柱体、台体、椎体的体积

合集下载

柱、锥、台体积

柱、锥、台体积

重 5.8 kg . 已知底面六边形边 长 是 12 mm ,高是10 mm,内孔 直径是 10 mm.那么约有毛坯 多少个? 铁的比重是7.8 g / cm 3


图1 2 18
分层训练 必做题
1、正三棱锥的底面边长为2,侧面均为直角三角形, 则这个三棱锥的体积为( )
2 4 2 ( A)2 2; ( B) 2 ; (C ) ; ( D) 3 3
h
S
S
图1 3 14
类似地, 底面积相等、高也相等 的两个锥体它们的体积 , 也相等图1 3 14.由于底面积为 , 高为h 的圆锥的体积 S 1 1 为V圆锥 Sh, 所以 V锥体 Sh . 3
3
x S` h S S S`
图1 3 15
台体 棱台、圆台 的体积可以转化为锥体 的体 积来计算 图1 3 15 .如果台体的上、下底面 积分别为 S `, S , 高是 h , 可以推得它的体积是
学习目标
理解并掌握柱、锥、台体积计算公式及 其简单应用.
自学指导
1、柱、锥、台的体积计算公式是什么? 2、柱、锥、台的体积公式之间有什么关系?
h
h
S
S
S
图1 3 13
柱体 棱柱、圆柱 的体积等于它的底面积 S和高h的 积, 即 V柱体 S h .
思考:三棱锥与同底等高的三棱柱体积之间的关系.
2、用一张长12cm,宽8cm的矩形铁皮围成圆柱形 的侧面,这个圆柱的体积是-------
选做题
一个正四棱台形油槽可以装煤油190升,假如它的 上下底面边长分别等于60cm和40cm,求它个几何体的三视图如图 (1)试画它的直观图;(2)并求出该几何体 的体积

1、3、1 柱体、锥体、台体的表面积与体积

1、3、1  柱体、锥体、台体的表面积与体积

1、3、1 柱体、锥体、台体的表面积与体积1、3、1 柱体、锥体、台体的表面积与体积1、3、1 柱体、锥体、台体的表面积与体积1、3、1 柱体、锥体、台体的表面积与体积小故事:被誉为世界七大奇迹之首的胡夫大金字塔,在1889年巴黎埃菲尔铁塔落成前的四千多年的漫长岁月中,胡夫大金字塔一直是世界上最高的建筑物.在四千多年前生产工具很落后的中古时代,埃及人是怎样采集、搬运数量如此之多,每块又如此之重的巨石垒成如此宏伟的大金字塔,真是一个十分难解的谜.胡夫大金字塔是一个正四棱锥外形的建筑,塔底边长230米,塔高146.5米,你能计算建此金字塔用了多少石块吗?要求:新课标对本节内容要求是了解棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式),也就是说对体积和面积公式的推导、证明和记忆不作要求,按通常的理解是会求体积和面积,以及很简单的应用即可.一、【学习目标】1、了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣;2、掌握简单几何体的体积与表面积的求法,提高学生的运算能力,培养学生转化、化归以及类比的能力.【教学效果】:教学目标的出示,有利于学生们把握整体的课堂学习.二、【自学内容和要求及自学过程】1、阅读教材23—25页内容,回答问题(柱、锥、台表面积)1 在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?2 棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?3 如何根据圆柱、圆锥的几何结构特征,求它们的表面积?4 联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为,你计算出它的表面积吗?结论:1 正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 2 棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和. 3 它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.我们知道,圆柱的侧面展开图是一个矩形.如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积s=2πr2+2πrl=2πr(r+l).圆锥的侧面展开图是一个扇形.如果圆锥的底面半径为r,母线长为l,那么它的表面积s=πr2+πrl=πr(r+l). 4 圆台的侧面展开图是一个扇环,它的表面积等于上、下两个底面的面积和加上侧面的面积,即. 思考:圆柱、圆锥和圆台的表面积之间有什么关系?练习一:完成教材例1、例2,体会例1、2所蕴含的解题技巧;完成教材第27页练习1;把一个棱长为a的正方体,切成27个全等的小正方体,则所有小正方体的表面积是 .。

柱体椎体台体球体的体积公式

柱体椎体台体球体的体积公式

柱体椎体台体球体的体积公式要说起这些几何体的体积公式,嘿,那可是个大事儿!咱们日常生活中,柱体、椎体、台体、球体都挺常见的,可能你没注意,但它们就像你生活中的小伙伴,默默地影响着你的日常。

