基于层次分析法的软件体系结构的测量与评价

合集下载

精神专科医院医疗质量评价指标主观权重的确定

精神专科医院医疗质量评价指标主观权重的确定

精神专科医院医疗质量评价指标主观权重的确定一、确定指标权重的方法确定指标权重的方法主要有主观赋权法、客观赋权法和组合赋权法。

主观赋权法是根据专家的经验、意愿来赋予指标权重,常用的有层次分析法(analytic hierarchy process,AHP)、德尔菲法等。

客观赋权法则是根据指标的客观数值来计算各个指标的权重,常用的有主成分分析法、熵值法、多目标规划法、离差法及均方差法等。

组合赋权法则由前两种方法结合而成,常用的有基于离差平方和的组合赋权法,以及基于最小二乘原理的组合赋权、基于离差函数和联合熵的组合赋权、线性加权单目标最优化法、嫡系数综合集成法等。

主、客观两种赋权方法均有优缺点。

例如,主观赋权法简便易行,主要考虑专家的偏好,但是有可能脱离实际情况;客观赋权法虽然较好地考虑到了实际情况,但是有可能偏离决策者的主观意图,因此两种方法最好结合使用。

本研究拟采用AHP来确定指标的主观权重。

AHP是一种适用于多目标决策的分析工具,由美国著名运筹学家Saaty于20世纪70年代提出。

该方法将与决策相关的元素分解成为目标、准则、方案等层级,然后使用定性和定量的分析方法,将专家的经验判断进行量化,从而确定决策的方法。

该方法具有系统、灵活、简洁的优点,因此被广泛地用于指标赋权的相关研究中。

AHP的基本思路是:首先构建一个有序的层次结构,然后比较各个层级之中两两元素之间的相对重要性,构建判断矩阵,再通过处理判断矩阵获得每个因素的相对重要程度。

二、AHP的基本步骤(一)层次的建立为了确定各个指标的权重,需要将所有指标划到不同的层级之中。

精神专科医院医疗质量专家评价指标体系中共有三个层级,即一级指标、二级指标和三级指标,对应于AHP中的目标层、准则层和方案层。

(二)构建判断矩阵本研究参照如表3-9所示的赋值表,对每一个层级的指标分别进行赋值,获得判断矩阵A=(aij )n×n。

本研究邀请了参与第二轮改良德尔菲专家调查的19名专家分别赋值,并利用相关软件统计专家们的信息进行分析。

基于层次分析法的课堂教学质量评价

基于层次分析法的课堂教学质量评价

基于层次分析法的课堂教学质量评价近年来,教学质量的重要性越来越受到重视。

随着教育政策的发展和跨文化传播的持续增长,课堂教学质量的评价已经成为一个重要的话题。

层次分析(AHP)法是一种结构化的多层次决策方法,可以用来量化和确定课堂教学质量评价指标。

本文研究的历史背景是,评价课堂教学质量的结构化评价方法以及使用AHP法来确定课堂教学质量的有效性。

首先,本文介绍了教学质量的重要性,以及有关课堂教学质量的测量方法。

它还介绍了AHP法的基本原理。

AHP法是一种系统评估工具,它能够通过分析可比较的指标来确定最适合的权重。

因此,这种方法被认为是一种有效的课堂教学质量评价方法。

其次,本文讨论了基于AHP法的课堂教学质量评价方法。

AHP法针对教学活动问题通过分析、确定和比较相关课堂教学质量指标,最终确定课堂教学质量的整体标准。

首先,在AHP法中,要进行指标层次分析,例如课堂教学质量的指标有课堂管理、教学内容、教学过程、教学设计4个大的指标,每个大指标又有若干次要求的小指标,以此类推。

然后,确定每个指标的权重,在这个过程中,历史数据可以帮助我们减少不必要的实验,提高效率。

最后,本文介绍了最终的课堂教学质量评价标准。

最后,本文讨论了AHP法在课堂教学质量评价过程中的先进性和有效性。

AHP法是一种完整的评估工具,比较有效地汇总了参与者的多重评价结果,以最大限度地确定最具分析价值的信息。

同时,历史数据的使用可以减少未来的实验成本,确保未来的研究决策可以基于较高的技术水平做出。

总之,AHP法是一种实用性强的、具有分析价值的课堂教学质量评价方法。

