高一上学期数学月考试卷及答案

合集下载

高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。

重庆市2024-2025学年高一上学期10月月考试题 数学含答案

重庆市2024-2025学年高一上学期10月月考试题 数学含答案

重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。

2023-2024学年天津市南开中学高一上学期月考数学试卷+答案解析(附后)

2023-2024学年天津市南开中学高一上学期月考数学试卷+答案解析(附后)

2023-2024学年天津市南开中学高一上学期月考数学试卷一、单选题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设集合,,则( )A. B. C. D.2.设,且则( )A. B. C. D.3.若集合,,则的充要条件是( )A. B. C. D.4.设命题p:,,则为( )A. ,B. ,C. ,D. ,5.不等式中等号成立的条件是 ( )A. B. C. D.6.已知集合,,若,则a的取值范围为( )A. B.C. D.7.正实数a,b满足,,则的最小值为( )A. B. C. D.8.命题“任意,”为真命题的一个充分不必要条件是( )A. B. C. D.9.已知命题,,命题,,若命题p,q都是真命题,则实数a的取值范围是.( )A. B.C.或 D.10.若关于x的方程的两个实数根,,集合,,,,则关于x的不等式的解集为( )A. B.C. D.二、填空题:本题共6小题,每小题4分,共24分。

11.设a,,若集合,则__________.12.试用列举法表示集合:__________;13.不等式的解集为__________.14.已知实数,当取得最小值时,则的值为__________.15.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是__________.16.若函数的最小值为0,则m的取值范围为__________.三、解答题:本题共3小题,共36分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题10分设全集为,集合,,求,,;若,求实数a的取值范围.18.本小题12分解关于x的不等式:19.本小题14分已知且,记m为的最大值,记n为ab的最大值.求的值;若,且对任意,恒成立,求的最大值.答案和解析1.【答案】C 【解析】【分析】本题考查交集运算,属于基础题.根据交集的定义求解即可.【解答】解:因为 ,,所以.故选:2.【答案】D 【解析】【分析】本题考查不等式的性质,属于基础题.运用不等式的性质,结合特例法逐一判断即可.【解答】解:A :当 时,显然不成立,因此本选项不正确;B :当 时, 没有意义,因此本选项不正确;C :若 ,显然,但是不成立,因此本选项不正确;D :由 ,因此本选项正确,故选:D 3.【答案】D 【解析】【分析】本题考查充要条件及含参数的集合关系问题,属于基础题.利用充要条件及两个集合的关系即可得出答案.【解答】解:因为集合 ,,且,所以,故选:4.【答案】B 【解析】【分析】本题考查全称量词命题的否定,属于基础题.根据全称量词命题的否定是特称量词命题可得答案.【解答】解:命题p:,,则为, .故选:5.【答案】C【解析】【分析】本题考察基本不等式,属于基础题.易知取等时解出x即可.【解答】解:故选6.【答案】C【解析】【分析】本题考查交集及集合包含关系的判断,分类讨论含参数的集合包含关系,属于中档题.由可以得到,从而对集合B分类讨论即可求解参数a的范围.【解答】解:已知,又因为,,即,①当时,满足,此时,解得;②当时,由,得,解得;综上所述, .故选:7.【答案】A【解析】【分析】本题考查由基本不等式求最值,属于基础题.由题意可得,,再利用基本不等式求解即可.【解答】解:,,且,,当且仅当,即,时,等号成立,即的最小值为 .故选:8.【答案】C【解析】【分析】本题考查充分不必要条件的应用,属于中档题.