2011.9.23一元二次不等式的解法
一元二次不等式6种解法大全

一元二次不等式6种解法大全一元二次不等式是指形如ax²+bx+c>0或ax²+bx+c≥0的二次不等式,其中a、b、c为实数,a≠0。
这种不等式的解法有很多种,下面我将介绍其中的六种解法。
解法一:使用因式分解法。
对于形如(ax+b)(cx+d)>0或(ax+b)(cx+d)≥0的一元二次不等式,可以尝试将其因式分解为两个一次因式相乘的形式,然后根据不等式的性质讨论各个因式的取值范围,从而求得不等式的解。
解法二:使用它的图像解法。
将一元二次不等式对应的二次函数的图像画出来,然后根据图像的特点来确定使得函数大于0(或大于等于0)的x的取值范围,即为不等式的解。
解法三:使用开平方法。
对于形如x²+a≥0或x²+a>0的一元二次不等式,可以通过开平方的方法来求解。
首先将不等式移到一边,得到一个完全平方的形式,然后对不等式两边同时开平方,得到关于x的两个二次方程,根据二次方程的性质来求解。
解法四:使用代数求解法。
对于一元二次不等式ax²+bx+c>0或ax²+bx+c≥0,可以将其转化为一个关于x的二次方程ax²+bx+c=0的解的范围问题。
求得这个二次方程的解,然后根据这些解的范围来确定不等式的解。
解法五:使用数轴法。
将一元二次不等式对应的二次函数的图像画在数轴上,然后根据函数的凸性来确定函数取正值的x的取值范围,即为不等式的解。
解法六:使用区间法。
将一元二次不等式移项,化成形如ax²+bx+c<0或ax²+bx+c≤0的不等式,然后求出二次函数的零点,并根据二次函数的凸性来确定函数小于0(或小于等于0)的x的取值范围,即为不等式的解。
以上是关于一元二次不等式的六种解法,每种解法都有其独特的思路和方法。
在实际的解题过程中,可以根据具体的题目情况选择合适的解法来求解,以提高解题效率和准确性。
一元二次不等式6种解法大全

一元二次不等式6种解法大全
一元二次不等式有多种解法,以下是一些常见的解法:
1. 图像法:将一元二次不等式转化为图像,通过观察图像的变化来确定解的范围。
首先,将不等式转化为等式,再画出对应的抛物线图像,然后根据不等式的符号确定解的范围。
2. 因式分解法:将一元二次不等式进行因式分解,得到一个或多个一次因子和一个二次因子。
然后,根据这些因子的正负确定不等式的解。
3. 求导法:对一元二次不等式两边同时求导数,得到一个一次方程。
然后,通过解这个一次方程得到不等式的解。
4. 完全平方式:将一元二次不等式进行变形,使其成为完全平方式。
然后,通过对方程两边取平方根,得到不等式的解。
5. 化简法:将一元二次不等式进行化简,整理为一个或多个一次项和一个常数项的形式。
然后,根据这些项的符号确定不等式的解。
6. 区间法:将一元二次不等式转化为一个或多个区间,并确定每个区间内的解的情况。
然后,将这些区间的解合并,得到不等式的解集。
以上是一些常见的一元二次不等式的解法,具体使用哪种解法取决于不等式的形式和题目要求。
在解题过程中,可以根据需要选择适合的方法进行求解。
一元二次不等式的解法

一元二次不等式的解法一元二次不等式是指一个未知数的二次函数与一个数之间的关系式,其形式为ax² + bx + c > 0或ax² + bx + c < 0。
解一元二次不等式的关键是找到其解集,即满足不等式的所有实数解。
本文将介绍两种常用的一元二次不等式的解法:图像法和区间法。
一、图像法1. 将一元二次不等式的左边移至右边,得到一个一元二次函数的对称形式。
例如,将ax² + bx + c > 0移至右边,得到ax² + bx + c = 0。
2. 绘制出对应一元二次函数的图像,并标出顶点。
