时间序列分析上机操作题

合集下载

时间序列分析试题(卷)与答案解析

时间序列分析试题(卷)与答案解析

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列分析上机操作题

时间序列分析上机操作题

20.1971年9月—1993年6月澳大利亚季度常住人口变动(单位:千人)情况如下表。

问题:(1)判断该序列的平稳性与纯随机性。

(2)选择适当模型拟合该序列的发展。

(3)绘制该序列拟合及未来5年预测序列图。

针对问题一:将以下程序输入SAS编辑窗口,然后运行后可得图1.data example3_1;inputx@@;time=_n_;cards;63.26ﻩ7.95ﻩ5.8 49.5ﻩ50.255.4ﻩ49.9 45.348.1 61.755.2ﻩ 53.149.5ﻩ59.9ﻩ30.4ﻩ30.6ﻩ33.8 42.135.8ﻩ28.4ﻩ44.1ﻩ32.9ﻩ45.5 36.639.5 49.8 48.8 29 37.33ﻩ4.2 47.637ﻩ.339ﻩ.2 47.6 43.9ﻩ4951.2ﻩ60.8 67ﻩ 48.9 65.4ﻩ65.467.6 62.555.1 49.6ﻩ57.3 47.345.544.5ﻩ 4847.9 49.1 48.859.451ﻩ.651.4 60.9 60.9 55.8 58.662.1ﻩ64ﻩ 60.3 64.6ﻩ7179.459.983.4 75.4 80.255ﻩ.9 58.5 65.269.55ﻩ9.1 21.5 62.5 170 ﻩ-47.462.2ﻩ 60ﻩ33.135ﻩ.343.4ﻩ42.758ﻩ.434ﻩ.4;procgplotdata=example3_1;plotx*time=1;symbol1c=red I=join v=star;run;图1该序列的时序图由图1可读出:除图中170和-47.4这两个异常数据外,该时序图显示澳大利亚季度常住人口变动一般在在60附近随机波动,没有明显的趋势或周期,基本可视为平稳序列。

再接着输入以下程序运行后可输出五方面的信息。

具体见表1-表5.procarima data=example3_1;identifyVar=x nlag=8;run;表1 分析变量的描述性统计从表1可读出分析变量的名称、该序列的均值;标准差及观察值的个数(样本容量)。

时间序列分析练习题

时间序列分析练习题
通过一阶差分,得到 Yt=a+bt-[a+b(t-1)]=b 消除了线性趋势。
17. 在趋势性检验中,进行单位根检验的意义是什么?
单位根检验就是根据已观测到的时间序列,检验产生这个时间序列的随机过程中的一阶 自回归系数是否为一,这个检验实际上就是对时间序列是否为一个趋势平稳过程的检验,如 果检验表明没有单位根,则它是一个趋势平稳过程,否则,它是一个带趋势的单位根过程。
①( 均值为常数 ) ②( 协方差为时间间隔 的函数 )
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。 8. 对于一个纯随机过程来说,若其期望和方差(均为常数),则称之为白噪声过程。白 噪声过程是一个(宽平稳)过程。 9. 时间序列分析方法按其采用的手段不同可概括为数据图法,指标法和(模型法)
19. 线性趋势平稳的特点:当我们将时间序列中的完全确定的线性趋势去掉以后,所形 成的时间序列就是一个平稳的时间序列。
20. 如何以系统的观点看待时间序列的动态性? 系统的动态性就是在某一时刻进入系统的输入对系统后继行为的影响,也就是系统的记 忆性,描述记忆性的函数称为记忆函数。
三、证明题
1. AR(1)模型: X t 1 X t1 at ,其中 at 是白噪声,且 E at2
37. ARMA(n,m) 的逆转形式 X t I j X t j at 。 j 1
38.
模型适应性检验的相关函数法,在显著性水平

0.05 下,若

k
1.96 /
N,
则接受 k 0 的假设,认为 at 是独立的。
39. 模型适应性检验的 2 检验法,在显著性水平 下,若统计量
G12
G22

时间序列分析上机操作题

时间序列分析上机操作题

20。

1971年9月-1993年6月澳大利亚季度常住人口变动(单位:千人)情况如下表.问题:(1)判断该序列的平稳性与纯随机性。

(2)选择适当模型拟合该序列的发展.(3)绘制该序列拟合及未来5年预测序列图.针对问题一:将以下程序输入SAS编辑窗口,然后运行后可得图1.data example3_1;input x@@;time=_n_;cards;63。