求出命题“任意,”为真命题的充要条件,然后可选出答案.【解答】解:由可得,当时,,所以,所以命题“任意,”为真命题的充要条件是,所以命题“任意,”为真命题的一个充分不必要条件是C,故选:C9.【答案】C【解析】【分析】本题考查利用基本不等式解决恒成立及一元二次方程问题,属于中档题.若命题p为真命题,利用基本不等式求出的最小值即可得到a的取值范围,若命题q为真命题,则由即可求出a的取值范围,再取两者的交集即可.【解答】解:命题p:为真命题,对任意恒成立,又,,当且仅当,即时,等号成立,,命题,,为真命题,,或,命题p,q都是真命题,或 .故选:C10.【答案】A【解析】【分析】本题考查一元二次方程与一元二次不等式解集的关系,涉及集合的混合运算,属于中档题.根据一元二次不等式的解法,可知的解集在两根之外,讨论两根大小,然后根据集合的运算即可求解.【解答】解:当,则的解集为或,,,,,所以或 .当,则的解集为或,,,,,所以或,综上,故选:11.【答案】0【解析】【分析】本题考查集合相等,属于中档题.利用集合相等以及,可得,即,代入原式可得的值,进而求出答案.【解答】解:由题意可知:,因为,则,可得,则,可得,且满足,所以 .故答案为:12.【答案】【解析】【分析】本题考查集合的表示方法,属于基础题.求解x 的范围,然后表示成描述法即可.【解答】解:由题意可得: .故答案为: .13.【答案】【解析】【分析】本题考查分式不等式的解法,属于基础题.根据分式不等式求解方法进行求解即可.【解答】解:不等式等价于,解得,所以原不等式的解集为 .故答案为: .14.【答案】4 【解析】【分析】本题考查利用基本不等式求最值,属于中档题.先利用配凑法根据基本不等式求最值,根据取等条件得 ,即 即得.【解答】解:根据题意可得,,因 ,所以,,所以即,当且仅当时等号成立,此时,解得,则 .故答案为: 415.【答案】【解析】【分析】本题考查利用基本不等式解决有解问题,属于中档题.由已知结合基本不等式中“1”的代换求解的最小值,然后结合存在性问题与最值关系的转化,解一元二次不等式即可.【解答】解:因为两个正实数x,y满足,所以,所以,当且仅当即时,等号成立.因为有解,所以,即,解得或,即实数m的取值范围是 .故答案为: .16.【答案】【解析】【分析】本题考查由函数的最值求参,属于较难题.根据题意,讨论,求得时,取得最小值 0 ,去绝对值,结合二次函数的最值求法,即可得到所求范围.【解答】解:当时,,当时,取得最小值 0 ,满足条件;当时,,当时,可得,当时,,,当时,,当时,取得最小值0,此时;当时,,由题意可得恒成立,不满足.则m的取值范围为 .故答案为:17.【答案】解:因为,,根据并集、补集的概念可得,或,或,所以,或 .若,则,解得,若,则,且或,解得,所以实数a的取值范围是 .【解析】本题考查集合的运算,属于中档题.根据集合A、B利用集合的交集、并集、补集的运算即可求得结果.分集合C为空集和C不为空集两种情况分类讨论,利用交集运算的概念得到a的范围.18.【答案】解:,时,,解集为时,不等式无解;时,,解集为时,不等式为,解集为;时,不等式的解集为或,综上,时,不等式的解集是;时,不等式的解集是或;时,不等式的解集是;时,不等式无解;时,不等式的解集是【解析】本题考查了含有参数的一元二次不等式的解法,解题关键在于对参数的分类讨论,注意参数的正负情况对于解集的影响,属于中档题.分类讨论,进行求解即可.19.【答案】解:因为,所以,因为,所以,因为,当且仅当时取等号,所以,得,当且仅当时取等号,所以ab的最大值为1,即,因为,所以,所以,所以,当且仅当时取等号,所以的最大值为2,即,由题可得,令,则,故 .对任意,,则恒成立,因为a为正数,所以所以,此时,所以,当时,等号成立,此时成立,所以的最大值为第11页,共11页【解析】本题主要考查利用基本不等式求最值,一元二次不等式恒成立问题,属于难题.利用基本不等式结合已知可求得,则 ,从而可求出 n 的值,再结合完全平方公式可求出 m ;令,则 ,得 ,根据 时, ,求得 的关系,从而可得 的取值范围,根据 取最大值的的值检验不等式 恒成立,即可求得结果.。