对于一元二次函数y = ax² + bx + c,其图像是一个抛物线。
顶点的横坐标为-x₀ = -b/2a,纵坐标为y₀ = f(-x₀) = f(-b/2a)。
3. 根据一元二次不等式的符号确定解集。
若a > 0,表示抛物线开口向上,此时对应不等式的解集是(x < x₀) ∪ (x > x₁)。
若a < 0,表示抛物线开口向下,此时对应不等式的解集是(x₀ < x < x₁)。
二、区间法1. 将一元二次不等式的左边移至右边,得到一个一元二次函数的对称形式。
例如,将ax² + bx + c > 0移至右边,得到ax² + bx + c = 0。
2. 求出一元二次函数的判别式Δ = b² - 4ac的值,并根据Δ的正负确定解集。
若Δ > 0,则对应不等式的解集是(-∞, x₁) ∪ (x₂, +∞)。
若Δ = 0,则对应不等式的解集是(-∞, x) ∪ (x, +∞)。
若Δ < 0,则对应不等式的解集为空集。
需要注意的是,使用图像法和区间法时必须要了解一元二次函数的图像特征和判别式的意义。
另外,在求解过程中,可以运用一些常用的数学知识,如因数分解、配方法等,以便更快地得到解集。
一元二次不等式的解法

一元二次不等式的解法一元二次不等式是指包含一个未知数的二次函数不等式,其解的范围通常是实数集合中的某个区间。
解决一元二次不等式问题需要运用一些基本的数学原理和方法。
本文将介绍几种常见的一元二次不等式的解法。
1. 图形法解一元二次不等式图形法是解决一元二次不等式的一种直观方法。
我们可以通过绘制一元二次函数的图像来观察其解的范围。
具体步骤如下:1)将一元二次不等式转化为二次函数的形式,确保不等式的右边为0;2)绘制该二次函数的图像,并标出函数图像上的关键点,如顶点、交点等;3)根据函数图像的特征,确定不等式的解的范围。
2. 因式分解法解一元二次不等式因式分解法是解决一元二次不等式的常用方法之一。
通过将不等式转化为因式的形式,可以更方便地确定解的范围。
具体步骤如下:1)将一元二次不等式转化为二次函数的形式,确保不等式的右边为0;2)将二次函数因式分解为一元一次函数的乘积,得到因式表达式;3)根据因式表达式的性质,确定不等式的解的范围。
3. 完全平方式解一元二次不等式完全平方式也是解决一元二次不等式的一种常用方法。
通过完全平方式,可以将不等式转化为平方形式,从而更容易确定解的范围。
具体步骤如下:1)将一元二次不等式转化为二次函数的形式,确保不等式的右边为0;2)将一元二次函数利用完全平方式转化为平方(二次)表达式;3)根据平方表达式的性质,确定不等式的解的范围。
4. 配方法解一元二次不等式配方法是解决一元二次不等式的另一种有效方法。
通过进行配方法,可以将一元二次不等式转化为二次函数的平方差形式,从而简化求解过程。
具体步骤如下:1)将一元二次不等式转化为二次函数的形式,确保不等式的右边为0;2)运用配方法,将二次函数转化为平方差的形式;3)根据平方差的性质,确定不等式的解的范围。
综上所述,一元二次不等式的解法包括图形法、因式分解法、完全平方式和配方法等多种方法。
在具体解题过程中,可以根据实际情况选择合适的解法。
一元二次不等式的基本解法

一元二次不等式的基本解法一元二次不等式是指形如ax^2+bx+c>0的不等式,其中a、b、c 为实数且a≠0。
解一元二次不等式需要根据不等式的性质和基本解法进行推导和求解。
下面将详细介绍一元二次不等式的基本解法。
一、确定不等式的范围和性质在解一元二次不等式之前,首先需要确定不等式的范围和性质。
