面内,平行于同一条直线的两条直线平行;①邻补角的平分线互相垂直.其中真命题的序号是________.三、解答题17.计算:18.如图,平分,,,求的度数.19.解不等式组:20.解方程组21.为了解某品牌电动汽车的性能,对该批电动汽车进行了抽检,将一次充电后行驶的里程数分为,,,四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,并将抽查结果整理后,绘制成如下的两个不完整的统计图,根据所给信息解答以下问题:(1)补全条形统计图;(2)扇形统计图中等级对应的扇形的圆心角是多少度?(3)如果该厂每年生产5000辆该品牌电动汽车,估计能达到等级的有多少辆?22.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,.将向上平移5个单位长度,再向右平移8个单位长度,得到.(1)在平面直角坐标系中画出;(2)直接写出点,,的坐标;(3)求的面积.23.某水果从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中大樱桃损耗了5%,小樱桃损耗了15%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为每千克多少元?(结果精确到0, 1)24.如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0, a),C(b, 0)满足.(1)点A的坐标为________;点C的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4, 3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180∘可以直接使用).参考答案一、1-5 BCBCA 6-10 DDBAA二、11.112.313.12014.1615.2516.①①三、17.解:√(−2)2−4−√5(1−√5)+|2−√5=2−4−√5+5+√5−2 =118.解:AD平分∠CAB∠CAB=2∠1=60∘DE(AC2=2=CAB=60∘19.解:{2x+3≤x+5①5−6x−2≤3(2−x)①解不等式①得:x≤2解不等式①得:x>−1① 所以不等式组的解集是−1<x≤220.解:由①得x=3+y①把①代入①得33+y)−8y=1ℎy=−1把y=−1代人①得x=2|x=2…原方程组的解为了y=−121.(1)抽检的电动汽车的总数为30−30%=100(辆),A等级电动汽车的数量为100−30−40−20=10(辆),条形统计图为:(2)20+100×360∘=72∘答:扇形统计图中D等级对应的扇形的圆心角是:72(3)20+100×5000=1000答:估计能达到D等级的车辆有1000辆.22.(1)如图所示,ΔA1B1C1即为所求.(2)由图知,A1(5,5)B1(2,3)C1(6,0)(3)ΔA1B1C1的面积为4×5−12×2×3−12×1×5−12×3×4=17223.(1)设小樱桃的进价为每千克》元,大樱桃的进价为每千克)元,根据题意可得:{200x+200y=8000 y−x=20解得:{x=10 y=30…小樱桃的进价为每千克10元,大樱桃的进价为每千克30元;(2)200×[(40−30)+(16−10)]=3200(元),…第一次销售完后,该水果商共赚了320元;设第二次大樱桃的售价为①元/千克,(1−15%)×200×16+(1−5%)×2000a−800003200×90%解得:a≥83219=43.8答:大樱桃的售价最少应为43.8元/千克.24.(1)√a−b+2+|b−8|=0a−b+2=0 b−8=0a=6,b=8.A(0,6),C(8,0)故答案为:(0,6)(8,0)(2)由(1)知,A(0,6)C(8,0)..0A=6,OB=8由运动知,OQ=tPC=2tOP=8−2t:D(4,3)① S△OBQ=12OQ×|x|=12t×4=2tS△ODP=12OP×|y B|=12(8−2i)×3=12−3t20DP与ΔODQ的面积相等,.2t=12−3it=2.4…存在t=2.4时,使得ΔODP与ΔODQ的面积相等;(3)2△GOA+∠ACE=∠OHC,理由如下:x轴⊥y轴,△AOC=∠DOC+∠AOD=90∘.20AC+∠ACO=90∘又∠DOC=∠DCO① 20AC=∠AOD.x轴平分2GOD,① 2GOA=∠AOD.① 2GOA=∠OAC..OGIAC,如图,过点H作HFIIOG交x轴于F,.HFIIAC,…_FℎAC=2AC:OGlIFH,…:GOD=∠FHC).