2016-2017学年北京市第四中学高一上学期期中考试数学试题Word版含答案

合集下载

北京市第四中学2017届高三上学期期中考试数学(文)试题 含答案

北京市第四中学2017届高三上学期期中考试数学(文)试题 含答案

高三数学 期中测试卷(文)试卷满分共计150分 考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分 1.若集合{1,2,3}A =,{0,1,2}B =,则AB =A .{0,1,2,3}B .{0,1,2}C .{1,2}D .{1,2,3}2.设3log 2a =,21log 8b =,2c =,则A .a b c >> B .c b a >> C .a c b >> D .c a b >>3.“数列{}na 既是等差数列又是等比数列”是“数列{}na 是常数列"的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若实数,x y 满足010x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A .0B .1C .32D .25.从,,,,A B C D E 5名学生中随机选出2人,A 被选中的概率为A .15B .25C .825D .9256。

下列函数中,其定义域和值域分别与函数lg 10xy =的定义域和值域相同的是A .y x =B .lg y x =C .2xy = D .1y x=7.执行如图所示的程序框图,输出的k 的值为A .3B .4C .5D .68.函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π二、填空题:本大题共6小题,每小题5分,共30分 9.设命题p :∃n ∈N ,2n >2n,则p ⌝为______ 。

10.若i 为虚数单位,则21i=+______ 。

11.数列}{na 中,若11=a,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于______ .12.曲线ln y x x =+在点()1,1处的切线方程为______ .13.ABC ∆中,角,,A B C 所对的边分别为,,a b c . 若3a =,2b =,1cos()3A B +=,则边c =______ 。

