初一数学竞赛题含答案

合集下载

初一数学趣味题竞赛试题及答案

初一数学趣味题竞赛试题及答案

初一数学趣味题竞赛试题及答案一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,这个数可以是:A. 1B. 0C. -1D. 以上都是2. 一个班级有40名学生,其中1/4的学生是男生,其余是女生。

那么这个班级有多少名女生?A. 30B. 25C. 20D. 153. 一个数加上10等于它自己的两倍,这个数是:A. 5B. 10C. 20D. 无法确定4. 一个圆的半径是5厘米,那么这个圆的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π5. 如果一个数的立方等于它自己,这个数是:A. 1B. -1C. 0D. 以上都是二、填空题(每题3分,共15分)6. 如果一个数的平方是16,那么这个数是______。

7. 一个数的5倍加上8等于38,这个数是______。

8. 如果一个数的相反数是-7,那么这个数是______。

9. 一个数的绝对值是5,那么这个数可以是______。

10. 如果一个数的平方根是4,那么这个数是______。

三、解答题(每题5分,共20分)11. 一个长方形的长是宽的两倍,如果它的周长是24厘米,求这个长方形的长和宽。

12. 一个班级有45名学生,其中1/3的学生是女生,如果班级里新转来5名女生,班级里女生的比例是多少?13. 一个数的3倍加上5等于这个数的4倍减去6,求这个数。

14. 一个圆的直径是14厘米,求这个圆的面积。

答案一、选择题1. D2. A3. B4. C5. D二、填空题6. ±47. 68. 79. ±510. 16三、解答题11. 设宽为x厘米,长为2x厘米。

根据周长公式,2(x+2x)=24,解得x=4,所以长为8厘米,宽为4厘米。

12. 原女生人数为45×1/3=15人,新转来5名女生后,女生人数为15+5=20人,女生比例为20/50=2/5。

13. 设这个数为x,根据题意,3x+5=4x-6,解得x=11。

七年级上学期数学竞赛试题(含答案)

七年级上学期数学竞赛试题(含答案)

学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果是多少?A. 3 + 4B. 5 - 2C. 6 × 2D. 8 ÷ 2答案:C3. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B7. 计算下列表达式的结果是多少?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 3答案:A8. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 0D. -2答案:A9. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B10. 计算下列表达式的结果是多少?A. 10 × 0B. 10 ÷ 0C. 10 - 0D. 10 + 0答案:C二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是____。

答案:±612. 一个数的立方是27,这个数是____。

答案:313. 计算下列表达式的结果:(-3) × (-4) = ____。

答案:1214. 一个数的绝对值是7,这个数是____。

答案:±715. 计算下列表达式的结果:(-5) ÷ (-1) = ____。

答案:5三、解答题(每题10分,共50分)16. 计算下列表达式的结果:(1) 2 × 3 + 4 × 5(2) (-3) × 2 - 5 × (-2)答案:(1) 2 × 3 + 4 × 5 = 6 + 20 = 26(2) (-3) × 2 - 5 × (-2) = -6 + 10 = 417. 求下列方程的解:(1) 2x + 3 = 7(2) 3x - 4 = 11答案:(1) 2x + 3 = 72x = 7 - 32x = 4x = 2(2) 3x - 4 = 113x = 11 + 43x = 15x = 518. 一个数的平方是49,求这个数。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。

A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。

2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。

5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。

三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。

如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。

2. 一个班级有40名学生,其中男生和女生的比例是3:2。

如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。

现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。

在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。

初一数学竞赛试卷及答案解析

初一数学竞赛试卷及答案解析

初一数学竞赛试卷及答案解析二、填空题1、 有理数a ,b ,c 在数轴上的位置如图所示,化简=------+c c a b b a 11.2、 三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ab ,b 的形式,则a 1992+b 1993=_________. 3、 计算:=-------++-+-)100011)(99911()511)(411)(311)(211(10201970198019902000 . 4、 已知,1||,1||≤≤y x 且u =|x +y |+|y +1|+|2y -x -4|,则u 的最大值和最小值之和等于___________.5、 有理数4.0,5.10,31,0,1.0,21,8,3---+-中,所有正数的和填在下式的〇中,所有负数的和填中下式的□中,并计算出下式的结果填在等号右边的横线上.〇÷□= .6、 已知a = -1,则1+)8)(8(2)6)(6(2)4)(4(2765432a a a a a a ++++++++ +)14)(14(2)12)(12(2)10)(10(21312111098a a a a a a ++++++++=___________。