比如,柱体嘛,想想水杯或者罐头,都是个柱子,对吧?要是把它的高度和底面半径拿出来,嘿,想知道它的体积吗?只需要个简单的公式:底面面积乘以高度,数学小白也能看懂。

简单吧?就像喝水一样自然,别说了,喝起来就对了!再说椎体,别小看它,像个锥子一样的东西。

你吃过的冰淇淋就长这样,咕噜咕噜的,怎么吃都不觉得腻。

计算它的体积有点小复杂,但也没那么可怕,底面面积乘以高度,最后还得除以三。

听起来复杂,但其实就像拆解一个谜语,慢慢来,跟着感觉走。

想象一下,一大堆冰淇淋,心里那个爽啊,体积公式其实就是在告诉你,想吃多少就得算算它的“体积”了!再聊聊台体,很多人对它可不太熟悉,台体就是上窄下宽的形状,像个倒着的茶杯。

想喝水吗?只要知道上面的和下面的半径,以及高度,运用公式就能轻松搞定。

可别以为这公式简单,先把上面和下面的面积算出来,然后相加再乘以高度,最后别忘了要除以三,简单的数学就像调皮的孩子一样,总想让你费点脑筋。

不过,一旦搞懂了,轻松得像个松鼠,随便玩耍。

然后是球体,嘿,这个可有趣了。

你在沙滩上看到的排球,或者篮球,都是球体。

说到球体的体积,公式又来了,得用到半径,三分之四乘以圆周率,再乘以半径的立方。

听起来像天书,其实没那么复杂。

想象你在玩泡泡,那个大大的泡泡就是球体,几何学就是教你如何把这些泡泡的大小弄得清清楚楚。

把这些公式记在心里,等到你需要的时候,随时拿出来用。

所以说,了解这些几何体的体积公式,就像攒下小秘密,未来某天用得着,特别是遇到那些数学问题,轻松对付它们就像吃块蛋糕。

无论是做饭还是打篮球,生活中的点点滴滴,几何体都无处不在,像那影子一样,伴随你左右。

把公式变得有趣,跟它们聊聊,生活的每一个瞬间都能感受到数学的乐趣,简直妙不可言。

1.3.1柱体、锥体、台体的表面积与体积

1.3.1柱体、锥体、台体的表面积与体积

图(1)
提示:相等.
图(2)



2.棱柱、棱锥、棱台的展开图是怎样的?如何求棱柱、棱锥、棱 台的表面积? 提示:如下图所示,首先需求出各个展开图中的每部分平面图形 的面积,然后求和即可.



3.填空: 棱柱、棱锥、棱台的表面积就是各个面的面积的和,也就是展开 图的面积.



二、圆柱、圆锥、圆台的表面积 【问题思考】 1.如何根据圆柱的展开图,求圆柱的表面积? 提示:圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱 的高(母线).设圆柱的底面半径为r,母线长为l,则S圆柱侧=2πrl,S圆柱表 =2πr(r+l),其中r为圆柱底面半径,l为母线长.
探究一
探究二
探究三
思维辨析
空间几何体的体积 【例2】 已知一个三棱台上、下底面分别是边长为20和30的正 三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积 之和,求棱台的高和体积. 思路分析:侧面面积等于上、下底面面积之和→侧面等腰梯形的 高→三棱台的高→三棱台的体积 解:如图所示,在三棱台ABC-A'B'C'中,O',O分别为上、下底面的中 点,D,D'分别是BC,B'C'的中点,则DD'是等腰梯形BCC'B'的高,
答案:(1) (2) (3)×
探究一
探究二
探究三
思维辨析
空间几何体的表面积 【例1】 如图,已知直角梯形ABCD,BC∥AD,∠ABC=90° , AB=5,BC=16,AD=4.求以AB所在直线为轴旋转一周所得几何体 的表面积.
思路分析:分析几何体的形状
求表面积