高一数学第一次月考试卷及答案

高一数学第一次月考试卷及答案

高一数学第一次月考试卷及答案上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1.在下列四个关系中,错误的个数是()A。

1个 B。

2个 C。

3个 D。

4个2.已知全集U=R;集合A={x|y=-x};B={y|y=1-x^2};那么集合(C U A)B=()A。

(-∞,0] B。

(0,1) C。

(0,1] D。

[0,1)3.已知集合M={x|x=2kπ,k∈Z};N={x|x=2kπ+π,k∈Z};则(M ∩ N)'=()A。

M' ∪ N' B。

M' ∩ N' C。

(M ∪ N)' D。

(M ∩ N)'4.函数f(x)=x+(3a+1)x+2a在(-∞,4)上为减函数;则实数a 的取值范围是()A。

a≤-3 B。

a≤3 C。

a≤5 D。

a=-3/55.集合A,B各有两个元素;AB中有一个元素;若集合C 同时满足:(1) C∩(AB)={}。

(2) C⊊(AB);则满足条件C的个数为()A。

1 B。

2 C。

3 D。

46.函数y=-|x-5||x|的递减区间是()A。

(5,+∞) B。

(-∞,0) U (5,+∞) C。

(-∞,0) U (0,5) D。

(-∞,0) U (0,5)7.设M,P是两个非空集合;定义M与P的差集为M-P={x|x∈M且x∉P};则(M- (M-P))'=()A。

P' B。

M' C。

M ∩ P D。

M ∪ P8.若函数y=f(x)的定义域是[0,2];则函数g(x)=f((x-1)/2)的定义域是()A。

[0,1) U (1,2] B。

[0,1) U (1,4] C。

[0,1) D。

(1,4]9.不等式(a-4)x+(a+2)x-1≥0的解集是空集;则实数a的范围为()A。

(-∞,-2) U (2,+∞) B。

(-∞,-2] U [2,+∞) C。

[-2,+∞) D。

[-2,+∞) - {2}10.已知函数f(x)=begin{cases}2b-1)x+b-1.& x>\frac{b-1}{2b-1}\\x+(2-b)x。

2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)

2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)