2 67。

9 55.8 49。

5 50。

2 55。

4 49。

9 45。

3 48.1 61.7 55.2 53。

1 49.5 59。

9 30。

6 30.4 33.8 42.1 35.8 28。

4 32.9 44.1 45.5 36。

6 39.5 49.8 48。

8 29 37.3 34。

2 47。

6 37.3 39。

2 47。

6 43。

9 49 51.2 60。

8 67 48.9 65.4 65.4 67.6 62.5 55.1 49。

6 57.3 47.3 45。

5 44。

5 48 47.9 49.1 48。

8 59。

4 51。

6 51。

4 60.9 60。

9 55。

8 58.6 62.1 64 60。

3 64.6 71 79.4 59。

9 83.4 75.4 80.2 55.9 58.5 65.2 69.5 59。

1 21。

5 62.5 170 -47.4 62。

2 60 33。

1 35。

3 43.4 42。

7 58。

4 34。

4;proc gplot data=example3_1;plot x*time=1;symbol1c=red I=join v=star;run;图1 该序列的时序图由图1可读出:除图中170和-47。

4这两个异常数据外,该时序图显示澳大利亚季度常住人口变动一般在在60附近随机波动,没有明显的趋势或周期,基本可视为平稳序列.再接着输入以下程序运行后可输出五方面的信息。

具体见表1-表5.proc arima data= example3_1;identify Var=x nlag=8;run;表1 分析变量的描述性统计从表1可读出分析变量的名称、该序列的均值;标准差及观察值的个数(样本容量)。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分,共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型,其中模型参数为p和q。

2.设时间序列{Xt},则其一阶差分为Xt-Xt-1.3.设ARMA (2.1):Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1,则所对应的特征方程为1-0.5B-0.4B^2+0.3B。

4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt,其特征根为φ,平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1,当a满足|a|<1时,模型平稳。

6.对于一阶自回归模型Xt=φXt-1+εt,其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1,其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt,则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2,ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型:Xt=φ1Xt-1+。

+φpXt-p+εt+θ1εt-1+。

+θqεt-q,则预测方差为σ^2(1+θ1^2+。

+θq^2)。

9.对于时间序列{Xt},如果它的差分序列{ΔXt}是平稳的,则Xt~I(d)。

10.设时间序列{Xt}为来自GARCH(p,q)模型,则其模型结构可写为σt^2=α0+α1εt-1^2+。

+αpεt-p^2+β1σt-1^2+。

+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程,满足(1-B+0.5B^2)Xt=(1+0.4B)εt,其中{εt}是白噪声序列,并且E(εt)=0,Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。

根据特征方程1-φ1B-φ2B^2,求得其根为0.5±0.5i,因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1,即-1<φ1<1.因为0.5i不在实轴上,所以模型不是严平稳的,但是是宽平稳的。