柱体、锥体、台体的表面积与体积 课件

柱体、锥体、台体的表面积与体积  课件

D. 30π
答案: B
● (4)台体的表面积 ● ①台体的侧面展开图
台体 侧面展开图
棱台 由若干个梯形拼接而成, 如图(5)
圆台
扇环, 两弧长分别等于上、下底面圆周 长, 母线长等于大扇形的半径与小扇形 的半径之差, 如图(6)
②台体的表面积公式
台体的表面积S表=S侧+S上底+S下底. 特别地, 圆台的上、下底面半径分别为r′、r, 母线长 为l, 则侧面积S侧=_π_(_r_+__r′__)_l ____, 表面积S 表=___π_(_r_2+__r_′__2+__r_l+__r_′__l)_________ .
352 A. 3
cm3
320 B. 3
cm3
224 C. 3cm3Βιβλιοθήκη 160 D. 3cm3
【解析】 此几何体为正四棱柱与正四棱台的
组合体, 而 V 正四棱柱=4×4×2=32(cm3),
V 正四棱台=13(82+42+ 82×42)×2=2324(cm3),
所以 V=32+2324=3320 (cm3).
(2)柱体的表面积 ①柱体的侧面展开图
柱体 侧面展开图 棱柱 平行四边形, 一边是棱柱的侧棱, 另一边
等于棱柱的底面周长, 如图(1) 圆柱 矩形, 一边是圆柱的母线, 另一边等于圆
柱的底面周长, 如图(2)
②柱体的表面积公式 S表=S侧+2S底 特别地, 若圆柱的底面半径为r, 母线长为l, 则 圆柱的侧面积S侧=___2_π_rl____ , 表面积 S表=2πr(r+l).
做一做 1.圆柱OO′的底面直径为4, 母线长为6, 则 该圆柱的侧面积为_____, 表面积为_____. 答案: 24π 32π
● (3)锥体的表面积 ● ①锥体的侧面展开图

柱体、锥体、台体的表面积与体积(附答案)

柱体、锥体、台体的表面积与体积(附答案)