① △GOD+∠ACE=∠FHO+∠EHC即∠GOD+∠ACE=∠OHC,.24GOA+∠ACE=∠OH人教版七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列图形是中国一些航空公司的标志,其中是轴对称图形的是()A.B. C. D.2. 下列计算正确的是()A.a+3a=4a2B.(−3a2)3=−27a6C.a4⋅a3=a12D.(a+b)2=a2+b23. 下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出系列专题片“中国战‘疫’”C.经过红绿灯路口,遇到绿灯D.对于任意有理数m,n,都有(m−n)2≥04. 清代•袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10−5B.8.4×10−6C.84×10−7D.8.4×1065. 如图,将直角三角板与直尺贴在一起,使三角板的直角顶点在直尺的一边上,若∠1=35∘,则∠2的度数是()A.35∘B.45∘C.55∘D.65∘6. 如图,AB平分∠DAC,增加下列一个条件,不能判定△ABC≅△ABD的是()A.AC=ADB.BC=BDC.∠CBA=∠DBAD.∠C=∠D7. 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A.a2−b2=(a+b)(a−b)B.a(a−b)=a2−abC.(a−b)2=a2−2ab+b2D.a(a+b)=a2+ab8. 成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,体息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B. C. D.9. 已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是()A. B. C.D.10. 如图,在四边形ABCD中,连结AC,点E在BA的延长线上,有下列四个选项:①∠BAC =∠ACD;①∠EAC+∠ACD=180∘;①∠EAD=∠B;①∠EAD=∠ACD.现从中任选一个作为条件,能判定BE // CD的概率是()A.14B.12C.34D.1二、填空题11.已知a m=2,a n=5,则a m+n=________.12.若a=3−b,则代数式a2+2ab+b2的值为________.13.武侯祠博物馆享有“三国圣地”的美誉,它的大门的栏杆示意图如图所示,BA⊥AE于点A,CD // AE,若∠BCD=120∘,那么∠ABC=________度.14.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是________.15.如图1,在长方形ABCD中,动点P从点B出发,沿BC−CD−DA运动,至点A处停止.设点P运动的路程为x,△ABP的面积为y,y与x的关系如图2所示,则当y=2时,对应的x的值是________.三、解答題16.)−1−(2020−π)0+(0.25)4×44.(1)计算:(12(2)计算图中阴影部分的面积.17.(1)先化简,再求值:[(x−y)2−y(y+2x)]÷x,其中|x−3|+(y+1)2=0.(2)如图,在单位长度为1的正方形网格中,点A,B,C都在格点上.①填空:△ABC的面积为________;①画出△ABC关于直线l对称的△A′B′C′,其中点A,B,C的对应点分别为A′,B′,C′;①在直线l上画出一个点P,使PA+PC的值最小.18.已知:如图,AB // CD,AC与BD相交于点E,且EA=EC.(1)求证:EB=ED;(2)过点E作EF⊥BD,交DC的延长线于点F,连结FB,求证:S△BEF=S△AEB+S△CEF.19.在新冠疫情期间,成都市某医疗器械厂接到生产口罩的任务,要求在11天内生产2000万个口罩.该医疗器械厂安排甲、乙两车间共同完成本次生产任务.已知甲车间每天生产60万个口罩,乙车间每天生产90万个口罩.甲,乙两车间同时开工,甲车间生产a 天后停工1天改造工艺,然后按照新工艺继续生产,其每天生产口罩的数量变为m 万个.甲、乙两车间各自生产口罩的数量y (万个)与乙车间的生产时间x (天)之间的关系如图所示,请结合图象回答下列问题:(1)填空:a =________,m =________;(2)试问:当x 取何值时,甲、乙两车间生产口罩的数量相同;(3)甲、乙两车间能否在11天内完成本次生产任务?