7、 a 是自然数,且a a 22=,则a = 。

8、 能够使不等式成立的x 的{(|x |-x )(1+x )<0}取值x 范围是_____。

参考答案二、填空题1、 -2解:由图可见,)(00,0b a b a b a b a +-=+⇒<+⇒<<, 又)1(10110--=-⇒<-⇒<<b b b b ,)(00c a c a c a c a --=-⇒<-⇒<<. 由图可知c c c c -=-⇒>-⇒<11011, 所以c c a b b a ------+11)1()]([)]1([)(c c a b b a --------+-=)1()()1()(c c a b b a ---+-++-=211-=+--+-+--=c c a b b a .2、 2解:由于三个互不相等的有理数,既可表示为1,a +b ,a 的形式,又可以表示为0,a b ,b 的形式,也就是说这两个三数组分别对应相等,于是可以判定,a +b 与a 中间有一个为0,a b 与b 中有一个为1,但若a =0,会使a b 没意义,所以a 0≠,只能是a +b =0,即a = -b ,又a 0≠得a b = -1,由于0, a b ,b 为两两不相等的有理数,在a b = -1的情况下,只能是b =1,于是a = -1.所以a 1992+b 1993=(-1)1992+(1)1993=1+1=2.3、 1000000 解:)10001)(9991()51)(41)(31)(21(10201970198019902000-------++-+- 100099999999854433221)1020()19701980()19902000(⋅⋅⋅⋅⋅⋅-++-+-= 10001)10101010(10100÷++++= 个 10001000⨯=1000000=.4、 10解:因为11,11,1,1||≤≤-≤≤-∴≤≤y x y x 从而y x x y y y 24|42|,1|1|-+=--+=+, 当0≤+y x 时, 52)2941)(+=-+++++=x y x y y x u .11≤≤-x ,73≤≤∴u ,又当1,1=-=y x 时, 3=u ;当1,1-=-=y x 时, 7=u ,即u 的最大值为7,最小值为3,则u 的最大值与最小值的和等于10.5、 417403- 解:〇中填的数是:3013135311.0)8(=++++, □中填的数是:10913)4.0()10()21()3(-=-+-+-+-, 而4174031391030403)10139()30403()10913(301313-=⨯-=÷-=-÷.6、 1541 解: 原式=1++-+-+=⨯+⨯+⨯+⨯+⨯+⨯)7151()5131(113152111329112792572352 (15411541151311)151131()131111()11191()9171=+=-+=-+-+-+-.7、 2或4解:a 为自然数,要使 a a 22= ①由于①右边只有质因数2,所以①左边也只能有质因数2,即m a 2=,m 为自然数。

初中数学竞赛试题及答案解析

初中数学竞赛试题及答案解析

初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

45 分钟,所以甲一共可分为 4 个 30 分钟划行时间段,中间有 3 个 15 分钟休息.如 果甲开始向下游划, 那么他只能用 1 个 30 分钟的时间段向下游划, 否则将无法返回,
这时他离开码头的距离为: (3 1.4) 0.5 1.4 0.25 2.55 (千米). 而返回用 3 个 30 分钟的时间段所走的距离为
这时, x
3b a ,
2
2
2x 3y 2(3b a) 3(a 2b) 6b 2a 3a 6b a
这说明整数 b 能使 x=-a+3b,y=a- 2b 满足方程 2x+3y=a.
14.设此自然数为 x,依题意可得
x 45 m2 ① (m, n 为自然数 )
x 44 n2 ②
②-①可得 n2 m2 89 , n2 x 44 m2 45 44 m2 ,
三、解答题 13. x , y 是满足条件 2x 3y y 能表示为 x a 3b , y a
a 的整数( a 是整数),证明必存在一整数 2b 的形式.
b ,使 x ,
14.一个自然数减去 45 及加上 44 都仍是完全平方数,求此数.
15.某甲于上午 9 时 15 分钟由码头划船出游,计算最迟于 12 时返回原码头,已知河
2000 2001 2002
7.因为 a b b c c a =1 b cc aa b
所以 a b ,b c ,c a 中必有一个是正数,不妨设 b cc aa b
有两种情况:① a>b>c ②a<b<c
ab 0
bc
①当 a>b>c 时, b c ,c a 均为负数;②当 c aa b
所以 a b ,b c ,c a 中恰有两个是负数。 b cc aa b

