初中数学竞赛初二下部分37-38参考答案
数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
下学期八年级数学竞赛试题答案

下学期八年级数学竞赛试题及答案时量:120分钟 满分:120分一、选择题(每小题3分,共30分)1. 若()()131x x x -+-的值为零,则x 的值是( C ) A.1± B.1 C.1- D.不存在 2. 若()2020132014x x x -⎛⎫-+ ⎪-⎝⎭有意义,则x 的取值范围是( C ) A.2013x ≠ B.2013x ≠且2014x ≠C. 2013x ≠且2014x ≠且0x ≠D. 2013x ≠且0x ≠3. 用反证法证明“直线a 、b 、c 在同一平面内,且a c ⊥,b c ⊥,则a b ∥”时,应假设( A )A.a 与b 不平行B.a 不垂直cC.b 都不垂直cD.a 垂直于b4. 如图,在ABC △中,36A ∠=︒,AB AC =、BD 平分ABC ∠.若ABD △的周长比BCD △的周长多1厘米,则BD 的长是(B )A . 0.5厘米B . 1厘米C .1.5厘米D . 2厘米5. 已知31m -和7m -是数p 的平方根,则p 的值为( D )A . 100B . 25C .10或5 D . 100或25 6. 若实数m ,n 满足()212150m n -++=,则n m -的立方根为( A )A.3-B.3C.3±D.7. 已知关于x 的方程()212a x ax a +=-的解是负数,那么a 的值的情况是( C ) A.1a ≠- B.1a < C.10a a <≠且 D.1a >8. 已知m 、n 是整数,3253m n +=+,且3230m +>,5340n +<,则mn 的值是( D )A.70B.72C.77 D849. 若3x <-,化简1-的结果是( B )A.3x +B.3x --C.xD.x -10. 已知a =b = C ) A.0 B.1 C.2 D.2-二、填空题(每小题4分,共32分)11. 三个数213-⎛⎫- ⎪⎝⎭,312⎛⎫- ⎪⎝⎭,()01-中,最大的是213-⎛⎫- ⎪⎝⎭ ,最小的是312⎛⎫- ⎪⎝⎭ . 12. 已知8m a =,2n b =,则322=m n -2a b .(用含a 、b 的代数式表示). 13. 若()231a a ++=,则整数a 的值为24-- 或 .14. 如图所示,AD 垂直平分BC ,点C 在AE 的垂直平分线上,若4AB =, 6DE =,则BD =2 .15. 已知等腰ABC △中,AB AC =,D 是BC 边上一点,连接AD ,若ACD △和ABD △都是等腰三角形,则C ∠的度数是3645︒︒ 或 .16.2< 217. 已知关于x 的不等式组23 032 0a x a x +⎧⎨-⎩>≥恰有3个整数解,则a 的取值范围是4332a ≤≤ . 18. 如图,在ABC △中,AD BC ⊥,AE 平分BAC ∠,若130∠=︒,220∠=︒,则B ∠=50︒ .三、解答题(共58分)19. (7分)先化简,再求值:22226951222a ab b b a b a ab a b a⎛⎫-+÷--- ⎪--⎝⎭,其中a ,b 满足42a b a b +=⎧⎨-=⎩.20. (7分)已知m A =是2m n +的立方根,2m B -=3m n ++的算术平方根,求11m n +的立方根.21. (7分)k 取何值时,关于x 、y 的方程组32522x y x y k -=⎧⎨+=⎩的解满足0x y +<.22. (8分)已知整数a ,b =a b ≤.求a 和b 的值.23. (9分)如图,等边三角形ABD 和等边三角形CBD 的边长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE CF a +=.则BEF △的形状如何?24. (10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?25. (10分)如图:已知AB DC ∥,BAD ∠和ADC ∠的平分线相交于点E ,过点E 的直线分别交AB 、DC 于B 、C 两点.猜想线段AD 、AB 、DC 之间的数量关系,并证明.。
八年级(下)数学竞赛试卷及答案