1市西中学2024学年第一学期高一年级数学月考2024.09一、填空题(本大题满分36分)只要求直接填写结果,每题填对得3分,否则一律得零分. 1.已知集合{}1,a 与{}2,b 相等,则a b += .2.设全集U R =,集合{}|02A x x x ≤>或,则用区间表示A ,结果是 . 3.设x ,y R ∈,用列举法表示x y xy+所有可能取值组成的集合,结果是 .4.已知集合{}(,)|210A x y x y =+=,{}(,)|35B x y x y =−=,则A B = .5.已知α:素数都是奇数,则α的否定形式是 .6.设x ,y R ∈,已知33:x y β<,则β的一个充分必要条件是 . 7.设U 为全集,A ,B ,C U ⊆,用含有A 、B 、C 的运算式子表示如图的阴影部分,结果是 . 8.已知集合{}|A x y x Z ==∈,{}2|1,B y y x x A ==+∈,则AB = .9.设集合{},,,,,,A a b c d e f g =,{},B a c =,集合M 满足AM B M =,则这样的集合M 共有 个. 10.设集合(,0)(1,)A =−∞+∞,{}|(25)()0B x x x a =+−<,若{}2,1ABZ =−−,则实数a 的取值范围是 .11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________.12.若两个正整数的正公因数只有1,则称这两个正整数互素.将与105互素的所有正整数组成集合{}123,,,,,n a a a a ,且123n a a a a <<<<,则100a = .2二、选择题(本大题满分12分)本大题共4题,每题3分. 13.设x R ∈,则“1x ≠”是“2320x x −+≠”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件14.已知抛物线2y ax =与直线1x =、2x =、1y =、2y =围成的正方形有公共点,那么实数a 的取值范围是( ) A .1,14⎡⎤⎢⎥⎣⎦B .1,24⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,22⎡⎤⎢⎥⎣⎦15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤C .{}|7a a ≤D .∅16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题三、解答题(本大题满分52分).17.(本题满分8分)已知集合{}2|8160,,A x kx x k R x R =−+=∈∈只有一个元素,求k 的值并用列举法表示集合A .318.(本题满分10分,第1小题满分5分,第2小题满分5分) 设a R ∈,已知集合{}|12A x x =−<<,{}22|20B x x ax a =−−=. (1)若{}1A B =,求a 的值;(2)若A B A =,求a 的取值范围.19.(本题满分10分,第1小题满分5分,第2小题满分5分)如图,在直角坐标系xOy 中,过点(0,1)F 的直线与抛物线24x y =相交于点11(,)M x y 、22(,)N x y 自M 、N 引直线l :1y =−的垂线,垂足分别为1M 、1N .(1)用1y 分别表示线段1MM 、MF 的长; (2)证明:11M F N F ⊥.420.(本题满分12分,第1小题满分6分,第2小题满分6分)设a R ∈,已知α:关于x 的一元二次方程220ax x a ++=有两个相异正根;β:对任意实数x ,不等式2(1)(1)10a x a x −−−−<恒成立. (1)若α为真命题,求实数a 的取值范围;(2)判断α⇒β、β⇒α是否成立?给出你的结论,并说明理由.21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=. (1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值.5参考答案一、填空题1.3;2.(](),02,−∞⋃+∞;3.{}2,0,2−;4.(){}3,4;5.存在一个素数不是奇数;6.x y <;7.A C B ⋂⋂;8.{}1,0,1,2−;9.32; 10.(]1,2−; 11.7412.202 11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________. 【答案】74【解析】设2x y =,原方程变为()2540y y k −+−=,设此方程有实根,(0)αβ<α<β,则原方程的四个实根为,(=即9β=α,又5,4k α+β=αβ=−, 由此求得74k =且满足254160Δk =+−>,7.4k ∴=故答案为:74.二、选择题13.B 14.B 15.C 16.B15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤ C .{}|7a a ≤ D .∅【答案】C【解析】由集合{}|135A x a x a =+≤≤−,{}116B x =≤≤当A =∅时,A B ⋂=∅,满足条件A A B ⊆⋂,此时135a a +>−,即26a <,解得3a <; 当A ≠∅时,若A A B ⊆⋂,则135113516a a a a +≤−⎧⎪+≥⎨⎪−≤⎩,等价于260321a a a ≥⎧⎪≥⎨⎪≤⎩,即30,7a a a ≥⎧⎪≥⎨⎪≤⎩解得37a ≤≤;6故a 的取值范围是{}|7a a ≤,综上所述,答案选择:C16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题【答案】B【解析】对于甲:()()A B C A B C B C A ⋂∆=⋂⋃−⋂=⋂()()B C A B C ⋃−⋂⋂()()A B A C =⋂⋃⋂()()()()A B A C A B A C −⋂⋂⋂=⋂∆⋂,故甲是真命题;对于乙,如下图所示:所以,()()()A B C A B A C ⋃∆≠⋃∆⋃,故乙是假命题;.故选:B. 三.解答题17.当0k =时,{}2A =; 当1k =时,{}4A =; 18.(1)1a =−(2)1,12⎛⎫− ⎪⎝⎭19.(1)1MM =11MF y =+ (2)略 20.(1)()1,0− (2)α⇒β21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=.7(1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值. 【答案】(1)见解析 (2)8031【解析】(1)证明:12245,,,,x x x x x 中的每一个数都小于1, 可得122455x x x x x ++++<,这与123455x x x x x ++++=矛盾, 故12245,,,,x x x x x 中至少有一个实数不小于1;(2)集合{}12345A x ,x ,x ,x ,x =的非空子集个数为32131−=,由于()M B 是B 中所有元素之和,可得()()1234516165M B x x x x x =++++=⨯80= 则()M B 的平均值为8031.。