对于一元二次不等式ax^2+bx+c>0,可以通过判别式Δ=b^2-4ac 来确定其性质:1. 当Δ>0时,不等式有两个不相等的实数根,即抛物线与x轴有两个交点,不等式的解集为两个根之间的区间;2. 当Δ=0时,不等式有两个相等的实数根,即抛物线与x轴有一个交点,不等式的解集为该根;3. 当Δ<0时,不等式没有实数根,即抛物线与x轴没有交点,不等式的解集为空集。
二、解一元二次不等式的基本步骤1. 将不等式转化为标准形式对于一元二次不等式ax^2+bx+c>0,首先将其转化为标准形式,即将不等式右边移项,得到ax^2+bx+c-0>0。
2. 求解一元二次方程的根通过因式分解、配方法或求根公式等方法,求解一元二次方程ax^2+bx+c=0的根。
若方程有两个实数根x1和x2,则将不等式的解集确定为(x1, x2)。
3. 绘制抛物线图像根据一元二次方程的系数a、b、c的正负关系,绘制出抛物线的图像。
根据抛物线与x轴的交点和开口方向,确定不等式的解集。
4. 判断解集的开闭性根据一元二次不等式的形式,判断解集的开闭性。
当不等式为大于号时,解集为开区间;当不等式为大于等于号时,解集为闭区间。
5. 确定不等式的解集根据以上步骤的结果,确定一元二次不等式的解集。
将抛物线与x 轴的交点所对应的区间作为解集,注意考虑区间的开闭性。
三、例题解析例如,求解不等式x^2-4x+3>0。
1. 将不等式转化为标准形式:x^2-4x+3-0>0。
2. 求解一元二次方程x^2-4x+3=0的根。
一元二次不等式的解法

一元二次不等式的解法一元二次不等式是指只含有一个未知数的二次不等式,通常形式为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为实数,且a ≠ 0。
解一元二次不等式的方法主要有以下几种:图像法、代数法和判别法。
一、图像法1. 绘制一元二次函数的图像:根据不等式的形式,确定二次函数的开口方向(a的正负),以及顶点的横坐标、纵坐标(b和c的值)。
2. 根据不等式的符号(大于或小于),确定图像与x轴的关系,即求解函数值大于0或小于0的区间。
3. 根据求解得到的区间,直观地表示出不等式的解集。
二、代数法1. 化简一元二次不等式:通过合并同类项、配方等方法,将二次不等式化简为标准形式,即ax^2+bx+c>0或ax^2+bx+c<0。
2. 求解方程:将不等式转化为等式,即ax^2+bx+c=0,并求解得出方程的根。
3. 利用根的性质:通过根的位置和值的正负判断方程在不等式中的取值情况,从而确定不等式的解集。
三、判别法1. 计算判别式:根据二次不等式的形式,计算出判别式Δ=b^2-4ac。
2. 根据判别式的值判断解集:a) 当Δ>0时,二次不等式有两个不同的实数根,根据系数的正负关系,可得出不等式的解集;b) 当Δ=0时,二次不等式有且仅有一个实数根,根据系数的正负关系,可得出不等式的解集;c) 当Δ<0时,二次不等式没有实数根,根据系数的正负关系,可得出不等式的解集。
综上所述,一元二次不等式的解法包括图像法、代数法和判别法。
根据具体情况,选择合适的方法求解可以快速得到一元二次不等式的解集。
通过掌握这些解法,我们能够更加灵活地处理和求解各种形式的一元二次不等式,提高数学问题的解决能力。
一元二次不等式的解法

一元二次不等式的解法一元二次不等式是指形式为ax^2 + bx + c > 0 (或ax^2 + bx + c < 0)的不等式,其中a、b、c为实数,且a ≠ 0。
要解一元二次不等式,需要通过一系列的步骤来确定其解集。
步骤一:将一元二次不等式的左边转化为一个二次函数f(x)。
根据一元二次不等式的形式,我们可以将其左边的项看作是二次函数f(x) = ax^2 + bx + c。
这个二次函数的图像可能是一个抛物线开口向上,也可能是开口向下。
步骤二:求出二次函数f(x)的零点。