时间序列习题答案

时间序列习题答案

时间序列习题答案时间序列习题答案时间序列分析是一种用来研究随时间变化的数据模式和趋势的方法。

它在经济学、金融学、统计学等领域中被广泛应用。

下面我将给出一些时间序列分析的习题,并附上详细的答案解析。

习题一:某公司过去一年的销售额如下:100, 120, 130, 140, 150, 160, 170, 180, 190, 200。

请计算该公司的平均销售额和年度增长率。

答案解析:首先,计算平均销售额的方法是将所有销售额相加,然后除以销售额的个数。

在这个例子中,销售额的个数为10,总销售额为100+120+130+140+150+160+170+180+190+200=1540。

因此,平均销售额为1540/10=154。

接下来,计算年度增长率的方法是将最后一年的销售额减去第一年的销售额,然后除以第一年的销售额,并乘以100%。

在这个例子中,最后一年的销售额为200,第一年的销售额为100。

因此,年度增长率为(200-100)/100*100%=100%。

习题二:某股票的每日收盘价如下:10.2, 10.5, 10.7, 10.9, 11.1, 11.3, 11.5, 11.7, 11.9, 12.1。

请计算该股票的平均收盘价和收益率。

答案解析:计算平均收盘价的方法与计算平均销售额的方法相同。

将所有收盘价相加,然后除以收盘价的个数。

在这个例子中,收盘价的个数为10,总收盘价为10.2+10.5+10.7+10.9+11.1+11.3+11.5+11.7+11.9+12.1=113.9。

因此,平均收盘价为113.9/10=11.39。

计算收益率的方法是将每日的收盘价减去前一日的收盘价,然后除以前一日的收盘价,并乘以100%。

在这个例子中,第二天的收盘价为10.5,第一天的收盘价为10.2。

因此,第二天的收益率为(10.5-10.2)/10.2*100%=2.94%。

习题三:某城市过去十年的月度平均气温如下:15, 18, 20, 22, 25, 28, 30, 29, 26, 23。

(整理)时间序列分析试题

(整理)时间序列分析试题
A.大于100%表示各月(季)水平比全期水平高,现象处于旺季
B.大于100%表示各月(季)水平比全期平均水平高,现象处于旺季
C.小于100%表示各月(季)水平比全期水平低,现象处于淡季
D.小于100%表示各月(季)水平比全期平均水平低,现象处于淡季
E.等于100%表示无季节变化
答案:BD.E
12、循环变动指数C%()。
3月
4月
5月
6月
7月
月初应收账款余额
(万元)
690
850
930
915
890
968
1020
则该企业2005年上半年平均每个月的应收账款余额为()。
A.
B.
C.
D.
答案:A
10、采用几何平均法计算平均发展速度时,侧重于考察()。
A.现象的全期水平,它要求实际各期水平等于各期计算水平
B.现象全期水平的总和,它要求实际各期水平之和等于各期计算水平之和
答案:A
14、元宵的销售一般在“元宵节”前后达到旺季,1月份、2月份的季节指数将()。
A.小于100% B.大于100%
C.等于100% D.大于1200%
答案:B
15、空调的销售量一般在夏季前后最多,其主要原因是空调的供求(),可以通过计算()来测定夏季期间空调的销售量高出平时的幅度。
A.受气候变化的影响;循环指数
答案:D.
17、当时间序列的二级增长量大体相同时,适宜拟合()。
A.抛物线B.指数曲线
C.直线D.对数曲线
答案:A
18、国家统计局2005年2月28日公告,经初步核算,2004年我国的国内生产总值按可比价格计算比上年增长9.5%。这个指标是一个()。

统计学:时间序列分析习题与答案

统计学:时间序列分析习题与答案

一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。

A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。

A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。

A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。

A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。

A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。

A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。

A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。

A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。

A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。

A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。

A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1971年9月—1993年6月澳大利亚季度常住人口变动(单位:千人)情况如(2)选择适当模型拟合该序列的发展。

(3)绘制该序列拟合及未来5年预测序列图。

针对问题一:将以下程序输入SAS编辑窗口,然后运行后可得图1.data example3_1;input x@@;time=_n_;cards;63.2 67.9 55.8 49.5 50.2 55.449.9 45.3 48.1 61.7 55.2 53.149.5 59.9 30.6 30.4 33.8 42.135.8 28.4 32.9 44.1 45.5 36.639.5 49.8 48.8 29 37.3 34.247.6 37.3 39.2 47.6 43.9 4951.2 60.8 67 48.9 65.4 65.467.6 62.5 55.1 49.6 57.3 47.345.5 44.5 48 47.9 49.1 48.859.4 51.6 51.4 60.9 60.9 55.858.6 62.1 64 60.3 64.6 7179.4 59.9 83.4 75.4 80.2 55.958.5 65.2 69.5 59.1 21.5 62.5170 -47.4 62.2 60 33.1 35.343.4 42.7 58.4 34.4;proc gplot data=example3_1;plot x*time=1;symbol1c=red I=join v=star;run;图1 该序列的时序图由图1可读出:除图中170和-47.4这两个异常数据外,该时序图显示澳大利亚季度常住人口变动一般在在60附近随机波动,没有明显的趋势或周期,基本可视为平稳序列。

再接着输入以下程序运行后可输出五方面的信息。

具体见表1-表5.proc arima data= example3_1;identify Var=x nlag=8;run;表1 分析变量的描述性统计从表1可读出分析变量的名称、该序列的均值;标准差及观察值的个数(样本容量)。

表2 样本自相关图由表2可知:样本自相图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向零衰减的速度非常快,故可以认为该序列平稳。

表3 样本自相关系数该图从左到右输出的信息分别为:延迟阶数、逆自相关系数值和逆自相关图。

表4 样本偏自相关图该图从左到右输出信息是:延迟阶数、偏自相关系数值和偏自相关图。

表5 纯随机性检验结果由上表可知在延迟阶数为6阶时,LB检验统计量的P值很小,所以可以断定该序列属于非白噪声序列。

针对问题二:将IDENTIFY命令中增加一个可选命令MINIC,运行以下程序可得到表6.表6 IDENTIFY命令输出的最小信息量结果通过上表可知:在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(1,3)模型。