北京市第四中学2017-2018学年高一上学期期中考试数学试题 Word版含解析

北京市第四中学2017-2018学年高一上学期期中考试数学试题 Word版含解析

北京四中2017-2018学年上学期高中一年级期中考试数学试卷试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分考试时间:120分钟卷(Ⅰ)一、选择题:(本大题共10小题,每小题5分,共50分)1. 设集合A={1,2,6},B={2,4},则A∪B=A. {2}B. {1,2,4}C. {1,2,4,6}D. {2,4}【答案】C【解析】集合,故选C.2. 函数y=的定义域为A. (-2,2)B. (-∞,-2)∪(2,+∞)C. [-2,2]D. (-∞,-2] ∪[2,+∞)【答案】A【解析】要使函数有意义,则有,解得,即定义域为,故选A.3. =A. 14B. -14C. 12D. -12【答案】B【解析】,故选B.4. 若函数f(x)=,则方程f(x)=1的解是A. 或2B. 或3C. 或4D. ±或4【答案】C5. 若函数f(x)=x,则函数y=f(-2x)在其定义域上是A. 单调递增的偶函数B. 单调递增的奇函数C. 单调递减的偶函数D. 单调递减的奇函数【答案】D【解析】,为奇函数,又为增函数,为减函数,故选D.6. 若,b=,c=,则a,b,c的大小关系是A. a<b<cB. c<b<aC. b<a<cD. c<a<b【答案】B【解析】由对数函数的性质,可得,,故选B.【方法点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题. 解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7. 函数的单调递增区间是A. (-∞,2]B. [2,+∞)C. [1,2]D. [1,3]【答案】A【解析】令为增函数,的增区间就是的增区间,故选A.8. 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出自行车行进路程s(千米)与行进时间x(秒)的函数图象的示意图,你认为正确的是A. B.C. D.【答案】C【解析】最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途甶于自行车故障,停下修车耽误了几分祌,这一段时间变大,路程不变,因而选项一定错误,第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项,一定错误;这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大,故选C.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质、阅读能力以及解决实际问题的能力,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9. 已知,则f(5)=A. B. C. D. lg5【答案】D【解析】令,,故选D.10. 某同学在研究函数(x∈R)时,分别给出下面几个结论:①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】函数的定义域是实数集,函数是奇函数,故①正确;,故②正确;函数在上可化为, 奇函数在上是增函数,在其定义域内是增函数,故③正确,故选D.【方法点睛】本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数值域,属于难题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.二、填空题:(本大题共6小题,每小题4分,共24分)11. 若集合A=[0,2],集合B=[1,5],则A∩B=_________.【答案】[1,2]【解析】集合,集合根据集合交集的定义,可得,故答案为.12. 函数y=2-4的零点是_________.【答案】2【解析】令,得,即函数的零点是,故答案为.13. 函数f(x)=(x∈[1,2])的值域为______________.【答案】[0,1]【解析】,函数的值域是,故答案为.14. 函数f(x)=3x-1,若f[g(x)]=2x+3,则一次函数g(x)=______________.【答案】【解析】,,,故答案为.15. 若函数f(x)=的反函数的图象过点(2,-1),则a=_______.【答案】【解析】的反函数图象过的图象过,即,故答案为.16. 若函数是奇函数,则使f(x)>3成立的x的取值范围是_______.【答案】(0,1)【解析】函数为奇函数,则:,解得:a=1.则,由,得x∈(0,1).三、解答题(本大题共3小题,共26分)17. 已知:函数f(x)=(x-2)(x+a)(a∈R),f(x)的图象关于直线x=1对称. (Ⅰ)求a的值;(Ⅱ)求f(x)在区间[0,3]上的最小值.【答案】(1) a=0 (2)=-1【解析】试题分析:(I)化简,先求出函数的对称轴,得到,解出即可;(II)先求出函数的对称轴,通过判断对称轴的位置,结合二次函数的单调性,从而得到答案.试题解析:,(Ⅰ)函数f(x)图象的对称轴为x==1,则a=0;(Ⅱ)由(Ⅰ)得,因为x=1∈[0,3],所以=f(1)=-1.18. 某家庭进行理财投资,根据长期收益率市场预测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比,已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:(Ⅰ)分别写出两类产品的收益y(万元)与投资额x(万元)的函数关系;(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?【答案】(1) y=0.125x,y=0.5,(2)投资债券类稳健型产品16万元,投资股票类风险型产品4万元,此时受益最大为3万元.【解析】试题分析:(1)根据题意,得,,代入点的坐标,求的的值,即可可得到两种产品的收益与投资的函数关系;(2)投资债券类产品万元,则股票类投资为万元,令,换元利用二次函数的性质,即可求解其最大收益.试题解析:(1),,,,(2)设:投资债券类产品万元,则股票类投资为万元.令,则所以当,即万元时,收益最大,万元.考点:函数的实际应用问题.19. 已知:函数f(x)= (a>0且a≠1).(Ⅰ)求函数f(x)的定义域;(Ⅱ)判断函数f(x)的奇偶性,并加以证明;(Ⅲ)设a=,解不等式f(x)>0.【答案】(1)(-1,1);(2)见解析;(3) {x|-1<x<0}【解析】试题分析:(I)根据对数函数有意义可知真数要大于0,列不等式组,解之即可求出函数的定义域;(Ⅱ)根据函数的奇偶性的定义进行判定,计箄与的关系,从而确定函数的奇偶性;(Ⅲ)将代入,根据函数的定义域和函数的单调性列不等式组,解之即可求出的范围.试题解析:(Ⅰ)由题知:,解得:-1<x<1,所以函数f(x)的定义域为(-1,1);(Ⅱ)奇函数,证明:因为函数f(x)的定义域为(-1,1),所以对任意x∈(-1,1),f(-x)= ==-f(x)所以函数f(x)是奇函数;(Ⅲ)由题知:即有,解得:-1<x<0,所以不等式f(x)>0的解集为{x|-1<x<0}.【方法点睛】本题主要考查函数的定义域、奇偶性及函数的单调性,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,(正为偶函数,负为减函数);(2)和差法,(和为零奇函数,差为零偶函数);(3)作商法,(为偶函数,为奇函数) .卷(Ⅱ)20. 设集合A=,B={x|x-2=0},则=A. B. C. D.【答案】D【解析】且,故选D.21. 已知函数f(x)= ,则满足f(x)<0的x的取值范围是A. (-∞,0)B. (0,+∞)C. (-∞,-1)D. (-1,+∞)【答案】C【解析】,,故选C.22. 下表是某次测量中两个变量x,y的一组数据,若将y表示为关于x的函数,则最可能的函数模型是A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型【答案】D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.23. 用二分法求方程的一个近似解时,已知确定有根区间为(0,1),则下一步可确定这个根所在的区间为_________.【答案】【解析】设,函数零点在下一步可确定方程的根在,故答案为.24. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)= ,如果函数g(x)=f(x)-m恰有4个零点,则实数m的取值范围是________.【答案】0<m<1【解析】函数恰有个零点等价于函数与恰有个交点,作函数与的图象如图,由图知,函数与恰有个交点时的取值范围是,故答案为.【方法点睛】函数零点个数的三种判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间上是连续不断的曲线,且,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.25. 函数f(x)= (a>0且a≠1)在区间[0,1]上的最大值与最小值之和为a,则a的值是___________.【答案】【解析】试题分析:当时,函数是增函数,最大值和最小值的和是,解得,舍去,当时,函数是,最大值和最小值的和同样是,解得考点:1.指对函数的单调性;2.指对函数的最值.26. 已知函数f(x)=,若f(1-x)=f(1+x),且f(0)=3.(Ⅰ)求b,c的值;(Ⅱ)试比较(m∈R)的大小.【答案】(1) b=2,c=3 (2)当m>0时,f(2)<f(3).当m=0时,f(2)=f(3). 当m<0时,f(2)>f(3)【解析】试题分析:(I)利用已知,求出的值;利用,得到为图象的对称轴,从而求出的值;(II)通过对的分类讨论得到与的大小关系以及与对称轴的大小关系,利用二次函数的单调性可得到与的大小关系.试题解析:(Ⅰ)由已知,二次函数的对称轴x==1,解得b=2,又f(0)=c=3,综上,b=2,c=3;(Ⅱ)由(Ⅰ)知,f(x)=x-2x+3,所以,f(x)在区间(-∞,1)单调递减,在区间(1,+∞)单调递增.当m>0时,3>2>1,所以f(2)<f(3).当m=0时,3=2=1,所以f(2)=f(3).当m<0时,3<2<1,所以f(2)>f(3)【方法点睛】本题主要考查二次函数的解析式和单调性、分类讨论思想的应用. 属于中档题. 分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度. 运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.27. 集合A是由满足以下性质的函数f(x)组成的:对于任意x≥0,f(x)∈[-2,4]且f(x)在[0,+∞)上是增函数.(Ⅰ)试判断与(x≥0)是否属于集合A,并说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A的函数f(x),证明:对于任意的x≥0,都有f(x)+f(x+2)<2f(x+1).【答案】(1), (2)见解析.【解析】试题分析:(I)由已知可得函数的值域,从而可得,对于,只要分别判断函数定义域是否满足条件①,值域是否满足条件②,单调性是否满足条件③,即可得答案;(II)由(I)知,属于集合,原不等式为,利用作差法指数幂的运算法则化简整理可以证明结论.试题解析:(Ⅰ),,理由如下:由于(49)=5>4,(49)[-2,4],所以(x) A.对于因为在[0,+∞)上是减函数,且其值域为(0,1],所以在区间[0,+∞)上是增函数.所以≥f(0)=-2,且=<4,所以对于任意x≥0,f(x)∈[-2,4].所以∈A(Ⅱ)由(Ⅰ)得:,f(x+1)=4-=4-3·,所以2f(x+1)-[f(x)+f(x+2)]=2[4-3·]-[4-6·+4-·]=·>0,所以对于任意的x≥0,都有f(x)+f(x+2)<2f(x+1).。

