高一数学周考试卷
高一数学周考题目

高一数学周考试题一、 选择题:(本大题共10小题,每小题5分,共50分。
在每小题的四个选项中,只有一项是符合题目要求的)1.已知(1,2)a =,(2,3)b x =-且a ∥b ,则x = ( ) A 、-3B 、34-C 、0D 、342.已知△ABC 中,30A =,105C =,8b =,则a 等于 ( ) A 、4 B 、42 C 、43 D 、45 3.已知等差数列{a n }中,a 5+a 9=2,则S 13=( )A .11B .12C .13D .不确定4.若)()(),1,2(),4,3(b a b x a b a -⊥+-==且,则实数x= ( ) A 、23 B 、223 C 、323 D 、423 5.在ΔABC 中,若060,4,3=∠==BAC AC AB ,则=⋅AC BA ( ) A 、6 B 、4 C 、-6 D 、-46、若关于x 的方程02=+-a x x和02=+-b x x b a ≠的四个根可组成首项为41的等差数列,则b a +的值是( )A.83B.2411C.2413 D.7231 7、若两个等差数列)(27417,}{},{+∈++=N n n n B A B A n b a n n n n n n 且满足和项和分别为的前则的值是1111b a ( ) A .34 B .23 C .47 D .7178 8.已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P(n,n a )和Q(n+2,2+n a )(n ∈N +)的直线的一个方向向量的坐标可以是( ) A .(2,21) B .(2,21--) C .(21-,-1) D .(-1,-1)9、设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且56S S <,678S S S =>,则下列结论错误的是( )A.d <0B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值10.在数列{a n }中,若a 1=12,a n +1=a n +ln(1+1n ),则a n 等于( )A .2+ln nB .2+n ln nC .12+ln nD .12+n ln n二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 12.等差数列{a n }中,a 1>0,S 3=S 10,则当S n 取最大值时n 的值是________. 13.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于 .14.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则这个三角形的面积为 。
高一周测数学试卷(解析版)

利用两角和的余弦公式可判断选项 C;利用两角差的正切公式可判断选项 D;
【详解】对于选项 A:由二倍角正弦公式可得 2 sin 75 cos 75 sin150 1 ,故选项 A 正确; 2
对于选项 B:由二倍角余弦公式1 2 sin2 π cos π 3 ,故选项 B 不正确;
12
62
对于选项 C:由两角和的余弦公式 cos 45 cos15 sin 45 sin15 cos 45 15
,
0
,所以 x
π 3
π 3
,
2π 3
π 3
,要使得
f
x
在
0,
2π 3
上单
调递增,则
2π 3
π 3
π 2
,解得
1 4
,又由题意可知
0
,所以
0
1 4
,故选:B
7.下列关于函数
y
tan
x-
π 4
的说法正确的是(
)
A.图象关于点
3π 4
,0
成中心对称
B.图象关于直线 x 3π 成轴对称 4
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
【详解】角 的终边在第三、四象限,则 sin 0 ,反之,若 sin 0 ,则角 的终边在第三、
四象限或者 y 轴的非正半轴,所以“角 的终边在第三、四象限”是“ sin 0 ”的充分不必要条
件。故选:C
4.若 lg tan 1 , 2tan 2 ,则 tan ( )
3π 2
,0
,则当
x
π 4
π 2
时,函数无意义故
D
错误,
高一数学周测试卷及答案详解

高一年级上学期期中数学测试卷一、选择题1.已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3} C.{3,4} D.{3,5}2.已知f(x)=log2(x+1),则f(1)=()A.0 B.1 C.2 D.33.设集合A={-1,3,5},若f:x→2x-1是集合A到集合B的映射,则集合B可以是()A.{0,2,3} B.{1,2,3} C.{-3,5} D.{-3,5,9}4.已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为()A.5 B.10 C.8 D.不确定5.函数的定义域为()A.(1,4]B.(1,4)C.[1,4]D.[1,4 )6.三个数70.3,0.37,㏑0.3,的大小关系是()A. 70.3>0.37>㏑0.3 B.70.3>㏑0.3>0.37C. 0.37>70.3>㏑0.3 D.㏑0.3>70.3>0.377.函数f(x)=a x与g(x)=-x+a的图象大致是()8.已知0﹤a﹤b, 则函数f(x)=a x + b 的图像必定不经过()A、第一象限B、第二象限C、第三象限D、第四象限9.某厂日产手套总成本y(元)与手套日产量x(双)的关系式为y=5x+4 000,而手套出厂价格为每双10元,则该厂为了不亏本,日产手套至少为()A.200双B.400双C.600双D.800双10.已知函数y=f(x)是R上的偶函数且f(x)在[0,∞)上是减函数,若,则的取值范围是 ( )A .B .C .D .11.已知函数f (x )=x1在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( ) A. 21 B . -21 C . 1 D . -112.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(本大题共4小题,每小题5分共20分,将答案填在题中的横线上)13.