进行参数估计,输入以下命令,运行可得到表7—表10estimate p=1q=3;run;表7 ESTIMATE命令输出的位置参数估计结果表8 ESTIMATE命令输出的拟合统计量的值表9 ESTIMATE命令输出的系数相关阵表10 ESTIMATE命令输出的残差自相关检验结果拟合模型的具体形式如表11所示。

表11 ESTIMATE命令输出的拟合模型形式针对问题三:对拟合好的模型进行短期预测。

输入以下命令,运行可得表12和图2.forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=star;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;表12 forecast命令输出的预测结果图2 拟合效果图54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802采用SAS软件运行下列程序:data example5_1;input x@@;t=_n_;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot;plot x*t=1;symbol1i=join v=none c=blavk;run;图3 该序列的时序图通过时序图可以得知,该序列有明显的线性递增趋势,故用线性回归模型来拟合。

在接着在编辑窗口输入以下命令,运行程序:proc autoreg data=example5_1;model x=t;run;表12 AUTOREG过程输出线性拟合结果通过该表可得知:(1)因变量的名称,本例中因变量为x。

(2)普通最小二乘统计量,误差平方和、均方误差、SBC信息量、回归模型的R^2、DW统计量、误差平方和的自由度、均方根误差、AIC信息量、包括自回归误差过程在内的整体模型R^2。

(3)参数估计量。

该部分从左到右输出的信息分别是:变量名、自由度、估计值、估计值的标准差、t值以及统计量的t值的近似概率P值。

对于进行5期预测,再接着输入以下命令运行:proc forecast data=example5_1 method=stepar trend=2 lead=5out=out outfull outtest=est;id t;var x;proc gplot data=out;plot x*t= _type_ / href=2008;symbol1i=none v=star c=black;symbol2i=join v=none c=red;symbol3i=join v=none c=green l=2;symbol4i=join v=none c=green l=2;run;表13 FORECAST过程OUT命令输出数据集图示该表有四个变量:时间变量,类型变量,预测时期标示变量,序列值变量。

表14 FORECAST过程OUTSET命令输出数据集图示此表可以查看预测过程中相关参数及拟合效果。

这些信息分为三部分:(1)关于序列的基本信息。

序列样本个数、非缺失数据个数、拟合模型自由度、残差标准差。

(2)关玉预测模型的参数估计信息。

线性模型的常数估计值、线性模型的斜率、残差自回归的参数估计值。

(3)拟合优度统计量信息。

图4 FORECAST过程预测效果图589 561 640 656 727 697 640 599 568 577 553 582 600 566 653 673 742 716 660 617 583 587 565 598 628 618 66 705 770 736 678 639 604 611 594 634 658 622 709 722 782 756 702 653 615 621 602 635 677 635 736 755 811 798 735 697 661 667 645 688 713 667 762 784 837 817 767 722 681 687 660 698 717 696 775 796 858 826 783 740 701 706 677 711 734 690 785 805 871 845 801 764 725 723 690 734 750 707 807 824 886 859 819 783 740 747 711 751(2)使用X-11方法,确定该序列的趋势。

针对问题一:运行以下程序可得到该序列的时序图,见图5。

data example4_3;input x@@;time=intnx ('month','01jan1962'd, _n_-1);format time data;cards;589 561 640 656 727 697 640 599 568 577 553 582600 566 653 673 742 716 660 617 583 587 565 598628 618 688 705 770 736 678 639 604 611 594 634658 622 709 722 782 756 702 653 615 621 602 635677 635 736 755 811 798 735 697 661 667 645 688713 667 762 784 837 817 767 722 681 687 660 698717 696 775 796 858 826 783 740 701 706 677 711734 690 785 805 871 845 801 764 725 723 690 734750 707 807 824 886 859 819 783 740 747 711 751;proc gplot data=example4_3;plot x*time=1;symbol1c=red I=join v=star;run;图5 1962-1970年平均每头奶牛的月度产奶量的时序图通过时序图,我们可以发现1962-1970年平均每头奶牛的月度奶产量随着月度的变动有着非常明显的规律变化,此外该序列有线性递增趋势,故此时序图具有“季节”效应。

相关文档
最新文档