北京市第四中学2017-2018学年高一上学期期中考试数学试题+Word版含解析

北京市第四中学2017-2018学年高一上学期期中考试数学试题+Word版含解析

北京四中2017-2018学年上学期高中一年级期中考试数学试卷试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分考试时间:120分钟卷(Ⅰ)一、选择题:(本大题共10小题,每小题5分,共50分)1. 设集合A={1,2,6},B={2,4},则A∪B=A. {2}B. {1,2,4}C. {1,2,4,6}D. {2,4}【答案】C【解析】集合,故选C.2. 函数y=的定义域为A. (-2,2)B. (-∞,-2)∪(2,+∞)C. [-2,2]D. (-∞,-2] ∪[2,+∞)【答案】A【解析】要使函数有意义,则有,解得,即定义域为,故选A.3. =A. 14B. -14C. 12D. -12【答案】B【解析】,故选B.4. 若函数f(x)=,则方程f(x)=1的解是A. 或2B. 或3C. 或4D. ±或4【答案】C5. 若函数f(x)=x,则函数y=f(-2x)在其定义域上是A. 单调递增的偶函数B. 单调递增的奇函数C. 单调递减的偶函数D. 单调递减的奇函数【答案】D【解析】,为奇函数,又为增函数,为减函数,故选D.6. 若,b=,c=,则a,b,c的大小关系是A. a<b<cB. c<b<aC. b<a<cD. c<a<b【答案】B【解析】由对数函数的性质,可得,,故选B.【方法点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题. 解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7. 函数的单调递增区间是A. (-∞,2]B. [2,+∞)C. [1,2]D. [1,3]【答案】A【解析】令为增函数,的增区间就是的增区间,故选A.8. 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出自行车行进路程s(千米)与行进时间x(秒)的函数图象的示意图,你认为正确的是A. B.C. D.【答案】C【解析】最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途甶于自行车故障,停下修车耽误了几分祌,这一段时间变大,路程不变,因而选项一定错误,第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项,一定错误;这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大,故选C.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质、阅读能力以及解决实际问题的能力,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9. 已知,则f(5)=A. B. C. D. lg5【答案】D【解析】令,,故选D.10. 某同学在研究函数(x∈R)时,分别给出下面几个结论:①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】函数的定义域是实数集,函数是奇函数,故①正确;,故②正确;函数在上可化为, 奇函数在上是增函数,在其定义域内是增函数,故③正确,故选D.【方法点睛】本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数值域,属于难题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.二、填空题:(本大题共6小题,每小题4分,共24分)11. 若集合A=[0,2],集合B=[1,5],则A∩B=_________.【答案】[1,2]【解析】集合,集合根据集合交集的定义,可得,故答案为.12. 函数y=2-4的零点是_________.【答案】2【解析】令,得,即函数的零点是,故答案为.13. 函数f(x)=(x∈[1,2])的值域为______________.【答案】[0,1]【解析】,函数的值域是,故答案为.14. 函数f(x)=3x-1,若f[g(x)]=2x+3,则一次函数g(x)=______________.【答案】【解析】,,,故答案为.15. 若函数f(x)=的反函数的图象过点(2,-1),则a=_______.【答案】【解析】的反函数图象过的图象过,即,故答案为.16. 若函数是奇函数,则使f(x)>3成立的x的取值范围是_______.【答案】(0,1)【解析】函数为奇函数,则:,解得:a=1.则,由,得x∈(0,1).三、解答题(本大题共3小题,共26分)17. 已知:函数f(x)=(x-2)(x+a)(a∈R),f(x)的图象关于直线x=1对称. (Ⅰ)求a的值;(Ⅱ)求f(x)在区间[0,3]上的最小值.【答案】(1) a=0 (2)=-1【解析】试题分析:(I)化简,先求出函数的对称轴,得到,解出即可;(II)先求出函数的对称轴,通过判断对称轴的位置,结合二次函数的单调性,从而得到答案.试题解析:,(Ⅰ)函数f(x)图象的对称轴为x==1,则a=0;(Ⅱ)由(Ⅰ)得,因为x=1∈[0,3],所以=f(1)=-1.18. 某家庭进行理财投资,根据长期收益率市场预测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比,已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:(Ⅰ)分别写出两类产品的收益y(万元)与投资额x(万元)的函数关系;(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?【答案】(1) y=0.125x,y=0.5,(2)投资债券类稳健型产品16万元,投资股票类风险型产品4万元,此时受益最大为3万元.