已知log 0.45(x +2)>log 0.45(1-x ),则实数x 的取值范围是________.14.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值与最小值的和为6,则a 的值为________.15.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={}x |x =x 1+x 2,x 1∈A ,x 2∈B ,则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.16.已知f (x )=x 2+2(a -1)x +2在区间[1,5]上的最小值为f (5),则a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.18.(12分)计算:(1)lg 52+23lg 8+lg 5lg 20+(lg 2)2; (2)321-2761+1643-2×(832-)1-+52×(452-)1-19.(12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算.电费每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.(1)设月用电x 度时,应交电费y 元,写出y 关于x 的函数关系式;(2)小明家第一季度缴纳电费情况如下:20.(12分)已知函数f(x)=log a xx -+11(a>0且a ≠1) (1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)判断f(x)单调性并用定义证明.21.(12分)已知函数f (x )=log a (x 2-2),f (2)=1.(1)求a 的值;(2)求f (32)的值;(3)解不等式f(x)<f(x+2).22.(12分)某汽车制造商在2013年初公告:随着金融危机的解除,公司计划2013年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:在你有两个函数模型:二次函数模型f(x)=ax2+bx+c(a≠0),指数函数模型g(x)=a·b x+c(a≠0,b>0,b≠1),哪个模型能更好地反映该公司年销量y与年份x 的关系?。
高一数学优秀经典周测试卷及答案详解 (12)

高一周考试卷(1)姓名 班级一、 填空题(每题5分)1、已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =2、已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________。
3、指数函数y =a x 的图象经过点(2,4),则y=x a 的图像过 象限。
4、已知f (x 6)=log 2x ,那么f (8)等于 。
5、已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f (log 124)=-3,则a 的值为 。
6、已知函数f (x )=a x -2(a >0,a ≠1),f (x 0)=0且x 0∈(0,1),则a 的取值范围是 。
7、若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的 倍。
8、如图是某几何体的三视图,则该几何体的体积为 。
9、已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为________.10、平面α⊥平面β,α∩β=l ,n ⊂β,n ⊥l ,直线m ⊥α,则直线m 与n 的位置关系是________. 11、已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.若CD =2,平面ABCD⊥平面DCEF ,则线段MN 的长等于________.第8题图11、若直线l1:x+3y+m=0(m>0)与直线l2:2x+6y-3=0的距离为10,则m=。
12、过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y= 。
13、已知直线l1经过两点(-1,-2),(-1,4),直线l2经过两点(2,1),(x,6),且l1∥l2,则x= 。
14、直线x-y+1=0关于y轴对称的直线的方程为。
15、.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离为。
高一数学下学期周考卷-高一数学试题

高一数学下学期周考卷高一数学试题一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知等差数列{an},a1=1,a3=3,则公差d为()A. 1B. 2C. 3D. 43. 不等式2x 3 > 0的解集是()A. x > 1.5B. x < 1.5C. x > 3D. x < 34. 下列关于x的方程中,无解的是()A. x^2 4x + 4 = 0B. x^2 2x + 1 = 0C. x^2 + 2x + 1 = 0D. x^2 3x + 2 = 05. 若向量a与向量b的夹角为60°,|a| = 2,|b| = 3,则向量a与向量b的数量积为()A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 任何两个等差数列的乘积仍然是等差数列。
()2. 一次函数的图像是一条直线。
()3. 一元二次方程的解一定有两个实数根。
()4. 平行四边形的对角线互相平分。
()5. 若两个角互为补角,则它们的正切值互为倒数。
()三、填空题(每题1分,共5分)1. 已知等差数列{an},a1=1,a3=3,则a5=______。
2. 若函数f(x) = 2x + 1是单调递增的,那么f(3) > f(2)的解为______。
3. 向量a = (2, 3),向量b = (4, 1),则向量a与向量b的数量积为______。
4. 若一元二次方程x^2 4x + 3 = 0的两个根为x1和x2,则x1 + x2 =______。