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。

从第四个数字开始,每个数字都是前三个数字的和。

请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。

然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。

答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。

将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。

所以,斜边的长度是5厘米。

试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。

问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。

我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。

这相当于在4个球之间插入2个隔板来形成3个部分。

我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。

但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。

因此,最终的放球方法有\[ 6 - 3 = 3 \]种。

试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。

求这个数列的第10项。

答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ).(A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2 (c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)2 3.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ).(A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ).(A)A 、B 两点的距离 (B)A 、C 两点的距离(C)A 、B 两点到原点的距离之和(D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ).(A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)= ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 . 16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l ;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a +1 06. 10.一43.6. 11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1.18.1022.5;101 8.1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )(A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。

(A)41 (B)4 (C)41- (D)-4 3.某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长( )。

(A)2% (B)8% (C)40.5% (D)62%4.已知0<x<1,则x x1,x ,2的大小关系是( )。

(A)2x x x 1<< (B)x x x 12<< (C)x x 1x 2<< (D)x x1x 2<< 5.已知a ≠0,下面给出4个结论:(1);01a 2>+ (2)1-a ;02< (3)1+;1a 12> (4)1-.1a12< 其中,一定正确的有( )。

(A)1个 (B)2个 (C)3个 (D)4个6.能整除任意三个连续整数之和的最大整数是( )。

(A)1 (B)2 (C)3 (D)67.a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中( )。

(A)只有(1)正确 (B)只有(2)正确 (C)(1),(2)都正确 (D)(1),(2)都不正确8.在甲组图形的四个图中,每个图是由四种图形A ,B ,C ,D(不同的线段或圆)中的某两个图形组成的,例如由A ,B 组成的图形记为A*B ,在乙组图形的(a),(b),(c),(d)四个图形中,表示“A*D”和“A*C”的是( )。

(A)(a),(b) (B)(b),(c) (C)(c),(d) (D)(b),(d)二、填空题9.若(m+n)人完成一项工程需要m 天,则n 个人完成这项工程需要_______天。

(假定每个人的工作效率相同)10.如果代数式ax 5+bx 3+cx-5当x=-2时的值是7,那么当x=2时该式的值是_________.11.如果把分数79的分子,分母分别加上正整数a,b,结果等于,139那么a+b 的最小值是_____. 12.已知数轴上表示负有理数m 的点是点M ,那么在数轴上与点M 相距m 个单位的点中,与原点距离较远的点所对应的数是___________.13.a,b,c 分别是一个三位数的百位、十位和个位数字,并且a ,c b ≤≤则a c c b b a -+-+-可能取得的最大值是_______.14.三个不同的质数a,b,c 满足ab b c+a=2000,则a+b+c=_________.15.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员揿一声喇叭,4秒后听到回声,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是_____米16.今天是星期日,从今天算起第120001111个天是星期________. 三、解答题17.依法纳税是每个公民的义务,中华人民共和国个人所得税法规定,有收入的公民依照下级别 全月应纳税所得额 税率(%)1 不超过500元部分 52 超过500元到2000元部分 103 超过2000元到5000元部分 15… … …800元后的余额,例如某人月收入1020元,减除800元,应纳税所的额是220元,应交个人所得税是11元,张老师每月收入是相同的,且1999年第四季交纳个人所得税99元,问张老师每月收入是多少?18.如图,在六边形的顶点处分别标上数1,2,3,4,5,6,能否使任意三个相邻顶点处的三个数之和(1)大于9?(2)小于10?如能,请在图中标出来;若不能,请说明理由19.如图,正方形ABCD中,E,F分别是BC,CD边上的点,AE,DE,BF,AF把正方形分成8小块,各小块的面积分别为试比较与的大小,并说明理由。

20.(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2),(3),(4)(5)的木块。

我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)中木块的顶点数,棱数,面数填入下表:图顶点数棱数面数(1) 8 12 6(2)(3)(4)(5)(2)观察上表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:_______________.(3)图(6)是用虚线画出的正方体木块,请你想象一种与图(2)~(5)不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为_____,棱数为____,面数为_______。

