二叉树课程设计
数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。
4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。
前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。
要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。
2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。
二叉树的遍历教案

课题二叉树的遍历学习目标:1、知识与技能掌握二叉树三种遍历的遍历原则和方法2、过程与方法通过体验、分析、讲授和实践探究,学会遍历二叉树3情感态度与价值观(!)通过遍历学习,培养学生细致严谨的思维习惯(2)促进学生对算法学习的热情,学习在平时生活中建模思想。
学情分析:本学期高一学生刚刚学习完数学选修科目3《算法》,对数据流程有比较深刻的认知,具备探究树理论的基础。
重难点:重点:二叉树特征;难点:二叉树的遍历规则的实际使用。
教学过程:活动一:一起游戏——汉诺塔游戏介绍:汉诺塔是一款WP7平台上源于印度一个古老传说的益智类游戏。
传说上帝创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
游戏玩法:游戏里有三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
玩家需要做的是把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
活动二:二叉树1 特点:一棵由一个结点和两棵互不相交的分别称作根的左子树和右子树所组成的非空树,左右子树又同样都是二叉树。
遍历是对二叉树树的一种最基本的运算,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。
2 几种遍历(1)前序遍历:中序遍历后序遍历(2)遍历规则步骤第一第二第三名称前序遍历访问根结点前序遍历左子树前序遍历右子树中序遍历中序遍历左子树访问根结点中序遍历右子树后序遍历后序遍历左子树后序遍历右子树风味根结点备注二叉树非空活动三:完成图5二叉树的前序遍历abcdeghi图5活动四:分组讨论完成右图二叉树的中序遍历和后序遍历中序CBDAEGF后序:CDBGFEA活动五:讨论探究完成图5二叉树的中序遍历和后序遍历中序:CBAFEGDHI后序:CBFGEIHDA活动五:知识拓展:1假设前序遍历是adbgcefh,中序遍历是dgbaechf,请你推演出该二叉树;2假设后序遍历是gbdehfca,中序遍历是dgbaechf,请你推演出该二叉树的前序遍历节奏把控:前序遍历是先访问根节点,然后再访问子树的,而中序遍历则先访问左子树再访问根节点,那么把前序的a 取出来,然后查找a 在中序遍历中的位置就得到dgb a echf 这样我们就知道dgb 是左子树echf 是右子树,因为数量要吻合所以前序中相应的dbg 是左子树cefh 是右子树。
二叉树教案

二叉树教案一、教学目标:1.了解二叉树的定义和性质。
2.学会二叉树的遍历算法(前序遍历、中序遍历、后序遍历)。
3.掌握二叉树的基本操作(创建二叉树、插入节点、删除节点)。
二、教学重点和难点:1.二叉树的定义和性质。
2.二叉树的遍历算法。
3.二叉树的基本操作。
三、教学准备:1.教师准备:PPT、计算机、投影仪。
2.学生准备:课前预习、纸笔。
四、教学过程:Step 1 导入新课教师通过提问的方式,引导学生回顾树的基本概念,并激发学生对二叉树的兴趣。
Step 2 二叉树的定义和性质教师给出二叉树的定义,并带领学生讨论二叉树的性质(每个节点最多有两个子节点,左子树和右子树)。
Step 3 二叉树的遍历算法1.前序遍历:先访问根节点,然后递归遍历左子树,再递归遍历右子树。
2.中序遍历:先递归遍历左子树,然后访问根节点,再递归遍历右子树。
3.后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
Step 4 二叉树的基本操作1.创建二叉树:教师通过示例向学生展示二叉树的创建过程。
2.插入节点:教师通过示例向学生展示如何插入节点,并解释插入节点的规则。
3.删除节点:教师通过示例向学生展示如何删除节点,并解释删除节点的规则。
Step 5 练习与拓展1.教师设计练习题,让学生运用所学知识进行练习。
2.鼓励学生拓展二叉树的其他应用领域,并进行讨论。
五、教学反思本节课通过讲解二叉树的定义和性质,以及二叉树的遍历算法和基本操作,使学生对二叉树有了基本的了解和掌握。
