苏科版七上初一数学竞赛系列训练题含答案
苏科版七上初一数学竞赛系列训练题含答案

苏科版七上初一数学竞赛系列训练题含答案初一数学竞赛系列训练(12)一、多项选择题1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条a、 6b.7c.8d.92.平面上三条直线相互间的交点个数是()a、 3b。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()a.36条b.33条c.24条d.21条4.已知平面上有n个点a、B和C在一条直线上,a、D、F和E四个点也在一条直线上。
除了一些,没有三点共线或四点共线。
如果将这n个点用作一条直线,则总共可以绘制38条不同的直线。
此时,n等于()(a)9(b)10(c)11(d)125.如果平行线AB和CD与相交线EF和GH相交,形成如图所示的图形,则相同的侧内角()a.4 vs.b.8 vs.c.12 vs.d.16 vs.6。
如图所示,如果已知FD‖be,∠ 1 + ∠ 2 - ∠ 3=()a.90°b.135°c.150°D.180°each二、填空gbfa3g2b1cca1edf2dbd第5题f问题6 e问题77.如图,已知ab∥cd,∠1=∠2,则∠e与∠f的大小关系;8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还有交点9.平面上的三条直线最多可分为三部分。
10.如图所示,ab‖CD‖EF,PS?GH在P,∠ FRG=110°,则acser第10题lhfgpqbd∠psq=。
11.假设a和B是直线L外的两点,则AB段的垂直平分线与直线之间的交点数为。
12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过个。
三、回答问题13.已知:如图,de∥cb,求证:∠aed=∠a+∠b14.已知:如图,ab∥cd,求证:∠b+∠d+∠f=∠e+∠gdaaebfecgcbd第13题第14题15.如图所示,已知CB?AB,CE∠ BCD,de∠ CDA,∠edc+∠ecd=90°,求证:da?ab16.平面上两个圆和三条直线有多少个不同的交点?17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?18.直线上5分,直线外3分。
七年级上学期数学竞赛试题(含答案)

学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。
第十五届江苏初中数学竞赛试题初一年级第一试和第二试

第十五届江苏初中数学竞赛试题初一年级第一试和第二试Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998第十五届江苏省初中数学竞赛试题初一年级第一试和第二试一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ).(A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( ) (A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2 (c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)2 3.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ).(A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ).(A)A 、B 两点的距离 (B)A 、C 两点的距离(C)A 、B 两点到原点的距离之和(D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ).(A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a ≠b ,则化简a b (a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn二、填空题(每小题分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)= ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 . 16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l ;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a +1 06. 10.一43.6. 11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1.18.1022.5;101 8.1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )(A )5 (B )-5 (C )1 (D )-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
初一七上数学竞赛题(含答案)

第十五届江苏省初中数学竞赛参考答案初一年级第一试一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba(b+1)得( ).(A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)=10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是 梨 梨 苹果 苹果 30 梨 型 梨 梨 28 荔枝 香蕉 苹果 梨 20 香蕉 香蕉 荔枝 苹果 ? 19 20 25 3014.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月. 18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元. 19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+l ;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a+1 06. 10.一43.6.11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1. 18.1022.5;101 8. 1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c=2001,且a+b+c=2001k ,那么k 的值为( )。
七年级上册数学竞赛试题

七年级上册数学竞赛试题【试题一】题目:求证:对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 +\ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \)。
解答:我们可以使用数学归纳法来证明这个等式。
首先验证 \( n=1 \) 时等式成立:\[ 1^2 = \frac{1(1+1)(2\cdot1+1)}{6} = 1 \]假设当 \( n=k \) 时等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]现在我们需要证明当 \( n=k+1 \) 时等式也成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 =\frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]\[ = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \]\[ = \frac{(k+1)(2k^2 + k + 6k + 6)}{6} \]\[ = \frac{(k+1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k+1)(2(k+1)(k+3) + 1)}{6} \]\[ = \frac{(k+1)(k+2)(2(k+1)+1)}{6} \]这样我们就证明了对于任意正整数 \( n \),等式成立。
【试题二】题目:一个数列的前几项是 1, 2, 3, 4, ...,求第 \( n \) 项的表达式。
解答:观察数列的前几项,我们可以发现这是一个等差数列,首项 \( a_1 = 1 \),公差 \( d = 1 \)。
等差数列的通项公式为:\[ a_n = a_1 + (n-1)d \]将已知的首项和公差代入公式,得到:\[ a_n = 1 + (n-1) \times 1 = n \]【试题三】题目:如果一个三角形的三边长分别为 \( a \),\( b \),\( c \),且满足 \( a^2 + b^2 = c^2 \),证明这个三角形是直角三角形。
江苏数学竞赛初中试题及答案

江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。
答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。
已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。
考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。
试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。
答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。
根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。
解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。
因此,较小的锐角是30度,较大的锐角是60度,直角是90度。
试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。
试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。
每个人拿的球的总数都是6个。
问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。
根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。
我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。
2019—2020年苏科版七年级数学上学期五校联考竞赛试题及答案.docx