【解析】试题分析:(1)根据题意,得,,代入点的坐标,求的的值,即可可得到两种产品的收益与投资的函数关系;(2)投资债券类产品万元,则股票类投资为万元,令,换元利用二次函数的性质,即可求解其最大收益.试题解析:(1),,,,(2)设:投资债券类产品万元,则股票类投资为万元.令,则所以当,即万元时,收益最大,万元.考点:函数的实际应用问题.19. 已知:函数f(x)= (a>0且a≠1).(Ⅰ)求函数f(x)的定义域;(Ⅱ)判断函数f(x)的奇偶性,并加以证明;(Ⅲ)设a=,解不等式f(x)>0.【答案】(1)(-1,1);(2)见解析;(3) {x|-1<x<0}【解析】试题分析:(I)根据对数函数有意义可知真数要大于0,列不等式组,解之即可求出函数的定义域;(Ⅱ)根据函数的奇偶性的定义进行判定,计箄与的关系,从而确定函数的奇偶性;(Ⅲ)将代入,根据函数的定义域和函数的单调性列不等式组,解之即可求出的范围.试题解析:(Ⅰ)由题知:,解得:-1<x<1,所以函数f(x)的定义域为(-1,1);(Ⅱ)奇函数,证明:因为函数f(x)的定义域为(-1,1),所以对任意x∈(-1,1),f(-x)= ==-f(x)所以函数f(x)是奇函数;(Ⅲ)由题知:即有,解得:-1<x<0,所以不等式f(x)>0的解集为{x|-1<x<0}.【方法点睛】本题主要考查函数的定义域、奇偶性及函数的单调性,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,(正为偶函数,负为减函数);(2)和差法,(和为零奇函数,差为零偶函数);(3)作商法,(为偶函数,为奇函数) .卷(Ⅱ)20. 设集合A=,B={x|x-2=0},则=A. B. C. D.【答案】D【解析】且,故选D.21. 已知函数f(x)= ,则满足f(x)<0的x的取值范围是A. (-∞,0)B. (0,+∞)C. (-∞,-1)D. (-1,+∞)【答案】C【解析】,,故选C.22. 下表是某次测量中两个变量x,y的一组数据,若将y表示为关于x的函数,则最可能的函数模型是A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型【答案】D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.23. 用二分法求方程的一个近似解时,已知确定有根区间为(0,1),则下一步可确定这个根所在的区间为_________.【答案】【解析】设,函数零点在下一步可确定方程的根在,故答案为.24. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)= ,如果函数g(x)=f(x)-m恰有4个零点,则实数m的取值范围是________.【答案】0<m<1【解析】函数恰有个零点等价于函数与恰有个交点,作函数与的图象如图,由图知,函数与恰有个交点时的取值范围是,故答案为.【方法点睛】函数零点个数的三种判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间上是连续不断的曲线,且,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.25. 函数f(x)= (a>0且a≠1)在区间[0,1]上的最大值与最小值之和为a,则a的值是___________.【答案】【解析】试题分析:当时,函数是增函数,最大值和最小值的和是,解得,舍去,当时,函数是,最大值和最小值的和同样是,解得考点:1.指对函数的单调性;2.指对函数的最值.26. 已知函数f(x)=,若f(1-x)=f(1+x),且f(0)=3.(Ⅰ)求b,c的值;(Ⅱ)试比较(m∈R)的大小.【答案】(1) b=2,c=3 (2)当m>0时,f(2)<f(3).当m=0时,f(2)=f(3). 当m<0时,f(2)>f(3)【解析】试题分析:(I)利用已知,求出的值;利用,得到为图象的对称轴,从而求出的值;(II)通过对的分类讨论得到与的大小关系以及与对称轴的大小关系,利用二次函数的单调性可得到与的大小关系.试题解析:(Ⅰ)由已知,二次函数的对称轴x==1,解得b=2,又f(0)=c=3,综上,b=2,c=3;(Ⅱ)由(Ⅰ)知,f(x)=x-2x+3,所以,f(x)在区间(-∞,1)单调递减,在区间(1,+∞)单调递增.当m>0时,3>2>1,所以f(2)<f(3).当m=0时,3=2=1,所以f(2)=f(3).当m<0时,3<2<1,所以f(2)>f(3)【方法点睛】本题主要考查二次函数的解析式和单调性、分类讨论思想的应用. 属于中档题. 分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度. 运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.27. 集合A是由满足以下性质的函数f(x)组成的:对于任意x≥0,f(x)∈[-2,4]且f(x)在[0,+∞)上是增函数.(Ⅰ)试判断与(x≥0)是否属于集合A,并说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A的函数f(x),证明:对于任意的x≥0,都有f(x)+f(x+2)<2f(x+1).【答案】(1), (2)见解析.【解析】试题分析:(I)由已知可得函数的值域,从而可得,对于,只要分别判断函数定义域是否满足条件①,值域是否满足条件②,单调性是否满足条件③,即可得答案;(II)由(I)知,属于集合,原不等式为,利用作差法指数幂的运算法则化简整理可以证明结论.试题解析:(Ⅰ),,理由如下:由于(49)=5>4,(49)[-2,4],所以(x) A.对于因为在[0,+∞)上是减函数,且其值域为(0,1],所以在区间[0,+∞)上是增函数.所以≥f(0)=-2,且=<4,所以对于任意x≥0,f(x)∈[-2,4].所以∈A(Ⅱ)由(Ⅰ)得:,f(x+1)=4-=4-3·,所以2f(x+1)-[f(x)+f(x+2)]=2[4-3·]-[4-6·+4-·]=·>0,所以对于任意的x≥0,都有f(x)+f(x+2)<2f(x+1).。