高一数学 第一次月考试卷(含答案)

高一数学 第一次月考试卷(含答案)

高一数学 第一次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。

A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。

高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。

北京市中学2024-2025学年高一上学期9月月考数学试卷含答案

北京市中学2024-2025学年高一上学期9月月考数学试卷含答案

北京市2024-2025学年高一上学期9月月考数学试卷班级______姓名______学号______2024.09.30(答案在最后)一、选择题(共8个小题,每题5分,共40分.每小题只有一个正确选项,请选择正确答案.......填在答题纸相应的题号处...........)1.已知集合{10}A xx =-≤≤∣,集合{1,0,1,2}B =-,则A B = ()A.RB.{10}x x -≤≤∣C.{1,0}- D.{1,0,1}-【答案】C【解析】【分析】根据交集运算求解即可.【详解】因为集合{10}A xx =-≤≤∣,集合{1,0,1,2}B =-,所以{}1,0A B ⋂=-.故选:C2.下列命题中,正确的是()A.若a b >,则22ac bc > B.若,a b c d >>,则a c b d +>+C.若,a b c d >>,则ac bd> D.若a b >,则11a b >【答案】B【解析】【分析】利用不等式的性质及举反例即可判断.【详解】对A 选项,当0c =时不等式不成立,故A 选项错误;B 选项,满足不等式的同向可加性,故B 选项正确;C 选项,当2,1,1,2a b c d ===-=-,则ac bd =,故C 选项错误;D 选项,当1,2a b =-=-时,11a b<,故D 选项错误.故选:B 3.方程组2202x y x y +=⎧⎨+=⎩的解集是()A.{(1,1),(1,1)}-- B.{(1,1),(1,1)}--C.{(2,2),(2,2)}-- D.{(2,2),(2,2)}--【答案】B【解析】【分析】根据消元法求得不等式组的解,结合集合的表示方法,即可求解.【详解】由题意,将y x =-代入222x y +=,可得21x =,即1x =±,当1x =时,1y =-;当1x =-时,1y =,所以方程组的解集为{(1,1),(1,1)}--.故选:B.4.下列不等式中,解集为{1xx <∣或3}x >的不等式是()A .2430x x -+≥ B.2430x x -+< C.103x x -≥- D.|2|1x ->【答案】D【解析】【分析】根据一元二次不等式的解法、分式不等式的解法和绝对值不等式的解法分别解各选项不等式即可求解.【详解】由2430x x -+≥可得()()130x x --≥,解得1x ≤或3x ≥,故A 错误;由2430x x -+<可得13x <<,故B 错误;由103x x -≥-可得()()()13030x x x --≥-≠,解得1x ≤或3x >,故C 错误;由|2|1x ->可得21x ->或21x -<-,即1x <或3x >,故D 正确.故选:D5.“0a b >>”是“22a b >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分不必要条件的概念判断即可.【详解】当0a b >>时,22a b >;当22a b >时,a b >,不一定0a b >>,所以“0a b >>”是“22a b >”的充分不必要条件.故选:A.6.平流层是指地球表面以上10km (不含)到50km (不含)的区域,下述不等式中,x 能表示平流层高度的是A.|10|50x +< B.|10|50x -< C.|30|20x +< D.|30|20x -<【答案】D【解析】【分析】根据绝对值的几何意义即可得解|30|20x -<.【详解】解析:如图:设(10),(50)A B ,则AB 的中点为(30)M ,由距离公式可得|30|20x -<.答案:D【点睛】此题考查根据绝对值的几何意义解决实际问题,关键在于正确理解绝对值的几何意义.7.若不等式04x <<是||x a <成立的充分条件,则a 的取值范围是()A.1a ≥ B.4a ≥ C.1a ≤ D.4a ≤【答案】B【解析】【分析】由题意知()()0,41,1a a ⊆-+可得1014a a -≤⎧⎨+≥⎩,解不等式即可得出答案.【详解】由题设,不等式a x a -<<且>0成立的充分条件是04x <<,则()()0,4,a a ⊆-,所以4a ≥,所以实数a 的取值范围是4a ≥.故选:B.8.已知集合{}{}2221,N ,21,N P yy x x x Q y y x x x ==+-∈==-+-∈∣∣,则P Q = ()A.{}1- B.{0} C.∅ D.N 【答案】A【解析】【分析】由两个方程相等可求得两曲线交点的横坐标,根据集合的几何意义求出纵坐标的值即为交集的结果.【详解】由222121x x x x +-=-+-,解得0x =,当0x =时,2221211x x x x +-=-+-=-,所以1{}P Q ⋂=-.故选:A二、填空题(共6个小题,每题5分,共30分.请将正确答案填在答题卡相应的题号处.................).9.命题2R,230x x x ∀∈-+>的否定是______.【答案】R x ∃∈,2230x x -+≤【解析】【分析】根据全称量词命题的否定求解.【详解】命题2R,230x x x ∀∈-+>的否定是R x ∃∈,2230x x -+≤.故答案为:R x ∃∈,2230x x -+≤10.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(U P ð)∪Q =____.【答案】{1,2,4,6},【解析】【分析】由已知,先求出U P ð,再求(U P ð)∪Q .【详解】∵U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},∴U P ð={2,4,6},∴(U P ð)∪Q ={1,2,4,6},故答案为:{1,2,4,6},11.