若能,求甲车间比乙车间多生产多少万个口罩?若不能,请说明理由.20.对于任意有理数a ,b ,c ,d ,我们规定|a b c d|=a 2+d 2−bc . (1)填空:对于有理数x ,y ,k ,若|2xkx −2yy|是一个完全平方式,则k =________; (2)对于有理数x ,y ,若2x +y =18,|3x +y2x 2+3y 23x −3y|=204. (i)求xy 的值;(ii)将长方形ABCD 和长方形CEFG 按照如图方式进行放置,其中点E 在边CD 上,连接BD ,BF .若a =2x ,b =y ,图中阴影部分的面积为174,求n 的值.21.如图,AC平分∠BAD,CB⊥AB于点B,CD⊥AD于点D.(1)如图1,求证:CB=CD;(2)如图2,点E,F分别是线段AD,AB上的动点,连结EF,交AC于点G,且满足DE+BF=EF.(①)试探究∠AFE与∠ACE之间满足的数量关系,并说明理由;(①)若DE=1,BF=n,且S△AEF=S△CED,请直接写出AG的值(用含n的代数式表示),不必GC写出求解过程.参考答案:一、1-5 DBDBC 6-10 BADCB二、11.1012.913.15014.1315.1或7三、16.原式=2−1+(0.25×4)4=2−1+14=2−1+1=2;阴影部分的面积为(3a+2b)(2a+b)−(a+2b)(a+b)=6a2+3ab+4ab+2b2−(a2+ab+2ab+2b2)=6a2+3ab+4ab+2b2−a2−ab−2ab−2b2=5a2+4ab.17.原式=(x2−2xy+y2−y2−2xy)÷x=(x2−4xy)÷x=x−4y,由|x−3|+(y+1)2=0,得到x−3=0,y+1=0,解得:x=3,y=−1,则原式=3+4=7;×2×2=2;①根据题意得:S△ABC=12故答案为:2;①如图所示,即为所求;①如图所示,即为所求.18.证明:① AB // CD,① ∠ABE=∠D,在△ABE和△CDE中{∠ABE=∠D,∠AEB=∠CEDEA=EC① △ABE≅△CDE(AAS),① EB=ED;证明:① △ABE≅△CDE,① S△AEB=S△DEC,① EB=ED,① S△BEF=S△DEF,① S△DEF=S△DEC+S△CEF,① S△BEF=S△AEB+S△CEF.19.2,120由题意90x=120+120(x−3),解得x=8,① 当x=8时,甲、乙两车间生产口罩的数量相同.乙11天完成11×90=990(万个),甲10天完成120+8×120=1080(万个),① 990+1080=2070>2000,1080−990=90(万个)① 在11天内能完成本次生产任务,甲车间比乙车间多生产90万个口罩.20.|2xkx−2yy|=(2x)2+y2−kx×(−2y)=4x2+y2+2kxy,① |2xkx−2yy|是一个完全平方式,① 2k=±2×√4×1=±4,解得k=±2;(i)方法1:(3x+y)2+(x−3y)2−3(2x2+3y)2=9x2+6xy+y2+x2−6xy+9y2−6x2−9y2=4x2+y2=204,4xy=(2x+y)2−(4x2+y2)=120,解得xy=30;方法2:依题意有{2x+y=18(3x+y)2+(x−3y)2−3(2x2+3y2)=204,解得{x1=9−√212y1=9+√21,{x2=9+√212y2=9−√21,则xy=30;(ii)na2+nb2−12na2−12b(a+nb)=174,na2+nb2−ab=348,4nx2+ny2−2xy=348,n(2x+y)2−4nxy−2xy=348,324n−120n−60=348,解得n=2.故n的值为2.故答案为:±2.21.证明:如图1,① AC平分∠BAD,CB⊥AB于点B,CD⊥AD于点D,① CD=CB;(i)如图2,∠AFE=2∠ACE,理由是:延长AB到H,使BH=ED,连接CH,设∠H=α,∠CFH=β,① CD=CB,∠D=∠CBH=90∘,① Rt△CDE≅Rt△CBH(SAS),① ∠DEC=∠H,CE=CH,① EF=DE+BF,DE=BH,① EF=BF+BH=FH,① CF=CF,① △CEF≅△CHF(SSS),① ∠CFE=∠CFH,∠H=∠CEF,① ∠AFE=180∘−2β,△AEF中,∠EAF=180∘−∠AEF−∠AFE=2α−(180∘−2β)=2α+2β−180∘,① AC平分∠DAB,∠DAB=α+β−90∘,① ∠DAC=12△AEC中,∠ACE=∠DEC−∠DAC=α−(α+β−90∘)=90∘−β,① ∠AFE=2∠ACE;(ii)如图3,延长AB到H,使BH=ED=1,连接CH,过A作AP⊥EF于P,过C作CM⊥EF于M,① FH=EF=n+1,由(i)知:∠EFC=∠HFC,① CM=CB=CD,① S△AEF=S△CED,① 12EF⋅AP=12DE⋅CD,即12(n+1)⋅AP=12CM,① APCM =1n+1,① S△AEGS△EGC =12EG⋅AP12EG⋅CM=12AG12CG,① AGCG =APCM=1n+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年7月30日数学期末考试试卷