为了求出二次函数f(x)的零点,我们需要将其转化为标准形式。
标准形式是指f(x) = a(x - h)^2 + k,其中(h, k)为抛物线的顶点坐标。
步骤三:根据二次函数f(x)的开口方向,确定一元二次不等式的解集。
如果二次函数f(x)开口向上,即a > 0,那么一元二次不等式的解集是抛物线上方的区域。
如果二次函数f(x)开口向下,即a < 0,那么一元二次不等式的解集是抛物线下方的区域。
步骤四:根据一元二次不等式的形式,找出它的解集。
通过分析图像和零点,我们可以进一步确定一元二次不等式的解集。
例如,考虑不等式x^2 - 3x + 2 > 0。
首先,我们将不等式左边的项转化为二次函数f(x) = x^2 - 3x + 2,然后求出其零点。
将f(x)转化为标准形式可以得到f(x) = (x - 1)(x - 2),则它的零点是x = 1和x = 2。
这意味着抛物线与x轴相交于点(1, 0)和(2, 0)。
由于a = 1 > 0,我们知道抛物线开口向上。
因此,不等式的解集是抛物线上方的区域。
我们可以通过测试f(x)在零点以及零点左右的取值来进一步确定解集。
当x < 1时,抛物线在x轴上方,因此f(x) > 0;当1 < x < 2时,抛物线在x轴下方,因此f(x) < 0;当x > 2时,抛物线再次在x轴上方,因此f(x) > 0。
一元二次不等式的解法 解题步骤有哪些

一元二次不等式的解法解题步骤有哪些一元二次不等式是数学中比较简洁的一个考点,但是同学们在平常也要多加练习,在考试时更要仔细审题,避开丢分。
下面是一元二次不等式的解法及留意事项,一起来看吧!一元二次不等式的解法解一元二次不等式的一般步骤:1、对不等式变形,使一端为0且二次项系数大于0,即ax2+bx +c>0(a>0),ax2+bx+c<0(a>0);2、计算相应的判别式;3、当Δ≥0时,求出相应的一元二次方程的根;4、依据对应二次函数的图象,写出不等式的解集。
解一元二次不等式应留意的问题:1、在解一元二次不等式时,要先把二次项系数化为正数。
2、二次项系数中含有参数时,参数的符号会影响不等式的解集,争论时不要遗忘二次项系数为零的状况。
3、解决一元二次不等式恒成立问题要留意二次项系数的符号。
4、一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同。
一元二次不等式的例题及答案已知f(x)=-3x2+a(6-a)x+b.(1)解关于a的不等式f(1)0;(2)若不等式f(x)0的解集为(-1,3),求实数a,b的值. 解:(1)∵f(1)0,∵-3+a(6-a)+b0,即a2-6a+3-b0.Δ=(-6)2-4(3-b)=24+4b.①当Δ≤0,即b≤-6时,原不等式的解集为∵.②当Δ0,即b-6时,方程a2-6a+3-b=0有两根a1=3-6+b,a2=3+6+b,∵不等式的解集为(3-6+b,3+6+b).综上所述:当b≤-6时,原不等式的解集为∵;当b-6时,原不等式的解集为(3-6+b,3+6+b). (2)由f(x)0,得-3x2+a(6-a)x+b0,即3x2-a(6-a)x-b0.∵它的解集为(-1,3),∵-1与3是方程3x2-a(6-a)x-b=0的两根.∵-1+3=a(6-a)3,-1×3=-b3,解得a=3-3,b=9或a=3+3,b=9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原不等式的解集是 x | x 7, x 3}. { 或
x 1 1. 例3 解不等式 1 2x 解: x 1 x 1 1 0 1 1 2x 1 2x 3x 2 0 1 2x (3 x 2)(2 x 1) 0
x 2,或 1 x 3.