一方面,课堂教学质量评价使用AHP法可以有效地量化和确定课堂教学质量评价指标;另一方面,历史研究发现,AHP法也可以有效解决有限资源情况下发现最优解的问题。

同时,该方法还可以更好地理解并综合各种可比较的指标。

因此,基于AHP法对课堂教学质量进行评价可以帮助教师们更好地实施教学活动,同时也为评价教学活动提供了科学的依据。

层次分析法_AHP_在风险分析与评价中的应用

层次分析法_AHP_在风险分析与评价中的应用
尤其适合参建各方进?运用由于目前我国参建各方人员的组织都是以wbs原?或者矩阵模式也就是说人员的组织也是层次安排的因此各层次的管?者均可运用层次分析法来分析所从事分项工程的风险逐级找出主要风险为整个项目的风险识别分析评价提供前提条件
研究与探索
Y A NJ I UY UTA NS UO
刘玉雪 ,等 :层次分析法 (A H P) 在风险分析与评价中的应用
2 A H P 法在风险分析中的应用
2. 1 建立结构层次模型 结构层次模型 ,如图 1 所示 。
图 1 技术风险因素的结构层次模型
2. 2 构造第一层次的判断矩阵 ,确定权重 评价指标体系采用表 1 中的成对比较的标度进
行评价 。 第一层次的判断矩阵如表 3 所列 。然后 ,用每一
个列和去除相应的各列元素 ,这样就可以得到一个归 一化的矩阵 。这一归一化矩阵的行和平均值即为所 求排序权重 ,如表 4 所列 。
层次分析法 (A H P) 在风险分析与评价中的应用
刘玉雪 , 王章虎
(合肥工业大学 土木建筑工程学院 ,安徽 合肥 230009)
摘 要 :风险分析与评价是建设工程项目风险管理过程中的关键环节 ,其分析与评价的结果直接影响到项目的风险决策 。工程风 险是模糊的 、不确定的 ,难以进行准确的定义和量化 ,而这恰恰是现有的量化评价方法的基础 。因此 ,如何对项目风险进行合理的 定量分析与评价就成为当前风险研究的主要热点之一 。文章利用层次分析法对工程中的技术风险进行定量分析 ,为风险管理者 以及项目管理者提供一种量化的方法 ,此法比较简便易懂 ,有利于项目参与各方在项目决策中具有较明确的目标进行决策管理 。 关键词 :层次分析法 ;风险评价 ;技术风险 中图分类号 :C931. 1 ;O159 文献标识码 : A 文章编号 :167325781 (2008) 0120022203

层次分析及综合评价方法

层次分析及综合评价方法

指标 权重 甲学生 乙学生
指标 权重 甲学生 乙学生
指标 权重 甲学生 乙学生
德育总分 0.3 90 70
德育总分 0.1 90 70
德育总分 0.3 90 70
智育总分 0.6 70 80
智育总分 0.8 70 80
智育总分 0.6 70 80
体育总分 0.1 80 70
体育总分 0.1 80 70
3.3 常用客观筛选指标方法
逐个指标进行假设检验的方法:是在掌握有关历史资 料基础上,依照可能的评价结果将评价对象分组,并 对各指标进行假设检验,挑选有统计意义的指标作为 评价指标。 多元回归与逐步回检验有显著性 的指标作为评价指标;逐步回归有自动挑选主要影响 指标的功能,是目前最常用的指标挑选方法。
4.4 计算权重系数(续3)
方案 3
0.3×90+0.6×70 +0.1×80=77 0.3×70+0.6×80 +0.1×70+2=78
2.2 综合评价一般步骤示例
据专业知识,选择5个指标 ① 心率② 呼吸③肌张力 ④反射 ⑤皮肤颜色 选择指标
5个指标具有相等权重
确定权重
确 定 指 标 评 价 等 级 及 界 限
研 制 新 生 儿 缺 氧 状 况 的
确定评价对象的优劣等级。
4.2 层次分析法示例
例4:拟采用层次分析法建立一个评价综合 医院工作质量的综合指标,并采用该指 标对某市6所综合医院的工作质量进行综 合评价。
医院工作质量综合评价的基本步骤:
1)对总评价目标进行连续性分解以得到不同层次 的评价目标,将各层评价目标用图有机地标示
出来,即建立目标树图,见图1。
研 究 目 的
Apgar 评 分 方 法
以累加法累计总分:8~10分为正常;4~7 分为轻度缺氧;0~3分为重度缺氧。