北京四中2017-2018学年高一上学期期中测试数学试题 含答案 精品

北京四中2017-2018学年高一上学期期中测试数学试题 含答案 精品

高一数学 期中测试卷试卷分为两卷,卷(I )100分,卷(II )50分,共计150分考试时间:120分钟卷(I )一.选择题:(本大题共10小题,每小题5分,共50分) 1.设集合{1,2,6}A =,{2,4}B =,则A B =A .{2}B .{1,2,4}C . {1,2,4,6}D .{2,4}2.函数y =A .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞ 3.43662log 2log 98+-=A .14B .14-C .12D . 12-4.若函数2312()325x x f x x x ⎧--≤≤=⎨-<≤⎩,则方程()1f x =的解是A 2B 3C 4D 45.若函数3()f x x =,则函数)2(x f y -=在其定义域上是A .单调递增的偶函数B .单调递增的奇函数C .单调递减的偶函数D .单调递减的奇函数6.若432a =,254b =,3log 0.2c =,则,,a b c 的大小关系是A .a b c <<B .c b a <<C .b a c <<D .c a b <<7.函数2343x x y -+-=的单调递增区间是A .(,2]-∞B .[2,)+∞C .[1,2]D .[1,3]8.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程s (千米)与行进时间x (秒)的函数图象的示意图,你认为正确的是9.已知(10)x f x =,则(5)f =A .510B .105C .5log 10D .lg 510.某同学在研究函数()||1xf x x =+()x ∈R 时,分别给出下面几个结论:①函数()f x 是奇函数; ②函数()f x 的值域为()1 1-,; ③函数()f x 在R 上是增函数; 其中正确结论的序号是A .①②B .①③C .②③D .①②③二.填空题:(本大题共6小题,每小题4分,共24分)11.若集合[0,2]A =,集合[1,5]B =,则A B = . 12.函数24xy =-的零点是 .13.函数3()log (21)f x x =-([1,2]x ∈)的值域为 .14.函数()31f x x =-,若[()]23f g x x =+,则一次函数()g x = . 15.若函数()(0,1)xf x a a a =>≠的反函数的图象过点)1,2(-,则a = .16.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围是 .三.解答题(本大题共3小题,共26分) 17.(本小题满分6分)已知:函数()(2)()f x x x a =-+(a ∈R ),()f x 的图象关于直线1x =对称. (Ⅰ)求a 的值;(Ⅱ)求()f x 在区间[0,3]上的最小值.18.(本小题满分10分)某家庭进行理财投资,根据长期收益率市场预测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比. 已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:(Ⅰ)分别写出两类产品的收益y (万元)与投资额x (万元)的函数关系;(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?19.(本小题满分10分)已知:函数()()()log 1log 1a a f x x x =+--(0a >且1a ≠). (Ⅰ)求函数()f x 的定义域;(Ⅱ)判断函数()f x 的奇偶性,并加以证明; (Ⅲ)设12a =,解不等式()0f x >.卷(II )1.设集合2{|0}A x x x =-=,{|20}B x x =-=,则2{|()(2)0}x x x x --≠=A .()AB R ð B .()A B R ðC .()A B R ðD .()A B R ð 2.已知函数21311()log [()2()2]33x x f x =-⋅-,则满足()0f x <的x 的取值范围是A .(,0)-∞B .(0,)+∞C .(,1)-∞-D .(1,)-+∞3.下表是某次测量中两个变量x ,y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型 4.用二分法求方程21x +=已经确定有根区间为(0,1),则下一步可确定这个根所在的区间为 .5.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()2f x x x =-,如果函数()()g x f x m =-恰有4个零点,则实数m 的取值范围是 .6.函数()log (1)x a f x a x =++(0a >且1a ≠)在区间[0,1]上的最大值与最小值之和为a ,则a 的值是 .7.已知函数c bx x x f +-=2)(,若(1)(1)f x f x -=+,且3)0(=f . (Ⅰ)求b ,c 的值;(Ⅱ)试比较()m f b 与()m f c (m ∈R )的大小.8.集合A 是由满足以下性质的函数()f x 组成的:对于任意0x ≥,()[2,4]f x ∈-且()f x 在[0,)+∞上是增函数.(Ⅰ)试判断1()2f x =与21()46()2x f x =-⋅(0x ≥)是否属于集合A ,并说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A 的函数()f x ,证明:对于任意的0x ≥,都有()(2)2(1)f x f x f x ++<+.答题纸班级姓名成绩卷(I)一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共6小题,每小题4分,共24分)三.解答题(本大题共3小题,共26分)17.(本小题满分6分)18.(本小题满分10分)19.(本小题满分10分)班级姓名成绩卷(II)一.选填题:(本大题共6小题,每小题5分,共30分)二.解答题:(本大题共2小题,共20分)7.(本小题满分10分)8.(本小题满分10分)参考答案卷(I)C A B CD B AC D D11.[1,2];12.2;13.[0,1];14.3432+x ;15.12;16.(0,1); 17.解: 2()(2)()(2)2f x x x a x a x a =-+=---,(Ⅰ)函数()f x 图象的对称轴为212ax -==,则0a =; ┈┈┈┈┈┈┈┈┈┈3分 (Ⅱ)由(Ⅰ)得22()2(1)1f x x x x =-=--,因为1[0,3]x =∈,所以min ()(1)1f x f ==-. ┈┈┈┈┈┈┈┈┈┈6分18.解:(Ⅰ)投资债券类稳健型产品的收益满足函数:y kx =(0x >),由题知,当1x =时,0.125y =,则0.125k =,即0.125y x =, ┈┈┈┈┈┈2分投资股票类风险型产品的收益满足函数:y k =0x >),由题知,当1x =时,0.5y =,则0.5k =,即y = ┈┈┈┈┈┈┈4分(Ⅱ)设投资债券类稳健型产品x 万元(020x ≤≤),则投资股票类风险型产品20x -万元,由题知总收益0.125y x =+020x ≤≤), ┈┈┈┈┈┈┈┈┈┈6分令t =0t ≤≤,则220x t =-,22211510.125(20)0.5(2)38228y t t t t t =-+=-++=--+,当2t =,即16x =时,max 3y =(万元) ┈┈┈┈┈┈┈┈┈┈9分答:投资债券类稳健型产品16万元,投资股票类风险型产品4万元,此时受益最大为3万元. ┈┈┈┈┈┈┈┈┈┈10分19.解:(Ⅰ)由题知:1010x x +>⎧⎨->⎩, 解得:11x -<<,所以函数()f x 的定义域为(1,1)-;┈┈┈┈┈┈┈┈┈┈3分(Ⅱ)奇函数,证明:因为函数()f x 的定义域为(1,1)-,所以对任意(1,1)x ∈-,()log (1)log (1())[log (1)log (1)]()a a a a f x x x x x f x -=-+---=-+--=-所以函数()f x 是奇函数; ┈┈┈┈┈┈┈┈┈┈6分(Ⅲ)由题知:1122log (1)log (1)x x +>-,即有101011x x x x+>⎧⎪->⎨⎪+<-⎩,解得:10x -<<,所以不等式()0f x >的解集为{|10}x x -<<. ┈┈┈┈┈┈┈┈┈┈10分卷(II )D C D 4.1(0,)2;5.10m -<<;6.12; 7.解:(Ⅰ)由已知,二次函数的对称轴12bx ==,解得2b =, 又(0)3f c ==,综上,2b =,3c =; ┈┈┈┈┈┈┈┈┈┈4分 (Ⅱ)由(Ⅰ)知,2()23f x x x =-+,所以,()f x 在区间(,1)-∞单调递减,在区间(1,)+∞单调递增.当0m >时,321m m >>,所以(2)(3)m mf f <.当0m =时,321m m ==,所以(2)(3)m mf f =.当0m <时,321m m <<,所以(2)(3)m mf f > ┈┈┈┈┈┈┈┈┈┈10分8.解:(Ⅰ)1()f x A ∉,2()f x A ∈,理由如下:由于1(49)54f =>,1(49)[2,4]f ∉-,所以1()f x A ∉. 对于21()46()2x f x =-⋅(0x ≥), 因为1()2x y =在[0,)+∞上是减函数,且其值域为(0,1], 所以21()46()2x f x =-⋅在区间[0,)+∞上是增函数.所以2()(0)2f x f =-≥,且21()46()42x f x =-⋅<, 所以对于任意0x ≥,()[2,4]f x ∈-.所以2()f x A ∈ ┈┈┈┈┈┈┈┈┈┈6分 (Ⅱ)由(Ⅰ)得,2131(2)46()4()222x x f x ++=-⋅=-⋅,111(1)46()43()22x x f x ++=-⋅=-⋅, 所以2(1)[()(2)]f x f x f x +-++11312[43()][46()4()]2222x x x =-⋅--⋅+-⋅31()022x =⋅>, 所以对于任意的0x ≥,都有()(2)2(1)f x f x f x ++<+. ┈┈┈┈┈┈┈┈┈┈10分。