柱体、锥体、台体的表面积与体积[学习目标] 1.通过对柱、锥、台体的研究,掌握柱、锥、台体的表面积的求法.2.了解柱、锥、台体的表面积和体积计算公式;能运用柱、锥、台的表面积和体积公式进行计算和解决有关实际问题.知识点一 多面体的表面积多面体的表面积就是各个面的面积的和,也就是展开图的面积. 知识点二 旋转体的表面积思考 求圆柱、圆锥、圆台的表面积时,要求的关键量是什么?答 求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径. 知识点三 体积公式1.柱体:柱体的底面面积为S ,高为h ,则V =Sh .2.锥体:锥体的底面面积为S ,高为h ,则V =13Sh .3.台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V 3思考 简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 答 表面积变大了,体积不变.题型一 空间几何体的表面积例1 圆台的母线长为8 cm ,母线与底面成60°角,轴截面两条对角线互相垂直,求圆台的表面积.解 如图所示的是圆台的轴截面ABB 1A 1,其中∠A 1AB =60°,过A 1作A 1H ⊥AB 于H ,则O 1O =A 1H =A 1A ·sin 60°=43(cm), AH =A 1A ·cos 60°=4(cm), 即r 2-r 1=AH =4.① 设A 1B 与AB 1的交点为M , 则A 1M =B 1M . 又∵A 1B ⊥AB 1,∴∠A 1MO 1=∠B 1MO 1=45°. ∴O 1M =O 1A 1=r 1. 同理OM =OA =r 2.∴O 1O =O 1M +OM =r 1+r 2=43,② 由①②可得r 1=2(3-1),r 2=2(3+1).∴S 表=πr 21+πr 22+π(r 1+r 2)l =32(1+3)π(cm 2).跟踪训练1 已知棱长为a ,各面均为等边三角形的四面体SABC (即正四面体SABC ),求其表面积.解 由于四面体SABC 的四个面是全等的等边三角形, 所以四面体的表面积等于其中任何一个面面积的4倍. 先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D ,如图所示.因为BC =a ,SD =SB 2-BD 2=a 2-⎝⎛⎭⎫a 22=32a ,所以S △SBC =12BC ·SD =12a ×32a =34a 2.因此,四面体SABC 的表面积为S =4×34a 2=3a 2.题型二 空间几何体的体积例2 在Rt △ABC 中,AB =3,BC =4,∠ABC =90°,把△ABC 绕其斜边AC 所在的直线旋转一周后,所形成的几何体的体积是多少?解 如图所示,两个圆锥的底面半径为斜边上的高BD , 且BD =AB ·BC AC =125,两个圆锥的高分别为AD 和DC , 所以V =V 1+V 2=13πBD 2·AD +13πBD 2·CD=13πBD 2·(AD +CD )=13πBD 2·AC =13π×⎝⎛⎭⎫1252×5=485π. 故所形成的几何体的体积是485π. 跟踪训练2 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a , A 1B =BD =A 1D =2a , ∵11--=,A ABD A A BD V V∴13×12a 2·a =13×12×2a ×32·2a ·d . ∴d =33a .∴A 到平面A 1BD 的距离为33a . 题型三 与三视图有关的表面积、体积问题例3 (1)某几何体的三视图如图所示(单位:cm),则该几何体的表面积等于( ) A.8π cm 2 B.7π cm 2 C.(5+3)π cm 2D.6π cm 2(2)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 (1)B (2)6+π解析 (1)此几何体是由一个底面半径为1,高为2的圆柱与一个底面半径为1,母线长为2的圆锥组合而成的,故S 表=S 圆柱侧+S 圆锥侧+S 底=2π×1×2+π×1×2+π×12=7π. (2)由三视图可知该几何体是组合体.下面是长方体,长、宽、高分别为3,2,1;上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×12×3=(6+π) m 3.跟踪训练3 某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.分割转化求体积例4 如图所示,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E ,F 分别为AA 1,CC 1的中点,求四棱锥A 1-EBFD 1的体积.分析 本题若直接求解较为困难,这里利用“割”的思想,将四棱锥的体积转化为两个等底的三棱锥的体积之和,从而简化求解步骤. 解 因为EB =BF =FD 1=D 1E = a 2+⎝⎛⎭⎫a 22=52a ,D 1F ∥EB ,所以四边形EBFD 1是菱形. 连接EF ,则△EFB ≌△EFD 1.易知三棱锥A 1-EFB 与三棱锥A 1-EFD 1的高相等, 故111122---==.A EBFD A EFB F EBA V V V 又因为1∆EBA S =12EA 1·AB =14a 2,则1-F EBA V =112a 3,所以111122---==A EBFD A EFB F EBA V V V =16a 3.圆柱体积的求解例5 把长、宽分别为4,2的矩形卷成一个圆柱的侧面,求这个圆柱的体积. 分析 利用底面的周长,求得底面半径,利用圆柱的体积公式求解. 解 设圆柱的底面半径为r ,母线长为l ,高为h .如图①所示,当2πr =4,l =2时,r =2π,h =l =2,所以V 圆柱=πr 2h =8π;如图②所示,当2πr =2,l =4时,r =1π,h =l =4;所以,此时V 圆柱=πr 2h =4π.1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π2π B.1+2π4π C.1+2ππ D.1+4π2π2.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A.5πB.6πC.20πD.10π3.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( )A.12πB.18πC.24πD.36π4.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.5.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,这个平面分三棱台成两部分,这两部分的体积之比为________.一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12C.36D.343.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积是( ) A.3π B.33π C.2π D.9π4.在一个长方体中,过一个顶点的三条棱长的比是1∶2∶3,它的体对角线长是214,则这个长方体的体积是( ) A.6 B.12 C.24 D.485.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+3C.21D.186.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.54πC.58D.58π7.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1二、填空题8.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.11.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 三、解答题12.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ;(2)求该几何体的侧面积S .13.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.当堂检测答案1.答案 A解析 设底面圆半径为r ,母线长为h ,∴h =2πr ,则S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr 2πr =1+2π2π.2.答案 D解析 用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π. 3.答案 C解析 由三视图知该几何体为圆锥,底面半径r =3,母线l =5,∴S 表=πrl +πr 2=24π.故选C. 4.答案 12解析 设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×2×32×h =23,∴h =1.∴斜高h ′=12+⎝⎛⎭⎫2×322=2,∴S 侧=6×12×2×2=12.5.答案 3∶4(或4∶3)解析 设三棱台的上底面面积为S 0,则下底面面积为4S 0,111-A B C ABC V 三棱柱=S 0h .111-ABC A B C V 三棱台=73S 0h .设剩余的几何体的体积为V , 则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.课时精练答案一、选择题 1.答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.答案 D 解析 S 底=12×1×1-⎝⎛⎭⎫122=34,所以1B ABC V -三棱锥=13S 底·h =13×34×3=34.3.答案 A解析 设圆锥底面的半径为R ,则由12×2R ×3R =3,得R =1.所以S圆锥表=πRl +πR 2=π×1×2+π=3π. 4.答案 D解析 设长方体的三条棱长分别为a,2a,3a ,那么a 2+(2a )2+(3a )2=214.解得a =2,长方体的体积为V =2×4×6=48. 5.答案 A解析 由三视图可知,该多面体为一个边长为2的正方体在左下角与右上角各切去一个三棱锥,因此该多面体的表面积为6×⎝⎛⎫4-12+12×2×62×2=21+ 3. 6.答案 A解析 设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r 2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似知识得r 3r =h -h 1h ,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.7.答案 B解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 二、填空题 8.答案 2∶1解析 S 圆柱=2·π⎝⎛⎭⎫a 22+2π·a 2·a =32πa 2, S 圆锥=π⎝⎛⎭⎫a 22+π·a 2·a =34πa 2, ∴S 圆柱∶S 圆锥=2∶1. 9.答案7解析 设新的底面半径为r ,则有13×πr 2×4+πr 2×8=13×π×52×4+π×22×8,解得r =7.10.答案 83π11 解析 由三视图可知原几何体是由两个圆锥和一个圆柱组成的,它们有共同的底面,且底面半径为1,圆柱的高为2,每个圆锥的高均为1,所以体积为2×13π×12×1+π×12×2=8π3(m 3). 11.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2.由S 1S 2=94,得πr 21πr 22=94,∴r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2.∴V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 三、解答题12.解 由已知可得该几何体是一个底面为矩形、高为4、顶点在底面的投影是矩形中心的四棱锥V -ABCD .(1)V =13×(8×6)×4=64. (2)该四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1= 42+⎝⎛⎭⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高为h 2= 42+⎝⎛⎭⎫622=5.因此S 侧=2⎝⎛⎭⎫12×6×42+12×8×5=40+24 2. 13.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm).故几何体的表面积为S =πrl +πr 2+2πr ·AD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π =(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=π·r 2·AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).。