(完整版)基于层次分析法的模糊综合评价模型

(完整版)基于层次分析法的模糊综合评价模型

2016江西财经大学数学建模竞赛A题城市交通模型分析参赛队员: 黄汉秦、乐晨阳、金霞参赛队编号:20160182016年5月20日~5月25日承诺书我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C中选择一项填写): A我们的参赛队编号为2016018参赛队员(打印并签名) :队员1. 姓名专业班级计算机141队员2. 姓名专业班级计算机141队员3. 姓名专业班级计算机141日期: 2016 年 5 月 25 日编号和阅卷专用页江西财经大学数学建模竞赛组委会2016年5月15日制定城市交通模型分析摘要随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。

本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。

首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。

其次,建立评价集V=(优,良,中,差)。

对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。

利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5)然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式1,ij ij n kj k u u u==∑ 1,n i ij j w u ==∑ 1,i i n j j w w w ==∑ []R W R W R W R W R W W R WO 5544332211,,,,==计算出权重值,经过一致性检验公式RI CICR =检验后,均有0.1CR <,由此得出各层次的权向量()12,,Tn W W W W =。

北京市地铁客运服务质量评价的实证研究——基于层次分析法的分析毕业论文

北京市地铁客运服务质量评价的实证研究——基于层次分析法的分析毕业论文

北京市地铁客运服务质量评价的实证研究——基于层次分析法的分析Empirical Research——Analysis Based On TheAnalytic Hierarchy Process摘要地铁作为一个城市对外的文明窗口,其客运服务质量越来越受到乘客的关注,所以一直在不断改进地铁的客运服务水平,提高乘客满意度,所以对北京市地铁客运服务质量水平进行客观定量的评价,找出服务现状和出行需求之间的差异,明确提升北京市地铁客运服务质量的方向。