八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
初二数学竞赛试题参考答案及评分建议[1][1].doc
![初二数学竞赛试题参考答案及评分建议[1][1].doc](https://img.taocdn.com/s3/m/bba17127195f312b3069a5aa.png)
年初二数学数学竞赛试题参考答案及评分建议二、填空题(共6小题,每小题5分,满分30分) 9.6 10.199 11.32- 12.7013. ≤x <8 14.245三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:将4a c =+代入240ac b +-=得22440c c b ++-=2c ∴=- 4分∵ ,b c 都是整数,∴只能取431212342222;;;.0404b b b bc c c c ===-=-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩ 4分相对应12344,0,4,0a a a a ====,∴a b c ++的最大值是6, 最小值是-6. 4分16.(12分)解:(1)设安排x 名工人制衣, 则(100x -)人织布,根据题意,得[]230(100) 1.541320x x --⨯= 3分 解得65x =.∴安排65名工人制衣,35名工人织布. 2分 (2)设安排x 名工人制衣,则 254600072W x x =⨯+-=286000x + 3分∵ 010030(100) 1.54x x x ≤≤⎧⎨-≥⨯⎩解得25003x ≤≤ 2分∵这个一次函数W 随x 的增大而增大,∴83x =时, W 最大,最大利润是8324元. 2分17.(12分)解:(1)AD AB AC +=.如图,过C 点分别作,AD AB 的垂线,垂足分别为,E F . 2分 ∵AC 平分DAB ∠, ∴CE CF =. ∵ 00180180D ABC CBF ABC ∠+∠=∠+∠=∴D CBF ∠=∠.∵CED CBF ∠=∠, ∴△CDE ≌△CBF ,∴DE BF =, 3分 ∴AD AB AE DE AB AE AF +=++=+. ∵△CEA ≌△CFA ,∴AE AF =. 2分 ∵060CAB ∠=, ∴2AC AF =,∴AD AB AC +=. 2分(2)AD AB +=. 3分18.(14分)解:设每一轮中三人得到的糖块数之和为: a+b+c -3a=b+c -2a .设他们共分n 次,则n(b+c -2a )=18+9+6=33 ① 4分 ∵ 33=1×33=3×11,且n ≠1,否则拿到纸片a 的人得到的糖块总数为0,与已知矛盾.∴n=3或n=11.由于每人所得的糖块总数是他拿到的纸片上的数的总和减去na , 由丙的情况得到 6=15-na .∴na=9, a ≥1, ∴只有n=3, a=3. 把n=3,a=3代入 ① 得 b+c=17, 4分 又乙得到的糖块总数为9,最后一轮得到(c -3)块,∴c-3≤9,c≤12.若c≤11,则乙最后一轮拿到的纸片为c,所得糖数为c-a≤8.这样乙必定在前面两轮中再抽到一张b或c,这样乙得的总糖数一定大于或等于(b+c)-2a=11,这与乙得到的糖块数为9相矛盾。
初中数学竞赛辅导资料及参考答案(初二下部分,共3份)-5

初二下部分参考答案(1)练习29(返回目录)4.③三边相等和两边相等的三角形统称等腰三角形6. ①a ≤0.5 ②3 ③4,1④1,7⑤6 ⑥±1⑦-7,-53 ⑨-1,2177+ ⑩ ⎩⎨⎧<-≥-312012x x 或⎩⎨⎧<--<-3)12(012x x ∴21<x<2;x ≥211或x ≤-29 7. (C )∵当x<0, -x =ax+1, x=11+-a <0, a>-1 当x>0时,x=ax+1, x=a -11>0, a<1 ∵方程有负根,∴a>-1条件成立,而方程没有正根,a<1,不能成立 即a>-1且a ≮1,它们的交集是a ≥1练习30(返回目录)2. ax=b 解的分类⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=≠==≠有无数多个解无解且,0,00,0b b a a b x a 3. ②方程⎩⎨⎧非整式方程整式方程 ⑤四边形⎩⎨⎧非平行四边形平行四边形 4.①有理数⎪⎩⎪⎨⎧负有理数零正有理数 ②垂直是相交的一种5. ①-1,3 ②当x ≥2时,x-2>1-2x ……当x<2时-(x-2)>1-2x …6. ①⎩⎨⎧<≤-+-=-<-=)01(2)1(3x x x x x x ②⎪⎪⎩⎪⎪⎨⎧≠--=)1(11)1(21a a a a 7. 30,30,120;75,75,30。
8. -1,09.当m=1时,调3人;m=2, 调2人;m=3,调1人10. x<0或x>3,11. 把n 按奇数、偶数分类讨论,证明a 1a 2a 3… a n 中至少有2个偶数12. a,b 中若有一个是3的倍数,则ab 能被3整除;若除3有同余数则a-b 能被3整除;若除3余数分别为1和2,则a+b 能被3整除.13. a ≥1 (见练习29第7题)14. 按奇数、偶数分类讨论① 当n 为奇数时,设n=2k+1,k>2的整数,n=k+(k+1), k 和k+1互质; ② 当n 为偶数时,设n=4k 或4k+2, k>1的整数若n=4k=(2k+1)+(2k-1), 而2k+1和2k-1是互质的若n=4k+2=(2k-1)+(2k+3), 易知2k-1和2k+3也是互质的,如果它们有公因子d(d ≥2 ), 可设2k-1=md 2k+3=pd, (m,p 是正整数), 则(m-p )d=4,则4d ,这是不可能的。
下八年级数学竞赛试题及答案