原不等式的解集是{ x | x 2, 1 x 3}. 或
x 1 0 . 例4. 解不等式 2 x x6 原式 ( x 1)( x 2 x 6) 0 解法2: ( x 1)( x 3)( x 2) 0 ( x 2)( x 1)( x 3) 0
解集 2. x a) x b) 0 a b) {x | x a,或x b} ( ( (
3、1 x 5 0 解集 {x |5 x 8 } () x 8 (2) 2 x 1 0 . 解集{x | x 4,或x 1} x4 2
4.(1)正确
x 1 0 x 1) x 2 ) 0 ( ( x2
。
-2
。 。 3 1
由数轴标根法得不等式的解集
{ x | x 2, 1 x 3}. 或
x 1 0 . 例5. 解不等式 2 x x6 2 ( x 1)( x x 6) 0 解: 原不等式 2 x x6 0 ( x 1)( x 3)( x 2) 0 x 3, 且x 2
1. 不等式 |x|<c与|x|>c (c>0)的解集
{ |x| c c 0)的解集是 : x| c x c } ; (
|x| c c 0)的解集是 :{ x|x c 或 x c } . (
由此可得: {x|-c |ax+b|<c (c>0)的解集为: <ax+b< c}; {x|ax+b>c ,或 ax+b<-c}. |ax+b|>c (c>0)的解集为:
一元二次不等式的解法 判别式 △=b2- 4ac △>0 y y=ax2+bx+c (a>0)的图象 x1 O x2 x O x1 x O 没有实根 x
△=0
y
△<0
y
ax2+bx+c=0 有两相等实根 有两相异实根 (a>0)的根 x1=x2= b x1, x2 (x1<x2) 2a ax2+bx+c>0 b (a>0)的解集 {x|x<x1,或 x>x2} {x|x≠ }
1 x 2 2 3 1 x 2 }. ∴原不等式解集为{ x | 2 3
x 1 0 . 例4. 解不等式 2 x x6
x 1 0 x 1 0 ,或 2 解 : 原不等式 2 x x 6 0 x x 6 0
x 1 x 1 或 x 2,或x 3, 2 x 3.
(2) 正确 2 x 0 x 2 0 ( x 2)( x 2) 0即x 2 4 0 2 x x2
作业: 1. 习题 1.5 6、7、8.
2. 二教材 19 ~ 21页
Байду номын сангаас
x 3 0 x 3 0 . 解:原不等式 , 或 x 7 0 x 7 0
x 3 x 3 ,或 x 3, x 7 或 x 7 x 7 原不等式的解集是{ x | x 7, x 3}. 或
。
-2
1
.
。 3
由数轴标根法得不等式的解集
{ x | x 2, 1 x 3}. 或
小 结:
设 a b ,则 x a 0 ( x a)(x b) 0 x a, x b. 或 x b x a 0 ( x a)(x b) 0 a x b. x b x a 0 ( x a)(x b) 0 x a, x b. 或 x b x b 0
x 3 例1 解不等式 0 x7
解2:原不等式 ( x 3)( x 7) 0
x 3, x 7 或
原不等式的解集是 { x | x 7, x 3}. 或
x 3 例2 解不等式 0. x7
解:
( x 3 )(x 7) 0 x 3 0 x7 x 7 0
2a
R Φ
ax2+bx+c<0 (a>0)的解集 {x|x1< x <x2 }
Φ
解一元二次不等式ax2+bx+c>0 (a>0, △=0 )的步骤: ① 将二次不等式化成一般式;
② 求出方程ax2+bx+c=0的两根; ③ 画出y=ax2+bx+c的图象;
④ 根据图象写出不等式的解集.
x 3 例1 解不等式 0 ( x 3)( x 7) 0 x7
x a 0 ( x a)(x b) 0 a x b. x b x b 0
练习:
1、解下列不等式: (1)(x 2 ) x 3 ) 0 ; ( 3、解下列不等式: (1) x 5 0 ; (2) 2 x 1 0 . x 8 x4 4、判断下列说法是否正 确: (2)x x 2 ) 0 . ( 2、解关于 x 的不等式(x a) x b) 0 (a b) ( .
(1)不等式 x 1 0 与不等式(x 1) x 2 ) 0 的解集相同; ( x2 (2)不等式 2 x 0 与不等式 x 2 4 0 的解集相同. 2 x
答案:
1、 1 ( )(x 2 ) x 3) 0 解集{x | x 2,或x 3} ( (2)x x 2 ) 0 . ( 解集 {x | 0 x 2}
。
-2
。 。 3 1
x 1 0 . 例4. 解不等式 2 x x6 原式 ( x 1)( x 2 x 6) 0 解法2: ( x 1)( x 3)( x 2) 0 ( x 2)( x 1)( x 3) 0