事实上,我国的地铁还处于初步发展阶段,为了让城市地铁能真正的体现“以人为本”,应该在发展的初期就重视地铁的服务水平,并以此改善地铁服务水平。

本文就依据系统性、科学性、可行性、导向性的原则,从运行性能、舒适性、经济性等五大方面考虑,构建了地铁客运服务质量水平的评价体系。

针对地铁客运服务质量水平问题,利用层次分析法进行研究,给出各指标的内涵解释,用层次分析法确定个指标的权重,利用模糊数学理论建立该指标体系的模糊综合评价模型。

最后根据北京市的一号线。

、二号线、十三号线的地铁线路进行计算分析,得到地铁客运服务质量评价结果。

以对各地铁运营城市的乘客服务水平提高更科学、更有效的评价标准。

关键字:客运服务质量;层次分析法;模糊评价AbstractAs a city foreign civilization window, the passenger service quality in subway system get more attention from passengers, so the metro passenger service level has been improvement in continuous, and improve passenger satisfaction, so in order to make an objective and quantitative evaluation to the level of Beijing metro passenger service quality, find out the differences between service status and travel demand and improve the quality of Beijing metro passenger service. In fact, the development of subway system in our country is still in the initial stage, in order to make urban subway system can be truly embody the people-oriented, people should attach importance to the subway service level at the very start, and improve the service level, this paper is based on the principle of systematic, scientific, feasibility, orientation, and from five aspects include operating, performance, comfort, economy, to construct subway passenger service quality.Key words: service quality; analytic hierarchy process;fuzzy evaluation目录1 引言 (1)课题的背景 (1)课题研究的目的及意义 (1)2地铁客运服务质量的概述 (2)客运服务及地铁客运服务的概念 (2)地铁客运服务的内容 (2)国内外的研究现状 (3)国外的研究现状 (3)国内的研究现状 (3)3地铁客运服务质量评价体系研究 (4)客运服务评价指标体系的构建原则 (4)客运服务评价指标体系的构建 (4)运行性能指标 (5)舒适性能指标 (5)方便性能指标 (5)安全保障性能指标 (5)经济性能指标 (5)调查问卷的编排 (6)调查问卷的设计 (6)选取调查线路 (6)设计《北京市地铁客运服务质量调查问卷》 (6)发放方案 (6)4北京市地铁客运服务质量调查分析 (6)调查问卷的概括 (6)调查问卷的结果分析 (6)5北京市地铁客运服务质量调查分析 (11)层次分析法、模糊综合评判 (11)层次分析法 (11)层次分析法的基本原理 (12)层次分析法的步骤 (12)模糊综合评判 (12)北京市地铁客运服务质量多级模糊综合评价 (13)5.3 指标权重求解的层次分析法步骤 (14)地铁客运服务质量评价的多级模糊综合评价 (17)6结语 (18)参考文献 (20)致谢 (21)附录 (22)1 引言课题的背景20世纪下半叶以来,随着世界范围内的城市化进程,城市人口迅速增长,城市化发展迅速,人出行的距离和道路车辆数目不断增加,城市交通面临着严峻的考验,由于道路交通工具运能不足,经常引起交通阻塞,车辆拥挤,同时交通事故频发一系列问题,各个国家为了使城市各项功能正常运行,地铁作为城市轨道交通的一种方式迅速发展起来。

基于结构熵权法和改进TOPSIS法的可持续供应链绩效评价模型与算法

基于结构熵权法和改进TOPSIS法的可持续供应链绩效评价模型与算法

基于结构熵权法和改进TOPSIS法的可持续供应链绩效评价模型与算法[摘要]由于生态中国战略的提出,可持续供应链管理成了国内新兴的热点研究课题。

它强调经济、环境和社会三方面绩效的协调发展,注重经济效益、自然环境和社会责任的协调,反映了可持续发展的时代主题。

本文引入可持续供应链管理的概念,建立了基于生存能力、发展能力、适应自然环境和适应社会环境四方面的可持续供应链绩效评价参考体系。

创造性地综合结构熵权法和变异系数法算出指标综合权重,运用改进的TOPSIS法排出优劣顺序,算出优异度。

最后运用该模型对苏宁电器和国美电器的可持续供应链绩效做了评价,同时验证了该评价模型的可行性和准确性。

本文的研究可以为可持续供应链绩效研究者的研究和管理者的决策提供参考依据。

[关键词]可持续供应链;绩效评价;结构熵权;变异系数法;改进TOPSIS 法1 引言在国外,可持续供应链作为一个热点出现,得到可持续性发展和供应链管理领域研究者越来越多的关注。

Seuring and Muller等[1]把可持续供应链管理定义成企业通过对供应链中的物流、信息流、商流的管理和节点企业间的互助协作,来实现经济、环境和社会三个方面绩效的可持续性发展。

Krajnc等[2] 设计了一个可持续发展模型,通过经济、社会和环保方面的可持续性来反映公司的绩效。

Singh 等[3]介绍了可持续性并且运用层次分析法创立了一个概念性的评价模型来评价公司可持续性绩效的影响。

Ding[4]使用了4种可持续发展决定因素来建立可持续指数。

Melissa等[5]认为公司的潜在竞争优势可以通过可持续供应链来获得并描述了潜在方法的使用。

在可持续方面,Lamming、Preuss[6]提出了环境、社会和道德问题的演进。

Darnall等[7]对供应链环境管理的合作化产生的影响做了相关的研究。

到目前为止,国外研究者,对可持续供应链做了大量基于案例的研究和实证分析,得出了可持续供应链管理对国民经济的可持续发展产生了巨大的影响的结论,但是对可持续供应链的绩效评价目前还没有较系统的研究。