八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。
新初二数学竞赛试题及答案

新初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于其本身,这个数可能是:A. 0B. 1C. -1D. 2答案:B3. 一个三角形的三个内角之和是多少度?A. 180度B. 360度C. 90度D. 120度答案:A4. 以下哪个是二次方程的解法?A. 直接开平方法B. 配方法C. 因式分解法D. 所有以上答案:D5. 一个数的绝对值是其本身,这个数是:A. 正数B. 零C. 负数D. 正数或零答案:D6. 以下哪个是不等式的解集?A. 所有实数B. 所有正数C. 所有负数D. 所有非零数答案:A7. 一个圆的周长是其直径的多少倍?A. π倍B. 2倍C. 3倍D. 4倍答案:A8. 以下哪个是整式除法的运算法则?A. 同底数幂相除B. 幂的乘方C. 积的乘方D. 所有以上答案:D9. 以下哪个是几何级数的通项公式?A. \( a_n = a_1 \times r^{(n-1)} \)B. \( a_n = a_1 \times n \)C. \( a_n = a_1 \times (n-1) \)D. \( a_n = a_1 \times r \)答案:A10. 以下哪个是勾股定理的表述?A. 直角三角形的斜边平方等于两直角边平方和B. 直角三角形的两直角边平方和等于斜边平方C. 直角三角形的斜边等于两直角边之和D. 直角三角形的两直角边等于斜边的平方根答案:A二、填空题(每题4分,共20分)11. 如果 \( a \) 和 \( b \) 是两个连续的整数,且 \( a > b \),那么 \( a \) 的值是 \( b \) 加上 ______ 。
答案:112. 一个数的平方根是 \( \sqrt{a} \),那么这个数是 \( \sqrt{a} \) 的 ______ 。
答案:平方13. 如果一个三角形的三边长分别为 \( a \),\( b \) 和 \( c \),且满足 \( a^2 + b^2 = c^2 \),那么这个三角形是 ______ 三角形。
八年级数学竞赛参考答案

2018----2019学年度第二学期八年级数学竞赛参考答案一、选择题(每题4分,共计40分)二、选择题(每题5分,共计20分)11. 12y y ∠ ; 12. y -- ; 13. ; 14① ② ④15.解:∵|2018-a |+2019-a =a , ∴a-2019≥0, 故a≥2019,则原式可变为:a-2018+2019-a =a ,---------------(5分) 故a-2019=20182, 则a-20182=2019.--------------(10分)16.解:连接AC ,过点C 作CE ⊥AB 于点E . ∵AD ⊥CD ,∴∠D =90°.在Rt △ACD 中, AD=5, CD =12,AC =13=.---------------------------------------------------------5分∵BC =13,∴AC =BC . -----------------------------------------------8分∵CE ⊥AB , AB =10,∴AE =BE =12AB =11052⨯=. ----------------------10分 在Rt △CAE 中,CE 12=.∴S四边形ABCD=S △DAC +S △ABC =11512101230609022⨯⨯+⨯⨯=+=.-----------------15分17.解:(1)把C (m ,4)代入一次函数y=﹣x+5,可得 4=﹣m+5, 解得m=2,E∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;----------------------(5分) (2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2, y=﹣x+5,令x=0,则y=5;令y=0,则x=10, ∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =×10×4﹣×5×2=20﹣5=15;-------------(10分)(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形, ∴当l 3经过点C (2,4)时,k=; 当l 2,l 3平行时,k=2; 当11,l 3平行时,k=﹣;故k 的值为或2或﹣.---------------15分)18.解:(1)40 15 -----------------(4分)(2)∵这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35.-------------------- (8分)∵将这组样本数据从小到大排列,其中处于中间的两个数都是 36,∴中位数为:3623636=+. ------------------- (12分) (3)60%30200=⨯(双)为35号鞋------------- (15分)19.解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元). ------------(4分) (2)由题意,得①当0≤x ≤30时,y=0.3×3x=0.9x ;-----------(6分)②当30<x ≤m 时,y=0.3×3×30+0.5×3×(x ﹣30)=1.5x ﹣18;--------(8分)③当x >m 时,y=0.3×3×30+0.5×3(m ﹣30)+0.7×3×(x ﹣m )=2.1x ﹣0.6m ﹣18.-------------(10分)∴y=;------------------(12分)(3)由题意,得①当50≤m ≤60时,则人均面积为50平方米没有超过m ,所以应缴纳的房款: y=1.5x ﹣18=1.5×50﹣18=57(舍);----------------(16分) ②当45≤m <50时,则人均面积为50平方米超过m , 则y=2.1x ﹣0.6m ﹣18=2.1×50﹣0.6m ﹣18 =87﹣0.6m ,∵57<y ≤60,∴57<87﹣0.6m ≤60 解得 45≤m <50.综上,45≤m <50.------------------(20分)20. 解:(1)如图所示---------------(4分)(2)猜想AF EF =.如图2所示,延长AF 交DC 的延长线于点G ,连接BG ,AC , 易证:四边形ABGC 为平行四边形,∴GF AF =.又∵DC AE ⊥,∴Rt △AEG 中,EF 是斜边AG 上的中线,∴AG AF EF 21==.---------------- (10分) (3)如图2所示,∵Rt △AED 中,,4,60=︒=∠AD D ∴242121=⨯==AD DE ,由勾股定理得:∴.32242222=-=-=DE AD AE 由(2)可知,□ABGC中,3===CD AB CG ,∴413=+=+=CE GC GE .∴在Rt △AEG 中,=AG 72284)32(2222==+=+GE AE .∴7722121===AG EF .(20分)。