已知集合{1,2,3}A ⊆,集合A 可以为______(写出符合要求的所有A )【答案】{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅【解析】【分析】写出集合的子集即可得解.【详解】因为集合{1,2,3}A ⊆,所以集合A 可以为{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅.故答案为:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅12.已知12,x x 是关于x的一元二次方程210x -+=的两根,则12x x +=______;1211x x +=______.【答案】①.②.【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】由一元二次方程根与系数的关系可知,12x x +=,121x x ⋅=,所以12121211x x x x x x ++==⋅.故答案为:;13.若2{{1,2,4,}a ⊆,则a =________________________【答案】4,16,0【解析】【分析】依题意有{}21,2,4,a,逐个列方程求解,并检验元素的互异性.【详解】依题意有{}21,2,4,a1≠,2=时,216a =,满足题意,则4a =;4=时,2256a =,满足题意,则16a =;2a =时,0a =或1a =,0a =时满足题意,1a =时与元素的互异性矛盾.综上,4a =或16a =或0a =时满足题意,故答案为:4,16,014.若对2R,230x ax ax ∀∈-+>恒成立是真命题,则实数a 的取值范围是______【答案】[)0,3【解析】【分析】分0,0a a =≠讨论,根据一元二次不等式恒成立求解.【详解】当0a =时,原不等式为30>,对任意实数都成立,满足题意;当0a ≠时,2R,230x ax ax ∀∈-+>恒成立,需满足()202120a a a >⎧⎪⎨--<⎪⎩,即003a a >⎧⎨<<⎩,解得0<<3a .综上,实数a 的取值范围是[)0,3.故答案为:[)0,3三、解答题(共3个小题,每题10分,其30分,请将解题过程和答案写在规定的区域内...................)15.已知a ,b 为正数,且a b ≠,比较33+a b 与22a b ab +的大小.【答案】3322a b a b ab +>+【解析】【分析】通过作差,提取公因式便可得出33222()()()a b a b ab a b a b +-+=-+,并根据条件可以判断2()()0a b a b -+>,这样即可得出所比较两个式子的大小关系【详解】33223322()()a b a b ab a b a b ab +-+=+-- 22()()a ab b a b =---22()()a b a b =--2()()a b a b =-+;0a > ,0b >且a b ≠;2()0a b ∴->,0a b +>;2()()0a b a b ∴-+>;即3322()()0a b a b ab +-+>;3322a b a b ab ∴+>+.【点睛】本题主要考查作差法比较两个代数式的大小关系,分解因式法的运用,以及平方差公式,属于基础题.16.一元二次方程210ax bx ++=的解集是12,23⎧⎫-⎨⎬⎩⎭,求实数a ,b 的值,并求方程230bx ax b +--=的解集.【答案】13,2a b =-=,{}1,7-【解析】【分析】根据一元二次方程根与系数的关系求,a b ,再解一元二次方程得解.【详解】因为一元二次方程210ax bx ++=的解集是12,23⎧⎫-⎨⎬⎩⎭,所以122312123b a a⎧-+=-⎪⎪⎨⎪-⋅=⎪⎩,解得13,2a b =-=,所以方程230bx ax b +--=为2670x x --=,解得7x =或1x =-,所以方程的解集为{}1,7-.17.已知集合{}22,(,1)A x a x a B ∞=<<-=-∣.(1)若A B ⊆,求实数a 的取值范围;(2)若U B A ⊆ð,求实数a 的取值范围.【答案】(1)2⎡⎤⎣⎦(2)[)1,-+∞【解析】【分析】(1)分类讨论,根据子集列出不等式求解;(2)分集合是否为空集讨论,根据子集关系列不等式得解.【小问1详解】当22a a -≤时,即12a -≤≤时,A =∅,满足A B ⊆;当A ≠∅时,若A B ⊆,则需22221a a a ⎧<-⎨-≤⎩,解得1a ≤<-,综上,实数a的取值范围2⎡⎤⎣⎦.【小问2详解】由(1)知,当12a -≤≤时,A =∅,所以R U A =ð,满足U B A ⊆ð;当1a <-或2a >时,(])2,2,U A a a ⎡=-∞-+∞⎣ ð,由U B A ⊆ð可得1a ≤,又2a >,所以2a >.综上,实数a 的取值范围[)1,-+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(每小题5分,共50分)
1.已知集合M ={}
2x y y =,用自然语言描述M 应为
A .函数2y x =的值域
B .函数2y x =的定义域
C .函数2y x =的图象上的点组成的集合
D .以上说法都不对. 2.下列关系中正确的个数为( );
①R ∈2
1
②Q ∉2 ③*|3|N ∉- ④Q ∈-|3| A .1 个 B .2 个 C .3 个 D .4 个 3.设集合A={x |-1≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )
A .[0,2]
B .[1,2]
C .[0,4]
D .[1,4] 4.集合A={x|x 2-2x-1=0,x ∈R}的所有子集的个数为( )
A .2
B .3
C .4
D .1 5.函数
2
1)(--=
x x x f 的定义域为( )
A .[1,2)∪(2,+∞)
B .(1,+∞)
C .[1,2)
D .[1,+∞) 6.下列各组中的两个函数是同一函数的为 ( )
A .2()y x =与y x =
B .2y x =与2()y x =
C .3
3
y x =与2
x y x
=
D .33()y x =与y x =
7.二次函数342+-=x x y 在区间(]41,
上的值域是 A .[)∞+-,
1 B .(]30, C .[]31,- D .(]31,- 8.已知集合{239}A ⊆,,且A 中至少有一个奇数,则这样的集合有( )。