基于因子分析法和层次分析法的培养方案评价体系

基于因子分析法和层次分析法的培养方案评价体系

Total.262December 2013(A)The Science Education Article Collects总第262期2013年12月(上)摘要专业人才培养方案是实现专业培养目标的中心环节。

构建科学合理的培养方案评价体系,对人才培养模式改革有重要意义。

本文综合运用因子分析法和层次分析法构建了专业人才培养方案评价体系,并以某学院管理科学专业调查数据为样本,给出了计算实例。

关键词层次分析法因子分析法培养方案On the Evaluation System of Training Scheme Based on Factor Analysis and Analytic Hierarchy Process //Guo Sandang [1],Pan Zhenliang [2]Abstract Professional talent training scheme is a crucial element of achieving specialty training aims.It is of great significance for training mode reform to construct a scientific and reasonable e-valuation system for the training scheme.The evaluation system of professional talent training scheme was constructed by the in-tegrated use of factor analysis and analytic hierarchy process (AHP).Finally a calculation example is given based on the surveydata of the management science specialty in a certain college asthe sample.Key words APH;factor analysis;training scheme1引言高等教育要有中国特色和时代特征的现代教育思想;能够主动适应新世纪经济和社会发展需要的人才培养体系[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Analytic Hierarchy Process basedSoftware Architecture Measurement and EvaluationLi Wenhong Yu YongKey Laboratory of Software Engineering of Yunnan Province Key Laboratory of Software Engineering of Yunnan ProvinceYunnan University Yunnan UniversityKunming ,650091, Yunnan, China Kunming ,650091, Yunnan, China258067969@ yuy1219@Abstract:Software architecture has recently become a hot spot in software engineering research. The design of software architecture is a critical success factor for software systems.Software architecture design, similar to the design of a building, needs to use system engineering.Once the software architecture is established, we should also analyze and evaluate it. The purpose of such analysis and evaluation is to identify potential risks in the design of the architecture and thus helping developers to make decisions.In this paper, the Analytic Hierarchy Process is introduced into the evaluation and decision making of software architectures, so that developers can select the right software architecture based on the functional properties and non-functional attributes to achieve the most distinctions.At the same time, according to the basic steps and methods, Analytic Hierarchy Process model is set up to determine the judgment of hierarchy and consistency check. Finally, the process of software architecture evaluation and decision-makingis proposed.Software architecture; Analytic Hierarchy Process; Measurement; EvaluationI.I NTRODUCTIONSoftware design, similar to the design of a building, needs to use systems engineering. The structure of the building should be carefully designed in its entirety before construction takes place. Likewise, the design of the software architecture is a critical factor for the success of the software system. Software architecture provides the important standard for software engineers. At a high and abstract level, it provides software engineers a better way to understand the software and therefore leads to new approaches to develop larger and more complex software systems [1].A well designed architecture is a critical factor for the success of the software. Historical experience attests that selection of a good architecture and construction rule is essential in the design stage of a software project. In engineering projects, such as tall building construction, there are many accumulated natural rules and experiences for designers to follow suit. Software development, however, has been characterized as the masterpiece attributed to an individual’s creativity [1].Software architecture design provides importantguidance in software development: Firstly, it provides thebasis for software development. Software architecture represents a shared high-level abstraction of the system [2]. Various parties can use the architecture as a foundation for communication, leading eventually to consensus. Various interest parties (client, project leader, designer, programmer, testing, maintenance, etc.) involved in software development often emphasize on different aspects of the system. For example, end users may care about usability and reliability; the client may care about budget and schedule; the project leader focuses more on the independence and interaction of developers provided that project is on budget and on time; developers may concern more about the strategy to satisfy all the requirements, so on and so forth. Central to all interest parties lies on the software