北京四中2017届高三上学期期中数学试卷(文科) Word版含答案

北京四中2017届高三上学期期中数学试卷(文科) Word版含答案

2016-2017学年北京四中高三(上)期中数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分1.若集合A={1,2,3},B={0,1,2},则A∩B=()A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}2.设a=log32,b=log2,c=,则()A.a>b>c B.c>b>a C.a>c>b D.c>a>b3.“数列{a n}既是等差数列又是等比数列”是“数列{a n}是常数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.25.从A,B,C,D,E5名学生中随机选出2人,A被选中的概率为()A.B.C.D.6.下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=7.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.68.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分9.设命题p:∃n∈N,n2>2n,则¬p为.10.i是虚数单位,则=.11.已知数列{a n}中,a1=1,a n=a n+(n≥2),则数列{a n}的前9项和等于.﹣112.函数y=x+lnx在点(1,1)处的切线方程为.13.△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos(A+B)=,则边c=.14.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,验算步骤或证明过程.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?17.已知:函数f(x)=2x+sin2x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)把函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求的值.18.已知函数f(x)=(ax2+bx+c)e x(a>0)的导函数y=f′(x)的两个零点为﹣3和0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的极小值为﹣1,求f(x)的极大值.19.已知:f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],且a+b≠0时,有>0恒成立.(Ⅰ)用定义证明函数f(x)在[﹣1,1]上是增函数;(Ⅱ)解不等式:<f(1﹣x);(Ⅲ)若f(x)≤m2﹣2m+1对所有x∈[﹣1,1]恒成立,求:实数m的取值范围.20.对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.2016-2017学年北京四中高三(上)期中数学试卷(文科)参考答案与试题解+析一、选择题:本大题共8小题,每小题5分,共40分1.若集合A={1,2,3},B={0,1,2},则A∩B=()A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:∵集合A={1,2,3},B={0,1,2},∴A∩B={1,2}.故选:C.2.设a=log32,b=log2,c=,则()A.a>b>c B.c>b>a C.a>c>b D.c>a>b【考点】对数值大小的比较.【分析】利用对数函数的单调性即可得出.【解答】解:∵a=log32∈(0,1),b=log2<0,c=>1,则c>a>b,故选:D.3.“数列{a n}既是等差数列又是等比数列”是“数列{a n}是常数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据等比数列和等差数列的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若数列{a n}既是等差数列又是等比数列,则数列{a n}为常数列,且a n ≠0,则反之当a n=0时,满足数列{a n}为常数列,但数列{a n}不是等比数列,即“数列{a n}既是等差数列又是等比数列”是“数列{a n}是常数列”的充分不必要条件,故选:A4.若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.【解答】解:作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值2×1=2.∴z最大值=0+故选:D.5.从A,B,C,D,E5名学生中随机选出2人,A被选中的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=,再求出A被选中包含的基本事件个数m==4,由此能求出A被选中的概率.【解答】解:从A,B,C,D,E5名学生中随机选出2人,基本事件总数n=,A被选中包含的基本事件个数m==4,∴A被选中的概率为p=.故选:B.6.下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=【考点】对数函数的定义域;对数函数的值域与最值.【分析】分别求出各个函数的定义域和值域,比较后可得答案.【解答】解:函数y=10lgx的定义域和值域均为(0,+∞),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+∞),值域为R,不满足要求;函数y=2x的定义域为R,值域为R(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求;故选:D7.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a<,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.8.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A.B.C.D.【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k∈Z),取k=0得到φ=﹣.由此即可得到本题的答案.【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣故选:A.二、填空题:本大题共6小题,每小题5分,共30分9.设命题p:∃n∈N,n2>2n,则¬p为∀n∈N,n2≤2n.【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行求解即可.【解答】解:命题是特称命题,则命题的否定是“∀n∈N,n2≤2n”,故答案为:“∀n∈N,n2≤2n”10.i是虚数单位,则=1﹣i.【考点】虚数单位i及其性质.【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母再进行复数的除法运算,整理成最简形式.【解答】解:∵===1﹣i,∴=1﹣i,故答案为:1﹣i11.已知数列{a n}中,a1=1,a n=a n+(n≥2),则数列{a n}的前9项和等于27.﹣1【考点】数列递推式.