A .2个
B .6个
C .5个
D .4个
9.下列集合A 到集合B 的对应f 是映射的是( )
A .A f
B A :},1,0,1{},1,0,1{-=-=中的数的平方 B .A f B A :},1,0,1{},1,0{-==中的数的开方
C .A f Q B Z A :,,==中的数的倒数
D .A f B R A :},{,正实数==中的数取绝对值
10.某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的路程. 在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下图中的四个图形中较符合该学生走法的是( )
A B C D
二.填空题(每小题5分,共25分)11.用列举法表示集合(){}N y N x y x y x ∈∈=+,,3,:________ .
12.已知{}菱形=A ,{}正方形=B ,{}平行四边形=C ,则C B A ,,之间的关系为________
13.已知函数f(x)=⎩⎨⎧<-≥+,
0,4,
0,12x x x x 则f(f(-4))= ___________________14.设全集U=R ,集合{}|214,M x a x a a R =-<<∈,{}|12N x x =<<,若N M ⊆,则实数a
的取值范围是________
15.若函数)(x f 的定义域是[)2,2-,则函数)12(+=x f y 的定义域是________ 三.解答题(每小题9分,共45分) 16. 求函数21
()21
f x x x x =--++的定义域.
17.已知集合A={x|
5
3
2+-x x <0}, B={x|x 2-3x+2<0}, U=R ,求(1)A ∩B ;(2)A ∪B ;(3)B A C U I )(.
18.已知.,},51|{}32|{的取值范围求若或,a B A x x x B a x a x A φ=⋂>-<=+≤≤=
19.已知{}3≥=x x
M ,{}5≤=x x
N ,{}0≥-=a x x
Q ,令N M P I =
(1)求集合P ;
(2)若{}Q P x x I =≤≤54,求实数a 的值; (3)若Q P ⊆,求实数a 的取值范围.
20.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >的解集为(1,3). (1)若方程()60f x a +=有两个相等的根,求()f x 的解析式;
(2)若函数()
f x的最大值不小于8,求实数a的取值范围。