architecture, as it coordinates fully the interests and proposals of all parties and controls the functionality of the future system [8].Secondly, software architecture provides future developers guidance and constraints for feasible future implementations. It greatly affects software quality assurance. Well designed software architecture warrants the software project's long-term stability and reliability [9]. Consequently, well designed architecture helps the development of software and provides quality control. On the other hand, an imperfect architecture is doomed from the beginning and impairs the quality of the software. To a large extend, selection of the architecture determines whether the system satisfies the requirements for quality. Aspects of software quality include operational characteristics such as software functionality, performance, security and reliability. They also include a variety of other characteristics such as maintainability, adaptability, portability and reusability: these cannot be measured by directly observing system operations.In summary, software architecture evaluation and selection becomes the most critical stage in software development, because it determines the ultimate success or failure of the software project.II.A N AHP-BASED S OFTWARE A RCHITECTURE M EASUREMENTAND E VALUATION P ROPOSALThe uncertainty of software architecture lies in the following aspects, such as: Does the functionality satisfy the requirements of the users? Is it secure? Will it be on budget and on time? Are the developers able to work independently, provided that the project is on budget and on time? As for the project leader, in assessing and selecting software architecture, the decision maker most wants the following scenario: choose the right software architecture that achieves2010 2nd Asia-Pacific Conference on Information ProcessingAPCIP2010overall optimality covering both the functional aspects and non-functional aspects (performance, security, reliability, portability, reusability, maintainability, etc.), as well as satisfying the requirements of the majority of all interest parties.Therefore, in evaluating the architecture, the project leader needs to assess the system using multiple criteria such as functionality, performance, security, reliability, portability, reusability, maintainability, etc. That is to say, to achieve the goal of selecting the architecture is to solve a large-scale system that consists of multi-objective, multi-level, a complicated structure and multi-factors. We need a multi-objective decision analysis method that quantifies the decision maker’s experience; integrates quantity and quality analysis; that sorts and selects alternatives. Analytic Hierarchy Process (AHP) is exactly the efficient framework to address the above problems [3].III. Basic Idea of AHPA. The Basics of AHPAnalytic Hierarchy Process (AHP) was invented by an American scholar T. L. Saaty in the seventies of the twentieth century. It is a multi-objective decision making framework [4]. It formalizes mathematically the decision maker’s decision making process in evaluating options. The basic idea is to ask the decision maker to decompose a goal into multi-levels and multi-factors. At each level and sub-level, various factors go through pair-wise comparisons to obtain weights and sub-weights. These weights then form the basis of the optimal selection [6].Key to AHP is its mathematical formalization and systemization of a human’s decision making process, making it compelling to decision makers. It requires only limited quantitative information, but demands the decision maker a solid grasp of the nature of the problem, factors involved and relationships among these factors.The following are the main steps of AHP [3, 4]:(1) Decompose the problem into multiple levels and factors. Develop a hierarchical framework.(2) Construct the pair-wise comparison matrix for all levels in the hierarchy.(3) Calculate weights of the factors for all levels in the hierarchy.