通过练习和拓展,巩固了学生的学习成果,并培养了学生的分析和解决问题的能力。
但是,由于时间有限,学生的实际操作机会较少,可以在课后布置相关的作业,加深学生的理解和应用能力。
数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;
数据结构详细教案——树与二叉树

数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。
二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。
三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。
当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。
1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。
1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。
2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。
四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。
2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。
3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。
第四章-树和二叉树-说课教案

第五章树和二叉树说课教案姓名:仇环单位:信息工程系年级与科目:08级计算机应用《数据结构》课题:树和二叉树职称:讲师教龄:1年(各位老师下午好,我说课的题目是树和二叉树)说课的内容包括:一.教学大纲分析二.教材分析三、学情分析四.教学目标五、教学重点与难点六、教学方法七、教学过程八、教学效果预测及教学后记一、教学大纲分析:高职高专教育的人才培养特征是高级技术应用型人才,具体到计算机专业来说,就是培养从事计算机产品生产、维修和编程和实际应用的技术人才。
在计算机专业的课程体系中,《数据结构》不仅是一门重要的专业基础课程,而且是计算机程序设计重要的理论基础,更是计算机等级、专升本等考试的必考课程之一。
它在整个学科体系中具有重要作用,有着不可替代的地位。
本课程的教学不仅重视学生对理论知识的理解和掌握,锻炼学生抽象思维能力和想象能力,更注重实践动手的能力,要求学生能够设计出结构清晰、可读性好、运行效率高的算法,并能够用一种或多种计算机高级程序设计语言实现。
学好这门课程,对培养学生程序设计的能力、设计算法的能力和运用计算机进行数据处理的能力有着深远的意义。
其前导课程为:《C语言程序设计》或《C++语言》。
二、教材分析本教材属于“21世纪高职高专规划教材”,这套教材主要面向高职高专院校学生。
教材内容力求体现以应用为主体,强调理论知识的理解和运用,实现专科教学以实践体系及技术应用能力培养为主的目标。
1、教材特点:本教材的特点可总结为:(1)基础理论知识的阐述由浅入深、通俗易懂。
内容的组织和编排以应用为主线,省略了一些理论推导和数学证明过程,淡化了算法的设计分析和复杂的时空分析。
(2)各章都配有应用举例,列举分析了很多实用的例子,且大多数算法都直接给出了相应的C语言程序,以便上机练习和实践。
(3)便于复习和掌握每章的重点,每章的起始处都给出了要点,并在每章结尾处给出了小结。
2、教材内容:本书共分为8章。
第一章叙述数据、数据结构、算法等基本概念。
树与二叉树哈夫曼树教案

树与二叉树哈夫曼树教案一、教学目标1. 了解树(Tree)和二叉树(Binary Tree)的概念;2.掌握树和二叉树的基本结构和操作;3. 理解哈夫曼树(Huffman Tree)的概念和应用;4.能够通过给定的数据构建哈夫曼树,并进行编码和解码操作。
二、教学内容1.树与二叉树1.1树的定义和基本术语1.2树的表示和操作1.3二叉树的定义和遍历方式1.4二叉树的应用示例2.哈夫曼树2.1哈夫曼树的定义和应用2.2构建哈夫曼树的算法2.3哈夫曼编码和解码的实现三、教学步骤与方法1.导入新知识通过提问与学生讨论,引导学生了解树与二叉树的概念,及其在现实生活中的应用场景。
2.介绍树与二叉树2.1形式化定义树的相关概念,如根节点、子节点、叶子节点等。
2.2介绍二叉树的相关概念,如二叉树的性质、三种遍历方式等。
3.树与二叉树的应用示例通过实际例子演示树与二叉树的应用,如目录结构、表达式求值等。