最新苏科版七年级上学期数学竞赛试题一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
4、定义a*b=ab+a+b,若3*x=27,则x的值是________。
5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F 的对面是_______。
FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。
7、 正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为 ________。
8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有 ________ 中不同的值,其中最小值为 ________。
9、 当 a ______时,方程组223196922x y a a x y a a ⎧+=+-⎪⎨-=-+⎪⎩的解是正数。
10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。
(苏科版)七年级数学上册一元一次方程的实际应用专项训练18:比赛积分类问题(含答案与解析)

一元一次方程的实际应用专项练习—比赛积分类问题1.为了提升学生体育锻炼意识,七年一班进行了一次投掷实心球的测试,老师在操场上画出了A,B,C 三个区域,每人投掷5次,实心球落在各个区域的分值各不相同,落在C区域得3分.甲、乙、丙三位同学投掷后其落点如图所示,已知甲同学的得分是19分.请解答下列问题:(1)设投进B区域得x分,则投进A区域的得分是(用含x的式子表示)(2)若乙同学的得分是21分,求投进B区域的得分及丙同学的得分.2.下表是某年篮球世界杯小组赛C组积分表:排名国家比赛场数胜场负场总积分1 美国 5 5 0 102 土耳其 53 2 83 乌克兰 5 2 3 74 多米尼加5 2 3 75 新西兰 5 2 3 76 芬兰 5 1 m n(1)由表中信息可知,胜一场积几分?你是怎样判断的?(2)m= ;n= ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求?(4)能否出现某队的胜场积分与负场积分相同的情况,为什么?3.一名篮球运动员在一次比赛中20投12中得24分,投中的两分球的个数是投中三分球个数的4倍,则投中的三分球、两分球、罚球分别是几个?4.在学完“有理数的运算”后,我县某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.5.2019年国际泳联第十八届世界游泳锦标赛7月28日晚在韩国光州落下帷幕.中国队共获得了30枚奖牌,其中铜牌3枚,金牌比银牌多5枚,本次大赛中国队共获得了多少枚金牌?6.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?7.某班的一次数学小测验中,共有20道选择题,每题答对得相同分数,答错或不答扣相同分数.现从中抽出了四份试卷进行分析,结果如下表:(1)此份试卷的满分是多少分?如果全部答错或者不答得多少分?(2)如果小颖得了0分,那么小颖答对了多少道题?(3)小慧说她在这次测验中得了60分,她说的对吗?为什么?8.列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
初一数学竞赛系列训练(12)
一、选择题
1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条
A .6
B . 7
C .8
D .9
2.平面上三条直线相互间的交点个数是 ( )
A .3
B .1或3
C .1或2或3
D .不一定是1,2,3
3.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条
4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )
(A )9 (B )10 (C )11 (D )12
5.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对 6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°
第 5 题
第 6 题
第7题
二、填空题
7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ; 8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还 有 交点
9.平面上3条直线最多可分平面为 个部分。
10.如图,已知AB ∥CD ∥EF ,PS GH 于P ,∠FRG=110°,则
∠PSQ = 。
11.已知A 、B 是直线L 外的两点,则线段AB 的垂直平分线与直线的交点个数是 。
12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。
三、解答题
13.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B 14.已知:如图,AB ∥CD ,求证:∠B+∠D+∠F=∠E+∠G
第13题 第14题
15.如图,已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA ,
∠EDC+∠ECD =90°, 求证:DA ⊥AB
16.平面上两个圆三条直线,最多有多少不同的交点?
17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?
18.一直线上5点与直线外3点,每两点确定一条直线,最多确定多少条不同直线? 19.平面上有8条直线两两相交,试证明在所有的交角中至少有一个角小于23°。