(4) Rank all the alternatives; thus providing the basis for scientific decision-making.B. AHP-based Software Architecture Decision AnalysisUsing three alternative architecture systems as an example, we illustrate how to apply AHP.1) Develop the hierarchical frameworkFirst, the decision maker needs to understand the scope of the problem, factors involved and their relationships, and the goal. Next, the decision maker develops the hierarchical framework. Based on the analysis of the aspects of software architectures, the decision maker determines the following four criteria:a) Reusability [F1]: Reusability is a hot topic in software engineering. Software reuse can reduce development cost and cycle, also increase software quality.b) Modifiability [F2]: When in use, due to all kinds of reasons, software needs to be constantly modified and improved. Modifiability measures the degree of easiness or difficulty of modifying the software.c) Testability [F3]: Software testing becomes more difficult and expensive as software systems become increasingly large and complex. Software architecture that supports software testing can better detect errors and fix them. It can also easily assemble temporary codes and modules.d) Functionality [F4]: This criterion refers to various uncertain factors that satisfy user requirements during software development.Once these criteria are chosen, the hierarchical framework is developed, as shown in Figure 1.Figure 1. A hierarchical model for the selection of software architecture2) Construct the judgment matrixOnce the hierarchical framework is developed, the decision maker needs to compare or judge the relative importance of various items at the lower levels to the corresponding item in the level immediately above, i.e., the weights. Specifically, based on the actual value of each item, and his/her subjective evaluation from field experience, the decision maker performs item-to-item pair-wise comparison, quantifying each judgment using a nine-scale as shown in TableI.TABLE IS CALE FOR PAIR-WISE COMPARISONS (TAKE THE MEAN VALUE IF IN-BETWEEN)A vs.B Extremely Very Important Slightly EqualImportant Important ImportantRelative 9 7 5 3 1 IntensityThis results a pair-wise comparison matrix as shown in Table II.3) Priority ranking and the consistency test a) Priority rankingPriority ranking is to determine and rank the relative importance of various items at the lower levels to the corresponding item in the level immediately above. The decision maker can compute the eigenvector (or priority vector) of the judgment matrix using matrix theory. The weight in the priority vector can be sorted. There are two approximating methods to compute the eigenvector: the square root method and the integral method. Both provide comparable results that meet the accuracy and precision requirements.b) Perform the consistency testConsistency refers to the logic consistency in thedecision maker’s judgment. For example, if A is much more important than C, B is slightly more important than C, then obviously A should be more important than B to maintain logical consistency in the judgment, otherwise the judgment is inconsistent and contradicts each other. The above nine-scale metric helps the decision maker quantify his/her thinking, therefore helps the construction of the comparison matrix. Only when the comparison matrices are consistent, an AHP-based conclusion (i.e., eigenvector) remains plausible. Nevertheless, due to problem complexity, diversity and unavoidable judgment bias of the decision maker, it is very difficult to guarantee full consistency of each comparison matrix, even with the help of the nine-scale metric. Therefore, to guarantee the plausibility of AHP-based conclusions, it is necessary to test the consistency of the matrices constructed. Such test is based on matrix theory. The procedure is as follows. Firstly, calculate the maximum eigenvalue λmax, then calculate the consistency index CI = (λmax - n)/(n -1). If CI = 0, the comparison matrix is fully consistent, test is over. Secondly, if the CI ≠ 0, then the random consistency ratio CR = CI/RI needs to be calculated. Here RI refers to the average random consistency index, which can be found in a reference table. If CR < 0.1, then the consistency of the comparison matrix and the priority vector are considered acceptable. Otherwise, the decision maker needs to adjust the values of elements in the matrix. The detailed calculation is omittedhere. Back to our problem of selecting the best out of three software architectures, results of priority ranking andconsistency testing are shown in Table III, Table Ⅳ, Table Ⅴ and Table Ⅵ, corresponding to each criterion. Results suggest that they have all passed the consistency checking. TABLE ⅡC RITERIA L EVEL J UDGMENT M ATRIXModifiability F25 16 ¼ 0.2518SA Overall Evaluation F1 F2 F3 F4 Priority VectorReusability F1 1 1/5 3 1/9 0.0774 Testability F3 1/3 1/6 1 1/8 0.0439 Functionality F4 9 4 8 1 0.6269TABLE IIIC RITERION R EUSABILITY F1 P RIORITY V ECTOR AND C ONSISTENCY T ESTINGλ max =3.0037, CI=0.00185,CR=0.0036<0.1C 1/5 1/3 1 0.1095B 1/2 1 3 0.3090 Reusability F1 A BC Priority VectorA 1 2 5 0.5816TABLE ⅣC RITERION M ODIFIABILITY F2 P RIORITY V ECTOR ANDC ONSISTENCY T ESTING λ max =2.9999, CI<0,CR<0.1C 1 3 1 0. 