4.引入哈夫曼树4.1介绍哈夫曼树的概念和应用场景,如数据压缩。
4.2讲解构建哈夫曼树的算法,包括选择最小权值节点等。
4.3演示哈夫曼编码和解码的实现,让学生理解哈夫曼编码的原理和过程。
5.练习与巩固在课堂上进行与树、二叉树和哈夫曼树相关的练习,巩固学生对所学内容的理解。
6.小结与作业布置对本节课所学内容进行小结,并布置相关作业,让学生进行巩固和深化学习。
四、教学资源1. PowerPoint或电子白板2.示例代码和编程环境,用于演示和实践3.相关课堂练习题目和解答五、教学评估1.课堂练习表现评估,包括对树、二叉树和哈夫曼树的理解和应用能力;2.作业和实践项目的结果评估,包括构建哈夫曼树和实现哈夫曼编码的准确性和效率。
六、教学扩展1.拓展相关概念和应用,如平衡二叉树、B树等;2.引导学生进行更深层次的研究和实践,如自定义数据结构、更复杂的压缩算法等。
二叉排序树(二叉链表结构存储)数据结构课程设计报告

二叉排序树(二叉链表结构存储)数据结构课程设计报告目录1需求分析 (1)1.1课程设计题目、任务及要求 (1)1.2课程设计思想 (1)2概要设计 (2)2.1 二叉排序树的定义 (2)2.2二叉链表的存储结构 (2)2.3建立二叉排序树 (2)2.4二叉排序树的生成过程 (3)2.5中序遍历二叉树 (3)2.6二叉排序树的查找 (3)2.7二叉排序树的插入 (4)2.8平均查找长度 (4)3详细设计和实现 (4)3.1主要功能模块设计 (4)3.2主程序设计 (5)4调试与操作说明 (12)4.1程序调试 (12)4.2程序操作说明 (13)总结 (16)致谢 (17)参考文献 (19)1需求分析1.1课程设计题目、任务及要求二叉排序树。
用二叉链表作存储结构(1)以(0)为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果;(4)输入元素x,查找二叉排序树T:若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;1.2课程设计思想建立二叉排序树采用边查找边插入的方式。
查找函数采用递归的方式进行查找。
如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。
然后利用插入函数将该元素插入原树。
对二叉排序树进行中序遍历采用递归函数的方式。
在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。
由于二叉排序树自身的性质,左子树小于根结点,而根结点小于右子树,所以中序遍历的结果是递增的。
计算二插排序树的平均查找长度时,仍采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。
平均查找长度就等于s/i(i为树中结点的总个数)。
删除结点函数,采用边查找边删除的方式。
如果没有查找到,则不对树做任何的修改;如果查找到结点,则分四种情况分别进行讨论:1、该结点左右子树均为空;2、该结点仅左子树为空;3、该结点仅右子树为空;4、该结点左右子树均不为空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
}
//ÖÐÐò±éÀú¶þ²æÊ÷
void InOrder(btreetype T)
{
if(T){
InOrder(T->Llink);
printf("%c",T->Data);
InOrder(T->Rlink);
}
}
//ºóÐò±éÀú¶þ²æÊ÷
void PostOrder(btreetype T){
btreetype T;
InitBiTree(T);
CreatBiTree(T);
printf("À¨ºÅ±íʾ·¨Êä³ö¶þ²æÊ÷:\n");
DispBiTree(T);
printf("\n");
LeftChild(T,'H');
RightChild(T,'H');
m=LeafPoint(T);printf("ÓÐ%d¸öÒ¶×Ó½áµã\n",m);
if(T){
PostOrder(T->Llink);
PostOrder(T->Rlink);
printf("%c",T->Data);
}
}
void main()
{timeb t1,t2;ftime(&t1);
long t;int m,n;
printf("ÃâÔðÉùÃ÷£º\n\tÓÉÓÚ±¾È˵çÄÔϵµÂÓïÊäÈë·¨£¬ÎÞ·¨ÔÚÔËÐÐʱÊäÈë'#'×Ö·ûºÅ£¬¹Ê¸ÄΪ¿Õ¸ñ´úÌæ\n");
RightChild(p->Llink,e);
RightChild(p->Rlink,e);}
}
//ͳ¼ÆÒ¶×Ó½áµã¸öÊý