20.平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点,怎样安排才能办到?画出图形。
第 15 题
初一数学竞赛系列训练(12)答案
1. 5个点中任取2点,可以作4+3+2+1=10条直线,在一直线上的3个点中任取2点,可作2+1=3条,共可作10-3+1=8(条)故选C 2.平面上3条直线可能平行或重合。
故选D
3.对于3条共点的直线,每条直线上有4个交点,截得3条不重叠的线段,3条直线共有9条不重叠的线段
对于3条不共点的直线,每条直线上有5个交点,截得4条不重叠的线段,3条直线共有12条不重叠的线段。
故共有21条不重叠的线段。
故选D
4.由n 个点中每次选取两个点连直线,可以画出
2
)
1(-n n 条直线,若C B A ,,三点不在一条直线上,可以画出3条直线,若F E D A ,,,四点不在一条直线上,可以画出6条直线, ∴
.382632
)
1(=+---n n 整理得 2n .0)90)(10(,090=+-=--n n n ∵ n+9>0 ∴,10=n ∴选B 。
5.直线EF 、GH 分别“截”平行直线AB 、CD ,各得2对同旁内角,共4对;直线AB 、CD 分别“截”相交直线EF 、GH ,各得6对同旁内角,共12对。
因此图中共有同旁内角4+6=16对
6.∵FD ∥BE ∴∠2=∠AGF ∵∠AGC=∠1-∠3
第 5 题
第 6 题
∴∠1+∠2-∠3=∠AGC+∠AGF=180°∴选B
7.解:∵AB∥CD (已知)
∴∠BAD=∠CDA(两直线平行,内错角相等)
∵∠1=∠2 (已知)
∴∠BAD+∠1=∠CDA+∠2(等式性质)
即∠EAD=∠FDA
∴AE∥FD
∴∠E=∠F
8.解:每两点可确定一条直线,这5点最多可组成10条直线,又每两条直线只有一个交点,所以共有交点个数为9+8+7+6+5+4+3+2+1=45(个)
又因平面上这5个点与其余4个点均有4条连线,这四条直线共有3+2+1=6个交
点与平面上这一点重合应去掉,共应去掉5×6=30个交点,所以有交点的个数应
为45-30=15个
9.可分7个部分
10.解∵AB∥CD∥EF
∴∠APQ=∠DQG=∠FRG=110°
同理∠PSQ=∠APS
∴∠PSQ=∠APQ-∠SPQ=∠DQG-∠SPQ
=110°-90°=20°
11. 0个、1个或无数个
1)若线段AB的垂直平分线就是L,则公共点的个数应是无数个;
2)若AB L,但L不是AB的垂直平分线,则此时AB的垂直平分线与L是平行的关系,所以它们没有公共点,即公共点个数为0个;
3)若AB与L不垂直,那么AB的垂直平分线与直线L一定相交,所以此时公共点的个数为1个
12.4条直线两两相交最多有1+2+3=6个交点
13.证明:过E作EF∥BA
∴∠2=∠A(两直线平行,内错角相等)DE∥CB,EF∥BA
F
∴∠1=∠B (两个角的两边分别平行,这两个角相等) ∴∠1+∠2=∠B+∠A (等式性质)
即∠AED=∠A+∠B
14.证明:分别过点E 、F 、G 作AB 的平行线EH 、PF 、GQ ,
则AB ∥EH ∥PF ∥GQ (平行公理) ∵ AB ∥EH
∴ ∠ABE =∠BEH (两直线平行,内错角相等) 同理:∠HEF =∠EFP ∠PFG =∠FGQ
∠QGD =∠GDC
∴ ∠ABE+∠EFP+∠PFG+∠GDC =∠BEH+∠HEF+∠FGQ+∠QGD (等式性质) 即 ∠B+∠D+∠EFG=∠BEF+∠GFD 15.证明:∵DE 平分∠CDA CE 平分∠BCD
∴∠EDC=∠ADE ∠ECD =∠BCE (角平分线定义) ∴∠CDA +∠BCD=∠EDC+∠ADE+∠ECD+∠BCE =2(∠EDC+∠ECD )=180° ∴ DA ∥CB 又∵ CB ⊥AB ∴ DA ⊥AB
16.两个圆最多有两个交点,每条直线与两个圆最多有4个交点,三条直线最多有3个不同的交点,即最多交点个数为:2+4×3+3=17
17.(1)2个圆相交有交点2×1=1个,
第3个圆与前两个圆相交最多增加2×2=4个交点,这时共有交点2+2×2=6个 第4个圆与前3个圆相交最多增加2×3=6个交点,这时共有交点2+2×2+2×3=12个 第5个圆与前4个圆相交最多增加2×4=8个交点
∴ 5个圆两两相交最多交点个数为:2+2×2+2×3+2×4=20 (2)2个圆相交将平面分成2个区域
3个圆相看作第3个圆与前2个圆相交,最多有2×2=4个不同的交点,这4个点将
C
第 15 题
第3个圆分成4段弧,每一段弧将它所在的区域一分为二,故增加2×2=4块区域,这时平
面共有区域:2+2×2=6块
4个圆相看作第4个圆与前3个圆相交,最多有2×3=6个不同的交点,这6个点将
第4个圆分成6段弧,每一段弧将它所在的区域一分为二,故增加2×3=6块区域,这时平
面共有区域:2+2×2+2×3=12块
5个圆相看作第5个圆与前4个圆相交,最多有2×4=8个不同的交点,这8个点将
第5个圆分成8段弧,每一段弧将它所在的区域一分为二,故增加2×4=8块区域,这时平
面最多共有区域:2+2×2+2×3+2×4=20块
18.∵直线上每一点与直线外3点最多确定3×5=15条直线;直线外3点间最多能确定3 条直线,
∴最多能确定15+3+1=19条直线
19.将这8条直线平移到共点后,构成8对互不重叠的对顶角,这8个角的和为180°
假设这8个角没有一个小于23°,则这8个角的和至少为: 23°×8=184°,这是不可能的.
因此这8个角中至少有一个小于23°,
∴在所有的交角中至少有一个角小于23°
20.平面上有10条直线,若两两相交,最多可出现45
个交点,题目要求只出现31个交点,就要减少14个交
点,则必须出现平行线,若某一方向上有5条直线互相
平行,则可减少10个交点;若有6条直线互相平行,则可减少15个交点;故在这个方向上
最多可取5条平行线,这时还有4个交点需要减去,转一个方向取3条平行线,即可减少3
个交点,这时还剩下2条直线和一个需要减去的点,只须让这2条直线在第三个方向上互相
平行即可。
如图这三组平行线即为所求。