一、选择题(共9小题;共27分) 1. 计算 −√49
25 的值是 ( )
A. −√7
5 B. −7
5 C. 7
5
D. √75
2. 在实数 67
,√32
,π
4
;0.1333⋯,0.5 中,分数有 ( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
3. 解方程组 {3x −14x =2, ⋯⋯①
8x +7x =11, ⋯⋯②
下列解法中比较简捷的是 ( )
A. 由 ① 得 x =3x −2
14
,再代入 ② B. 由 ② 得 x =
11−8x
7
,再代入 ① C. 由 ② 得 7x =11−8x ,再代入 ① D. 由 ① 得 14x =3x −2,再代入 ②
4. 如图,直线 x ,x 被直线 x 所截,选项所列两角中,互为同旁角的是 ( )
A. ∠4 和 ∠6
B. ∠2 和 ∠7
C. ∠4 和 ∠5
D. ∠4 和 ∠6
5. 平面三条直线 x ,x ,x ,若 x ⊥x ,x ⊥x ,则直线 x ,x 的位置关系是 ( ) A. 垂直 B. 平行 C. 相交 D. 以上都不对
6. 若 2x 2−x
+x =1 是二元一次方程,则 x 的值为 ( )
A. 2
B. −1
C. 1
D. 0
7. 如图,在平面直角坐标系中 x (2,0),x (−3,−4),x (0,0),则 △xxx 的面积为 ( )
A. 4
B. 6
C. 8
D. 3
8. 下列命题中正确的有 ( )
① 相等的角是对顶角;② 在同一平面,若 x ∥x ,x ∥x ,则 x ∥x ;③同旁角互补;④
互为邻补角的两角的角平分线互相垂直. A. 0 个
B. 1 个
C. 2 个
D. 3 个
9. 对于方程:3x +2x =4,下列说确的是 ( ) A. 无正数解 B. 只有一组正数解 C. 无正整数解
D. 只有一组正整数解
二、填空题(共7小题;共21分)
10. 如图,两直线 x ,x 被第三条直线 x 所截,若 ∠1=50∘,∠2=130∘,则直线 x ,x 的
位置关系是 .
11. 在平面直角坐标系中,已知 x (0,0),x (4,0),点 x 在 x 轴上.若 △xxx 的面积是 10,则点 x 的坐标是 .
12. 若 3x 2x −3−x 2x −1
=5 是二元一次方程,则 x = ,
x = .
13. 如图,x 1⊥x 3,x 2⊥x 3,则 x 1 x 2,理由是 .
14. 如图,已知 xx ∥xx ,∠xxx =120∘
,∠xxx =100∘
,则
∠xxx = .
15. 一个正数 x 的平方根是 5x +18 与 6−x ,则这个正数 x 是 .
16. 已知 {x =4,x =−2 与 {x =−2,
x =−5
都是方程 x =xx +x 的解,则
√x 2−3x = .
三、解答题(共9小题;共72分)
17. 如图,某历史街区有树龄百年以上的古松树 4 棵 (x 1,x 2,x 3,x 4),古槐树 6 棵
(x 1,x 2,x 3,x 4,x 5,x 6),为了加强对古树的保护,园林部门将 4 棵古松树的位置用坐标表示
为:x 1(−1,3),x 2(1,4),x 3(7,0),x 4(8,5).类似地,请你把图中 6 棵古槐树的位置也用坐标表示出来,并画出 x 轴、 x 轴.
18. 如图所示,某自来水厂计划把河流 xx 中的水引到蓄水池 x 中,问从河岸 xx 的何处开
渠,才能使所开的渠道最短?画图表示,并说明设计的理由.
19. 如图,点 x 在 xx 上,xx 与 xx ,xx 分别交于 x ,x ,已知 ∠1=50∘,∠2=
130∘,∠x =∠x .求证:∠xxx =∠x .
20. 解下列方程组.
(1){
3x −x =−4,
x −2x =−3.
(2){3(x +x )−4(x −x )=−4,
x +x
2
+
x −x 6
=1.
21. 计算.