5. 在直角坐标系中,点A(2, 3)关于原点的对称点坐标为______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 举例说明一次函数的实际应用。
3. 如何求解一元二次方程的解?4. 简述向量数量积的性质。
5. 举例说明平行四边形在实际生活中的应用。
高一数学周考试卷

高一数学第一次周考试卷一:选择题(每题5分,共50分)1.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或 2.已知等差数列{}n a 中, 315,a a 是方程2610x x --=的两根, 则7891011a a a a a ++++的值为( )A. 18B. 18-C. 15D. 12 3.在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或150°4.在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =5.若(a+b+c)(b+c -a)=3bc,且sinA=2sinBcosC, 那么ΔABC 的形状是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 6.△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围 ( )A .2>xB .2<xC .3342<<xD . 3342≤<x 7.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8 C . ()10,8D .()8,108.一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 26010.若{n a }是等差数列,首项1a >0,2003a +2004a >0,2003a ·2004a <0,则使前n 项和n S >0成立的最大自然数n 是 ( ) A .4005B .4006C .4007D .4008二:填空题(每题5分,共25分)11.已知数列{a n }的前n 项和S n =2n 2-5n+1,求该数列的通项公式为a n = 12.已知△ABC,A=120°,c=10,则a= , △ABC 的面积为13.等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = 14.一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的公差是15.下图:第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第n 行(n≥2)中的第2个数是_____(用n 表示).1223434774511141156162525166三:解答题(本大题6小题,共75分)16.(12分)等差数列}{n a 的前n项的和为S n ,且a 4 =-11, S 6 =-75,求: (1)}{n a 的通项公式a n 及前n项的和S n ; (2)求 |a 1 |+|a 2 |+|a 3 |+……+|a 14 |.17.(12分)已知{n a }是等差数列,14,552==a a ,正项数列{b n }是等比数列,其第1项,第3项分别是{n a }的第2项和第7项 (1)求{n a },{n b }的通项公式;(2)设{n a }的前n 项和155=n S ,求n 的值.18. (12分)已知数列{}n a 中,*113,12(2,)n n n a a a a n n N -=+=≥∈,数列{}n b 满足)(11*N n a b n n ∈-=(1).求证:数列{}n b 是等差数列;(2).求数列{}n a 中的最大项和最小项19. (14分) △ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c成等比数列,43cos =B .(1)求CA tan 1tan 1+的值; (2)设c a BC BA +=⋅求,23的值。
高一数学周测试卷

高一数学周测试卷一.选择题(每小题5分,共60分)1.设集合M={x|x>1},P={x|x 2-6x+9=0},则下列关系中正确的是( )A.M=PB.P ⫋MC.M ⫋PD.M ∩P=R2.函数f(x)=1+log 2x 与g(x)=2-x+1在同一直角坐标系下的图象大致是( )3.函数y =x 2+2x +3(x ≥0)的值域为( )A .RB .[0,+∞)C .[2,+∞)D .[3,+∞) 4.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A.8π3 B.32π3 C .8π D.82π35.已知长方体ABCD -A 1B 1C 1D 1,在平面AB 1上任取一点M ,作ME ⊥AB 于E ,则( ) A .ME ⊥平面AC B .ME ⊂平面ACC .ME ∥平面ACD .以上都有可能6.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( )A .平行B .重合C .相交但不垂直D .垂直7.如右面的框图输出的S 为( )A .15B .17C .26D .408. 下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =- 9. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π 10.已知α是第二象限角,那么2α是 ( ) A .第一象限角 B. 第二象限角 C. 第二或第四象限角 D .第一或第三象限角11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩则15()4f π-等于( )A.2 B. 1 C. 0 D.2- 12.右图是函数2|)(|x sin(2y π<φφ+ω=的图象,那么 ( ) (A )6,1110π=φ=ω (B )6,1110π-=φ=ω (C )6,2π=φ=ω (D )6,2π-=φ=ω二、填空题(每题5分,共20分) 13.已知定点A(-1,3),B(4,2),以A 、B 为直径作圆,与x 轴有交点C ,则交点C 的坐标是________.14.在长为12cm 的线段AB 上任取一点C ,现作一矩形,使邻边长分别等于线段AC 、CB 的长,则该矩形面积大于20cm 2的概率为__________.15. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为 16.已知0tan ,0sin ><θθ,那么θ是第 象限角。