这与你(2)题中所归纳的关系是否相符?第十五届江苏省初中数学竞赛参考答案初一年级第二试一、1.C.2.B 3.B.4.c.5.c.6.C.7.A.8.D.二、9. 1 O.-1 7.1 1.28. 1 2.2m.1 3.1 6.a≤b≤c,∴|a-b|+|b-c|+|c-a|=2c-2a.要使2c-2a取得最大值,就应使c尽可能大且a尽可能小.a是三位数的百位数字,故a是1~9中的整数,又a≤c,故个位数字c最大可取9,a最小可取1·此时2c一2a得到最大值l 6.1 4.4 2.a(b b c+1)=24×5 3.(1)当a=5时,此时b、c无解.(2)当a=2时,b=3,c=37.故a+b+c=2+3+37=4 2.1 5.640.设鸣笛时汽车离山谷x米,听到回响时汽车又开8 0(米).此间声音共行(2x一8 O)米,于是有2z一80=34O×4,解得x=72O,72 O-8 O=6 4 O.1 6.三.11 1 ll=1 5 8 7 3×7,2000=333×6+2,11 1…1被7除的余数与1 1被7除的余数相同.11=7×1+4 从今天算起的第11 1…1天是星期三.三、1 7.如果某人月收入不超过1 3 00元,那么每月交纳个人所得税不超过2 5元;如果月收入超过1 3 oo 元但不超过2 8 OO 元,那么每月交纳个人所得税在2 5~1 7 5元之间;如果月收入超过2 8 OO 元,那么每月交纳个人所得税在1 7 5元以上.张老师每月交个人所得税为9 9÷3=33(元),他的月收入在1 3 00~2 800元之间.设他的月收人为x 元,得(x 一1 300)×1 O %+5 OO×5%=3 3,解得x=1 3 8 O(元).1 8.(1)能,如图.(2)不能.…如图,设按要求所填的六个数顺次为a 、b 、c 、d 、e 、 f .它们任意相邻三数和大于1 O ,即大于或等于11.所以a+b+f≥11,b+c+d≥11,c+d+e≥11,d+e+f≥11,e+f+a≥11,f+a+b≥11.则每个不等式左边相加一定大于或等于6 6,即3(a+b+c+d+e+f)≥6 6.故(a+b+c+d+e+f)≥22.而1+2+3+4+5+6=21,所以不能使每三个相邻的数之和都大于1O . 图 顶点数 棱 数 面 数(2)6 9 5 (3)8 1 9 6 (4)8 1 3 7 (5) 1 O 1 57 (2)顶点数+面数=棱数+2.(3)按要求画出图,验证(2)的结论.江苏省第十七届初中数学竞赛 初一年级 第l 试一、选择题(每小题7分,共56分,以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.)1.给出两个结论:(1) |a-b|=|b-a|, (2) -21 >-31其中( ) (A)只有(1)正确 (B)只有(2)正确(C)(1)和(2)都正确 (D)(1)和(2)都不正确2.下列说法中,正确的是( )(A)|-a|是正数 (B)|-a|不是负数 (C)-|-a|是负数 (D)-a 不是正数3.下列计算中,正确的是( )(A)(-1)2×(-1)5=1 (B)-(-3)2=9 (C)31÷(-31)=9 (D)-3÷(-31)=9 4.如图,有两张形状、大小完全相同的直角三角形纸片(同一个直角三角形的两条直角边不相等).把两个三角.形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形,其中,形状不同的四边形有( )(A)3种 (B)4种 (C)5种 (D)6种5.把足够大的一张厚度为0.1mm 的纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( )(A)6次 (B)7次 (C)8次 (D)9次6.a 、b 是两个给定的整数,某同学分别计算当x =-1、1、2、4时代数式ax+b 的值,依次得到下列四个结果,已知其中只有三个是正确的,那么错误的一个是( )(A)a+b=-1 (B)a+b =5 (C)2a+b =7 (D)4a+b =147.已知a 、b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么在用数轴上的点来表示a 、b时,应是( )8.如图所示,一个大长方形被两条线段AB 、CD 分成四个小长方形.如果其中图形I 、Ⅱ、Ⅲ的面积分别为8、6、5,那么阴影部分的面积为( )(A)29 (B)27 (C) 310 (D)815 二、填空题(每小题7分,共84分) 9.在下式的两个方框内填入同样的数字,使等式成立:□3× 6 528=8256× 3□.10.数轴上有A 、B 两点,如果点A 对应的数是-2,且A 、B 两点的距离为3,那么点B 对应的数是 。

相关文档
最新文档