(1)√(−2)2−√83
+√−1
27
3
;
(2)2(√3−1)−∣∣√3−2∣∣+√−643
.
22. 已知 x 是 √7 的整数部分,x 是 √7 的小数部分,求 x (x −√7)2
的值.
23. 在下列解题过程的空白处填上适当的容(推理的理由或数学表达式) 如图,已知 xx ∥xx ,xx ,xx 分别平分 ∠xxx 和 ∠xxx ,求证:xx ∥xx . 证明:
∵ xx ∥xx ,(已知)
∴ ∠ =∠ .( )
∵ ,(已知)
∴ ∠xxx =12
∠xxx ,(角平分线定义) 同理,∠xxx = . ∴ ∠xxx =∠xxx ,(等量代换)
∴ xx ∥xx .( )
24. x 为何值时,方程组 {3x −5x =2x ,
3x +5x =x −18 的解互为相反数?求这个方程组的解.
25. 在平面直角坐标系 xxx 中,点 x (1,1),x (3,2),将点 x 向左平移两个单位,再向上平
移 4 个单位得到点 x .
(1)写出点 x 坐标; (2)求 △xxx 的面积.
答案
第一部分
1. B
2. C
3. C
4. C 【解析】由图可知互为同旁角的是∠4和∠5.
5. B
6. C
7. A
8. C
9. C
第二部分
10. 平行
【解析】∵∠2+∠3=180∘,∠2=130∘,
∴∠3=50∘,
∵∠1=50∘,
∴∠1=∠3,
∴x∥x(同位角相等,两直线平行).
11. (0,5)或(0,−5)
12. 2,1
13. ∥,在同一平面,垂直于同一条直线的两条直线互相平行
14. 140∘
15. 144
16. 7
2
第三部分
17. 建立平面直角坐标系如图所示,
x1(0,0),x2(−2,−2),x3(4,0),x4(5,1),x5(5,−4),x6(9,2).
18. 如图所示.从河岸xx的x点处开渠,可使所开的渠道最短,理由是垂线段最短.
19. ∵∠1=50∘,∠2=130∘, ∴∠1+∠2=180∘. ∴xx ∥xx . ∴∠x =∠xxx . ∵∠x =∠x , ∴∠xxx =∠x . 20. (1)
{
3x −x =−4, ⋯⋯①
x −2x =−3, ⋯⋯②
①×2
得:
6x −2x =−8, ⋯⋯③②−③
得:
−5x =5.
x =−1.
把 x =−1 代入 ① 得:
x =1.∴
方程组的解为
{
x =−1,
x =1.
(2)
{3(x +x )−4(x −x )=−4,x +x +x −x =1,
令 x +x =x ,x −x =x , 则:
{3x −4x =−4, ⋯⋯①x 2+x 6
=1, ⋯⋯②
由 ②×6 得
3x +x =6. ⋯⋯③
由 ③−① 得
5x =10.x =2.
把 x =2 代入 ③ 得
x =43
.
x +x =2x =2+4
3,
x =5
3,x −x =2x =4
−2,
x =−1
3
.
∴ 方程组的解为
{
x =53,
x =−1
3
.
21. (1) 原式=2−2−1
3
=−1
3
.
(2) 原式=2√3−2+√3−2−4
=3√3−8.
22. ∵ 2<√7<3, ∴ x =2,x =√7−2,
∴ x (x −√7)2
=2×(√7−2−√7)2
=2×(−2)2=2×4=8.
23. ∠xxx ;∠xxx ;两直线平行,错角相等;xx 平分 ∠xxx ;1
2∠xxx ;错角相等,两直线平行
24. {
3x −5x =2x , ⋯⋯①
3x +5x =x −18, ⋯⋯②
①+② 得:
6x =3x −18,
即
x =
x −6
2
,①−② 得:
−10x =x +18,
即
x =−
x +18
10
, 根据题意得:
x +x =0,
即
x −62=x +18
10
, 去分母得:
5x−30=x+18,移项合并得:
4x=48,
解得:
x=12,
即方程组为
{3x−5x=24,
3x+5x=−6,解得:
x=3,x=−3.
25. (1)x(−1,5).
(2)
x△xxx=x
梯形xxxx −x
梯形xxxx
−x
梯形xxxx
=5.。