【分析】通过a n=a n﹣1+(n≥2)可得公差,进而由求和公式即得结论.【解答】解:∵a n=a n﹣1+(n≥2),=(n≥2),∴a n﹣a n﹣1∴数列{a n}的公差d=,又a1=1,∴a n=1+(n﹣1)=,∴S9=9a1+•d=9+36×=27,故答案为:27.12.函数y=x+lnx在点(1,1)处的切线方程为2x﹣y﹣1=0.【考点】利用导数研究曲线上某点切线方程.【分析】由y=x+1nx,知,由此能求出函数y=x+1nx在点(1,1)处的切线方程.【解答】解:∵y=x+1nx,∴,∴k=y′|x=1=1+1=2,∴函数y=x+1nx在点(1,1)处的切线方程为y﹣1=2(x﹣1),整理,得2x﹣y﹣1=0.故答案为:2x﹣y﹣1=0.13.△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos(A+B)=,则边c=.【考点】正弦定理.【分析】由已知利用三角形内角和定理,诱导公式可求cosC,进而利用余弦定理即可计算得解.【解答】解:∵cos(A+B)=cos(π﹣C)=,可得:cosC=﹣,又∵a=3,b=2,∴由余弦定理可得:c===.故答案为:.14.设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.【考点】函数的零点;分段函数的应用.【分析】①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.【解答】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.三、解答题:本大题共6小题,共80分.解答应写出文字说明,验算步骤或证明过程.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【考点】解三角形.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【考点】相互独立事件的概率乘法公式.【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.17.已知:函数f(x)=2x+sin2x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)把函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用三角函数恒等变换的应用化简函数解+析式为f(x)=,进而利用周期公式即可计算得解.(Ⅱ)由(k∈Z),即可解得f(x)的单调递增区间.(Ⅲ)利用函数y=Asin(ωx+φ)的图象变换的规律可求,进而利用特殊角的三角函数值即可计算得解.【解答】(本题满分为13分)解:===,…(Ⅰ);…(Ⅱ)由(k∈Z),得(k ∈Z),则f(x)的单调递增区间是(k∈Z);…(Ⅲ)函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,再把得到的图象向左平移个单位得到函数的图象,即,则.…18.已知函数f(x)=(ax2+bx+c)e x(a>0)的导函数y=f′(x)的两个零点为﹣3和0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的极小值为﹣1,求f(x)的极大值.【考点】利用导数研究函数的极值;导数的运算;利用导数研究函数的单调性.【分析】(Ⅰ)f'(x)=[ax2+(2a+b)x+b+c]e x.令g(x)=ax2+(2a+b)x+b+c,简化运算;(Ⅱ)由f(x)的极小值为﹣1确定参数值,通过导数求极大值.【解答】解:(Ⅰ)f'(x)=(2ax+b)e x+(ax2+bx+c)e x=[ax2+(2a+b)x+b+c]e x.令g(x)=ax2+(2a+b)x+b+c,∵e x>0,∴y=f'(x)的零点就是g(x)=ax2+(2a+b)x+b+c的零点,且f'(x)与g(x)符号相同.又∵a>0,∴当x<﹣3,或x>0时,g(x)>0,即f'(x)>0,当﹣3<x<0时,g(x)<0,即f'(x)<0,∴f(x)的单调增区间是(﹣∞,﹣3),(0,+∞),单调减区间是(﹣3,0).(Ⅱ)由(Ⅰ)知,x=0是f(x)的极小值点,所以有解得a=1,b=1,c=﹣1.所以函数的解+析式为f(x)=(x2+x﹣1)e x.又由(Ⅰ)知,f(x)的单调增区间是(﹣∞,﹣3),(0,+∞),单调减区间是(﹣3,0).所以,函数f(x)的极大值为.19.已知:f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],且a+b≠0时,有>0恒成立.(Ⅰ)用定义证明函数f(x)在[﹣1,1]上是增函数;(Ⅱ)解不等式:<f(1﹣x);(Ⅲ)若f(x)≤m2﹣2m+1对所有x∈[﹣1,1]恒成立,求:实数m的取值范围.【考点】奇偶性与单调性的综合;函数恒成立问题.【分析】(Ⅰ)设任意x1,x2∈[﹣1,1],且x1<x2,由奇函数的性质化简f(x2)﹣f(x1),由得,判断出符号后,由函数单调性的定义证明结论成立;(Ⅱ)根据函数的单调性和定义域列出不等式,求出不等式的解集;(Ⅲ)由函数的单调性求出f(x)的最大值,由恒成立列出不等式,求出实数m 的取值范围.【解答】证明:(Ⅰ)设任意x1,x2∈[﹣1,1],且x1<x2,∵f(x)是定义在[﹣1,1]上的奇函数,∴f(x2)﹣f(x1)=f(x2)+f(﹣x1)∵x1<x2,∴x2+(﹣x1)≠0,由题意知,,则,∵x2+(﹣x1)=x2﹣x1>0,∴f(x2)+f(﹣x1)>0,即f(x2)>f(x1),∴函数f(x)在[﹣1,1]上是增函数.…解:(Ⅱ)由(Ⅰ)和不等式得,,解得,∴不等式的解集是[0,)…(Ⅲ)由(Ⅰ)得,f(x)最大值为f(1)=1,所以要使f(x)≤m2﹣2m+1对所有x∈[﹣1,1],只需1≤m2﹣2m+1恒成立,解得m≤0或m≥2,得实数m的取值范围为m≤0或m≥2.…20.对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.【考点】数列的应用;数列的求和.【分析】(1){a n}与{b n}不是无穷互补数列.由4∉A,4∉B,4∉A∪B=N*,即可判断;(2)由a n=2n,可得a4=16,a5=32,再由新定义可得b16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;(3)运用等差数列的通项公式,结合首项大于等于1,可得d=1或2,讨论d=1,2求得通项公式,结合新定义,即可得到所求数列的通项公式.【解答】解:(1){a n}与{b n}不是无穷互补数列.理由:由a n=2n﹣1,b n=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{a n}与{b n}不是无穷互补数列;(2)由a n=2n,可得a4=16,a5=32,由{a n}与{b n}是无穷互补数列,可得b16=16+4=20,即有数列{b n}的前16项的和为(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;(3)设{a n}为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与{a n}与{b n}是无穷互补数列矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.2017年2月13日。