int LeafPoint(btreetype t)
{
if(!t)
return 0;
else
if(!t->Llink&&!t->Rlink)
return 1;
else
return (LeafPoint(t->Llink) + LeafPoint(t->Rlink));
实验6.1实现二叉树各种基本运算的算法
编写一个程序algo6-1.cpp,实现二叉树的各种运算,并在此基础上设计一个主程序完成如下功能(T为如图所示的一棵二叉树):
(1)以括号表示法输出二叉树T。
(2)输出H结点的左、右孩子结点值。
(3)输出二叉树T的叶子结点个数。
(4)输出二叉树T的深度。
(5)输出对二叉树T的先序遍历序列。
CreatBiTree(T->Rlink);
}
}
//Êä³ö½áµãµÄ×óº¢×Ó
void LeftChild(btreetype &M,char e)
{
btreetype p;
p=M;
if(p!=NULL)
{if(p->Data==e)
{printf("%cµÄ×óº¢×ÓÊÇ%c\n",e,p->Llink->Data);}
if (T->Rlink!=NULL)printf(",");
DispBiTree(T->Rlink);
printf(")");
}
}
}
//ÏÈÐò±éÀú¶þ²æÊ÷
void PreOrder(btreetype T)
{
if(T){
printf("%c",T->Data);
PreOrder(T->Llink);
void CreatBiTree(btreetype &T)
{char ch;
scanf("%c",&ch);
if(ch==' ')T=NULL;
else
{
T=(btreetype)malloc(sizeof(btnode));
if(!T)exit(-1);
T->Data=ch;
CreatBiTree(T->Llink);
}
//À¨ºÅ±íʾ·¨Êä³ö¶þ²æÊ÷
void DispBiTree(btreetype T)
{
if (T!=NULL)
{
printf("%c",T->Data);
if (T->Llink!=NULL||T->Rlink!=NULL)
{
printf("(");
DispBiTree(T->Llink);
程序段
#include<stdio.h>
#include<stdlib.h>
#include<sys/timeb.h>
//#define MAX 50
#define OK 1
//¶þ²æÊ÷Á´±í´æ´¢½á¹¹
typedef struct btnode
{
char Data;//½áµãÊý¾ÝÄÚÈÝ
n=Depth(T);printf("¶þ²æÊ÷µÄ源自î¶ÈÊÇ%d\n",n);
printf("ÏÈÐò±éÀú¶þ²æÊ÷:");
PreOrder(T);
printf("\n");
printf("ÖÐÐò±éÀú¶þ²æÊ÷:");
}
//¶þ²æÊ÷Éî¶È
int Depth(btreetype T)
{
int i,j;
if(!T)return 0;
if(T->Llink)
i=Depth(T->Llink);
else i=0;
if(T->Rlink)
j=Depth(T->Rlink);
else j=0;
return i>j?i+1:j+1;
(6)输出对二叉树T的中序遍历序列。
(7)输出对二叉树T的后序遍历序列。
提示:创建二叉树的算法参见书上131页的算法6.4。按先序序列输入二叉树中结点的值(一个字符),#字符表示空树。输入序列:
ABD##EHJ##KL##M#N###CF##G#I##
以括号表示法输出二叉树的结果为:
A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))
struct btnode *Llink;//×ó×ÓÊ÷Ö¸Õë
struct btnode *Rlink;//ÓÒ×ÓÊ÷Ö¸Õë
}btnode,*btreetype;
//¹¹Ôì¿Õ¶þ²æÊ÷
int InitBiTree(btreetype &T)
{
T=NULL;
return OK;
}
//½¨Á¢¶þ²æÊ÷
LeftChild(p->Llink,e);
LeftChild(p->Rlink,e);}
}
//Êä³ö½áµãµÄÓÒº¢×Ó
void RightChild(btreetype &M,char e)
{
btreetype p;
p=M;
if(p!=NULL)
{if(p->Data==e)
{printf("%cµÄÓÒº¢×ÓÊÇ%c\n",e,p->Rlink->Data);}