高一数学周测试卷

高一年级下学期数学周测试卷一.选择题(请把正确的答案写在题后的横线上,每小题5分,共60分)1.点(1,-1)到直线x -y +1=0的距离是( ).A .21B .23C .22D .223 2.函数(2)log (5)x y x -=-的定义域是( )A .(3,4)B .(2,5)C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 3.若函数2()(0)f x ax bx c a =++≠是偶函数,则函数32()g x ax bx cx =++是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数4.已知函数2()4,[1,5)f x x x x =-∈,则此函数的值域为( )A. [4,)-+∞B. [3,5)-C. [4,5]-D. [4,5)-5.下列直线中与直线2x +y +1=0垂直的一条是( ).A .2x ―y ―1=0B .x -2y +1=0C .x +2y +1=0D .x +21y -1=0 6.甲、乙两名同学在五次考试中的数学成绩用茎叶图统计表示如图所示,则下列说法正确的是( )A .甲的平均成绩比乙的平均成绩高B .甲的平均成绩比乙的平均成绩低C .甲成绩的方差比乙成绩的方差大D .甲成绩的方差比乙成绩的方差小7.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ).A .2x -y -1=0B .2x +y +1=0C .2x -y +1=0D .2x +y -1=08.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于( ).A .-1B .-2C .-3D .09.某工厂生产A ,B ,C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型产品有15件,那么样本容量n 为( )A .50B .60C .70D .8010.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.5611. 若函数()f x 在R 上是单调递减的奇函数,则下列关系式成立的是( )A.()()34f f <B.()()34f f <--C.()()34f f --<-D.()()34f f ->-12..如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4一、填空题(请把正确的答案写在题后的横线上,每小题5分,共20分)13.已知()f x 是定义在R 上的奇函数,且当0x >时, ()221f x x x =+-,则f(-3)= ;14.已知函数941x y a -=-(0a >且1a ≠)恒过定点(),A m n ,则log m n =__________. 15.从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于________.16.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是______________.三、解答题(20分)17.(20分)袋中有红、黄、白三种颜色的球各3只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同概率;(3)3只颜色不全相同的概率;(4)3只颜色全不相同的概率.第12题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白鹭洲中学上学期高一数学第二次周考试卷命题:罗卫强 审题: 高一数学备课组一、选择题:本答题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{0,1}的子集有 ( )个A. 1个B. 2个C. 3个D. 4个 2.已知集合2{|10}M x x =-=,则下列式子正确的是( )A .{1}M -∈B . 1 M ⊂C . 1 M ∈-D . 1 M ∉-3.下列各组函数中,表示同一函数的是( )A .1y =与0y x =B .4lg y x =与22lg y x =C .||y x =与2y =D .y x =与ln xy e =4. 函数()ln 28f x x x =+-的零点一定位于区间( )A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5) 5.sin(-310π)的值等于( ) A .21 B .-21C .23D .-236.己知α是第二象限角,那么2α是( )A .第一象限角 B. 第二象限角C. 第二或第四象限角 D .第一或第三象限角7.若函数()y f x =是函数1x y a a a =>≠(0,且)的反函数,且(2)1f =,则()f x = ( )A .x 2logB .x 21C .x 21log D .22-x 8.函数y =的定义域为( )A .(4,1)--B .(4,1)-C .(1,1)-D .(1,1]-9.定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 210.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 二、填空题:本大题共5小题,每小题5分,共25分。
11.幂函数()y f x =的图象经过点()2,8,则()3f -值为 .12.若0.20.3a =, 0.42b =,2log 0.5c =,则c b a ,,三个数的大小关系是:(用符号“>”连接这三个字母) . 13.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是 .14. 函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f = .15.用{}min ,,a b c 表示,,a b c 三个数中的最小值,设{}()min 2,2,8x f x x x =+-,其中0x ≥,则()f x 的最大值为 .三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