柱体、椎体、台体、球体的体积和球的表面积

柱体、椎体、台体、球体的体积和球的表面积

二、球体的体积和表面积
探 究
一个充满空气的足球和一个充满空气的篮球, 球内的气压相同,若忽略球内部材料的厚度,则哪一 个球充入的气体较多?为什么?
如果用油漆去涂一个足球和一个篮球,且涂的油漆 厚度相同,问哪一个球所用的油漆多?为什么?
球的概念
球的截面 的形状
圆面
球面被经过球心的平面截得的圆叫做大圆
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略 解 :RtB1 D1 D中 : ( 2 R ) a ( 2a ) , 得
2 2 2
D A D1 A1 B
C
O
C1 B1
3 R a 2 S 4R 2 3a 2
D
A D1 A1 B1 O B
R
O
第i层“小圆片”下底面的 半径:
ri R R [ ( i 1)]2 , i 1,2 , n. n
2
R ri R [ ( i 1)]2 , i 1,2, , n n 3 R R i 1 2 2 Vi ri [1 ( ) ], i 1,2 , n n n n
C
C1
例7、已知过球面上三点A、B、C的截面到球 心O的距离等于球半径的一半,且 AB=BC=CA=2cm,求球的体积,表面积.
解:如图,设球O半径为R,截面⊙O′的半径为r,
R O O , ABC是正三角形, 2
O A 2 3 2 3 AB r 3 2 3
解:在RtOO A中, OA 2 O O 2 O A 2 ,
柱体、锥体、台体、球体 的体积和球体的表面积
一、柱体、锥体、台体的体积

柱体、锥体、台体的表面积和体积 课件

柱体、锥体、台体的表面积和体积   课件
柱体、锥图和表面积
初中我们已学过正方体和长方体的表面积以及它们的 展开图,你知道它们的展开图与表面积的关系吗?
几何体表面积
展开图 平面图形面积
引入新课
棱柱、棱锥、棱台都是由多个平面图形围成 的多面体,它们的展开图是什么?如何计算它们 的表面积?
棱柱的展开图
正六棱柱的侧面展开图是什么?如何计算它的 表面积?
长15 cm.那么花盆的表面积约是多少平方厘米( 取
3.14,结果精确到1 cm2 )?
解:由圆台的表面积公式得 花盆的表面积:
S
15
2
15
15
20
15
1.5
2
2 2
2 2
999(cm2 )
答:花盆的表面积约是999 cm 2.
柱体的体积
V Sh (其中S为底面面积,h为高)
锥体的体积
锥体
练一练
已知圆锥的表面积为a m2,且它的侧面展开图是一个 半圆,求这个圆锥的底面直径.
答案
4a
3
a h
正六棱柱的侧面展开图
棱锥的展开图
正五棱锥的侧面展开图是什么?如何计算它的表 面积?
侧面展开
h' h'
正五棱锥的侧面展开图
棱台的展开图
正四棱台的侧面展开图是什么?如何计算它的表 面积?
侧面展开
h' h'
正四棱台的侧面展开图
棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是由多个平面图形围成的 几何体,它们的侧面展开图还是平面图形,计算 它们的表面积就是计算它的各个侧面面积和底面 面积之和.
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有什 么关系?这种关系是巧合还是存在必然联系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档