4286B 1/3 1 1/3 0.1428 Modifiability F2A B C Priority VectorA 1 3 1 0.4286TABLE ⅤC RITERION T ESTABILITY F3 P RIORITY V ECTOR ANDC ONSISTENCY T ESTING λ max =3, CI<0,CR<0.1C 1/2 1/2 1 0.2B 1 1 2 0.4 Testability F3 A BC Priority VectorA 1 1 2 0.44) Overall priority rankingThe overall priority vector is to determine the relative importance (or weight) of each factor in a level to the top level. To compute the overall priority of a given level, the decision maker needs to multiply the priority vector for the level immediately above by the priority vector of the current level, following the top down sequence. Consistency tests for all levels need to be conducted as well, also following the sequence from the higher level to lower level. Results of the overall priority vector of three software architectures are shown in table Ⅶ. Overall, software architecture B has the best evaluation with a value of 0.4968, higher than A and C, consequently, software architecture B is the optimal choice.Ⅳ C ONCLUSIONSSoftware architecture has recently become a hot spot in software engineering research. Further, it becomes the key technology in the development of large-scale software systems and products. The design of software architecture is a critical success factor for software systems. It sets an importantstandard for software engineers. At a high and abstract level, it provides software engineers a better way to understand the software and therefore leads to new approaches to develop larger and more complex software systems.Once the software architecture is established, we should also analyze and evaluate it. The purpose of such analysis and evaluation is to identify potential risks in the design of the architecture and thus helping developers to make decisions. This paper applies the analytic hierarchy process (AHP)principle and method to the evaluation and decision making of software architectures, allowing developers to select the right software architecture that meets their needs and achieves overall optimality account for both the functional aspects and non-functional aspects (performance, security, reliability, portability, reusability, maintainability, etc.), while satisfying the requirements of the majority of all interested parties.TABLE ⅥF UNCTIONALITY F4 P RIORITY V ECTOR ANDC ONSISTENCY T ESTINGλ max =3.006, CI=0.003,CR=0.006<0.1C 3 1/3 1 0. 2426B 7 1 3 0.6694 Functionality F4 A BC Priority VectorA 1 1/7 1/3 0.088In summary, this article proposes an AHP-based evaluation model for selecting software architectures. Itdemonstrates the basic procedure, including how to construct the pair-wise comparison matrices, calculate priority vectors, and perform the consistency testing.R EFERENCES[1] Sun, Changai; Jin, Maozhong; Liu, Chao. Overview of Software Architecture Research. Software Journal (J), 2002, 13 (07):1228-1237.[2] Zhang, Yousheng. Software Architecture (M). Beijing: Tsinghua University Press, 2004.[3] Yang, Zhiming. Analysis of Several Common Software Architecture Models. Computer Engineering and Design (J), 2004, 25 (8):1326-1328.[4] [U.S.] T. L. Saaty (author). Xu, Shubai et al. (translator). Analytic Hierarchy Process (AHP) [M]. Beijing: Coal Industry Press, 1988.[5] Wei, Qun; Xiong, Zhang; Zhao, Fang. Software Architecture Development Method and Application (f). Computer Engineering and Design, 2003, 24 (4):77-80.[6] Xu, Shubai. Practical Decision Making Method: AHP Principles, Tianjin: Tianjin University Press, 1988.[7] Pan, Jinping. Software System Development Technology, Xi'an: Xi'an University of Electronic Science and Technology Press, 1993.TABLE ⅦO VERALL P RIORITY V ECTORCriteria F1 F2 F3 F4 Overall Priority Vector Weights 0.0774 0.2518 0.0439 0.6269A 0.5816 0.4286 0.4 0.088 0.2256B 0.3090 0.1428 0.4 0.6694 0.4968C 0.1095 0.4286 0.2 0.2426 0.2775[8] Ben, Kerong (translator). F. Buschmann, R. Meunier, et al. (author). Pattern-Oriented Software Architecture Volume 1: A System of Patterns [M]. Beijing: Mechanical Industry Press, 2003.[9] Zhao, Huiqun; Wang, Guoren et al. Software Architecture Performance Evaluation Research [J]. Computer Science, 2003, 30 (02):144-147.[10] Wang, Xiaoxia; Song, Yu et al. Software Architecture Performance Evaluation Research [J]. Computer Engineering and Applications, 2003, 39 (9): 88-90.。

相关文档
最新文档