16. (本小题满分12分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<. (1)求A B 及()R A B ð;(2)若()A B C =∅ ,求实数a 的取值范围.17、(本小题满分12分)不用计算器求下列各式的值.⑴ ()()1223021329.63 1.548--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---+;⑵7log 2log lg 25lg 47++ . 18.(本小题满分12分)已知角α终边上一点P (-4,3),求)29sin()211cos()sin()2cos(απαπαπαπ+---+的值.19. (本小题满分12分)某商店进了一批服装,每件进价为80元,售价为100元,每天可售出20件. 为了促进销售,商店开展购一件服装赠送一个小礼品的活动,市场调研发现:礼品价格为3元时,每天销售量为26件;礼品价格为5元时,每天销售量为30件. 假设这批服装每天的销售量t (件)是礼品价格x (元)的一次函数. (1) 将t 表示为x 的函数; (2)如果这批服装每天的毛利润为当天卖出商品的销售价减去礼品价格与进价后的差,试为礼品确定一个恰当的价格,使这批服装每天的毛利润最大?20. (本小题满分13分)已知函数[)(),1,,1且mf x x m x m x=++∈+∞<(1)证明:()f x 在[)+∞,1上为增函数;(2)设函数3()()22g x x f x x =⋅++,若[]2,5是()g x 的一个单调区间,且在该区间上()0g x >恒成立,求m 的取值范围.21.(本题满分14分,第1小题6分,第2小题8分)已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0a b ⋅≠ (1)若0a b ⋅>,判断函数()f x 的单调性;(2)若0a b ⋅<,求(1)()f x f x +>时的x 的取值范围.高一上学期数学周考试卷参考答案一.1.D 2.C 3.D 4.C 5.C 6.D 7.A 8.C 9.C 10.D 二.11. -27 12. b a c >> 13. 2 14. 15. 5 14.解:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)f f==-,则()()115(5)(1)(12)5f f f f f =-=-==--+16. 解:(1)A B ={}|35x x <≤ (2分) ∵ A B = {}|28x x << (4分) ∴()R A B ð={}|28x x x ≤≥或 (6分)(2)若()A B C =∅ ,则有23a ≤或15a -≥且12a a -<(10分) 得312a -<≤或6a ≥ ∴实数a 的取值范围为31,2⎛⎤- ⎥⎝⎦或[)6,+∞ (12分)17.解:(1)原式=23221)23()827(1)49(--+-- =2323212)23()23(1)23(-⨯-⨯+--=22)23()23(123--+-- =21……6分(2)原式=2)425lg(33log 433+⨯+ =210lg 3log 2413++-=4152241=++-…………..12分 18.【解】∵43tan -==x y α ∴ 43tan cos sin sin sin )29sin()211cos()sin()2cos(-==⋅-⋅-=+---+ααααααααπαπ19.解:(1)设t kx b =+, (1分) 由题意得263305k bk b =+⎧⎨=+⎩(3分) 解得 2k =,20b =∴*220,t x x N =+∈ (6分)(2)设礼品价格为x 元时这批服装每天的毛利润为y 元, 则 (10080)(220)y x x =--+ (8分) =222204002(5)450x x x -++=--+∴ 当5x =时,y 有最大值. 即礼品价格为5元时这批服装每天的毛利润最大.( 12)20. 解:(1)由题得:()m f x x m x=++,设211x x <≤,则1212121212()()()()m m m mf x f x xm x m x x x x x x -=++-++=-+- (2分)121212()()x x x x m x x --= (4分),121x x <≤ 1,02121><-∴x x x x ,又1m <,得120x x m ->0)()(21<-∴x f x f ,即)(x f 在[)+∞,1上为增函数。
(6分)(2)23()(2)2g x x m x m =++++, (8分)若()g x 在[]2,5上单调递增,则有:222(2)0(5)(2)m g g g +⎧-<⎪⎪>⎨⎪>⎪⎩解得 196m >- (10分)若()g x 在[]2,5上单调递减, m 须满足:252(5)0(5)(2)m g g g +⎧->⎪⎪>⎨⎪<⎪⎩其解集为φ. (12分)又∵1m <,∴m 的取值范围为1916m -<< (13分)21、解:⑴ 当0,0a b >>时,任意1212,,x x R x x ∈<,则12112()()(22)(33)x x x xf x f x a b -=-+-∵ 121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x x b b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数。
当0,0a b <<时,同理函数()f x 在R 上是减函数。
⑵ (1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22x a b >-,则 1.5log ()2ax b>-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-。