参考答案
一.选择题(每小题5分,共50分)1. A 2. B 3、 A4. C 5、 A 6. D 7.C 8. B 9. A 10.D 二.填空题:本大题共4个小题,每小题5分,共25分。

11.{(0,3),(1,2),(2,1),(3,0)} 12.C A B ⊆⊆ 13. 13 14.
1
12
a ≤≤ 15.[)2
1
,23[-
三.解答题(每小题9分,共45分)
16. 依题意得220(1)
10(2)x x x ⎧--+≥⎨+≠⎩
由(1)得 21x -≤≤ 由(2)得1x ≠-
则()f x 的定义域为[2,1)(1,1]--U 。

17.解:A={x|
532+-x x <0}={x|-5<x <2
3
} B={x|x 2
-3x+2<0}={x|1<x<2}
(Ⅰ)A ∩B={x|1<x <2
3
}
(Ⅱ)A ∪B={x|-5<x<2} (Ⅲ)(
uA )={x|x ≤-5或x ≥2
3
}
(uA )∩B={x|
2
3
≤x<2} 18. 3,32>∴+>=a a a A ,则若φ,此时
符合题意;
22
1
531
232≤≤-
∴⎪⎩

⎨⎧≤+-≥+≤≠a a a a a A ,则若φ,此时亦符合题意。

}3,22
1
|{>≤≤-
∴a a a a 或的取值范围是 19.(1)P=[3,5] (2) a=4 (3)a ≤3
20、解:f(x)=ax 2+bx +c ,则f(x)>2x ⇔ax 2+(b -2)x +c>0.
已知共解集为(1,3),
0242432a b b a a c
c a a

⎪<⎪
-⎪-
=⇒=-⎨⎪⎪=⇒=⎪⎩∴, ∴f(x)=ax 2+(2-4a)x +3a . (1)若f(x)+6a=0有两个相等实根,故ax 2-(4a -2)x +9a=0
△=4+16a 2-16a -36a 2=0,解得
a=-1或1
5
(舍去正值)
∴a=-1
即f(x)=-x 2+6x -3 (
2






222141
()()a a a f x a x a A
--+-=-+
, ∵a<0,
2max
2241
()41841232.0,
(,2][23,0).
a a f x a
a a a a a a a a a -+-∴=-+-⇔++-+-<-∞--+Q Q U ≥8得
≥≥0解得≥≤3又的取值范围是3。

相关文档
最新文档