北京市第四中学2017届高三上学期期中考试数学(理)试题含答案

北京市第四中学2017届高三上学期期中考试数学(理)试题含答案

北京四中2016~2017学年度第一学期期中测试高三数学 期中试卷(理)(试卷满分:150分 考试时间:120分钟)一、选择题(共8小题,每小题5分,共40分.) 1.已知全集{}1,2,3,4U =,集合{1,2}A =,则U A =ðA .{4}B .{3,4}C .{3}D .{1,3,4}2.设命题2:,2n p n n ∃∈>N ,则p ⌝为A .2,2n n n ∀∈>NB .2,2n n n ∃∈N ≤C .2,2n n n ∀∈N ≤D .2,2n n n ∃∈<N3.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度4.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1C .32D .25.等比数列{}n a 满足11353,21,a a a a =++=则357a a a ++=A .21B .42C .63D .846.已知x ∈R ,则“απ=”是“sin()sin x x α+=-”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在区间[1,0]-上单调递增,设)3(f a =, )2(f b =,)2(f c =,则c b a ,,大小关系是A .a >b >cB .a >c >bC .b >c >aD .c >b >a8.已知函数22,0()ln(1),0x x x f x x x ⎧-+=⎨+>⎩≤,若()f x ax ≥,则实数a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-二、填空题(共6小题,每小题5分,共30分.) 9.设i 是虚数单位,则1i1i-=+ . 10.执行如图所示的框图,输出值x = . 11.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 12.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式()0x f x >的解集为______. 13.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米200元,侧面造价是每平方米100元,则该容器的最低总造价是________元.14.已知函数()y f x =,任取t ∈R ,定义集合:{|t A y =()y f x =,点(,())P t f t ,(,())Q x f x 满足||PQ .设,M m t t 分别表示集合A t 中元素的最大值和最小值,记()h t M m t t =-.则 (1) 若函数()f x x =,则(1)h =______;(2)若函数π()sin 2f x x ⎛⎫= ⎪⎝⎭,则()h t 的最小正周期为______.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.) 15.(本题满分13分)集合2{|320}A x x x =-+<,11{|28}2x B x -=<<,{|(2)()0}C x x x m =+-<, 其中m ∈R . (Ⅰ)求A B ;(Ⅱ)若()A B C ⊆ ,求实数m 的取值范围.16.(本题满分13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S .17.(本题满分13分)已知函数()4sin cos 6f x x x π⎛⎫=+ ⎪⎝⎭,x ∈R .(Ⅰ)求函数()f x 的单调减区间;(Ⅱ)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.18.(本题满分13分)已知函数()1()ln(1)01xf x ax x x-=+++≥,其中0a >. (Ⅰ)若1a =,求()f x 的单调区间;(Ⅱ)若()f x 的最小值为1,求a 的取值范围.19.(本题满分14分)设函数()ln e x b f x a x x ⎛⎫=+ ⎪⎝⎭,曲线()y f x =在点()()1,1P f 处的切线方程为e(1)2y x =-+.(Ⅰ)求,a b ; (Ⅱ)设()2()e 0ex g x x x -=->,求()g x 的最大值; (Ⅲ)证明函数()f x 的图象与直线1y =没有公共点. 20.(本题满分14分)对于集合M ,定义函数1,,().1,M x M f x x M -∈⎧=⎨∉⎩对于两个集合,M N ,定义集合{()()1}M N M N x f x f x ∆=⋅=-. 已知{2,4,6,8,10}A =,{1,2,4,8,16}B =. (Ⅰ)写出(1)A f 和(1)B f 的值,并用列举法写出集合A B ∆;(Ⅱ)用()Card M 表示有限集合M 所含元素的个数,求()()Card X A Card X B ∆+∆的最小值;(Ⅲ)有多少个集合对(),P Q ,满足,P Q A B ⊆ ,且()()P A Q B A B ∆∆∆=∆?参考答案一.选择题(每小题5分,共40分)15. 解:(Ⅰ)()2{|320}1,2A x x x =-+<=;()1{|28}0,42x B x -=<<=; 所以()1,2A B = ; (Ⅱ)()0,4A B = ,若2m >-,则()2,C m =-,若()0,4A B C =⊆ ,则4m ≥; 若2m =-,则C =∅,不满足()0,4A B C =⊆ ,舍; 若2m <-,则(),2C m =-,不满足()0,4A B C =⊆ ,舍; 综上[)4,m ∈+∞.16. 解:(Ⅰ)设等差数列{}n a 的公差为d ,由题意得41123333a a d --===. 所以1(1)3,n a a n d n n *=+-=∈N . 设等比数列{}n n b a -的公比为q ,由题意得344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而11232,n n n n b a n n --*=+=+∈N .(Ⅱ)由(Ⅰ)知132,n n b n n -*=+∈N .123n n S b b b b =++++01211(32)(62)(92)(32)2n n n --=++++++++ 0121(3693)(2222)n n -=+++++++++(33)12212n n n +-=+-2332122n n n =++- 所以,数列{}n b 的前n 项和为2332122n n n ++-.17. 解:()4sin cos 6f x x x π⎛⎫=+⎪⎝⎭14sin sin 2x x x ⎫=-⎪⎪⎝⎭2cos 2sin x x x =-2cos21x x =+-12cos 2)12x x =+-π2sin(2)16x =+-. (Ⅰ)令3222,262k x k k πππππ+≤+≤+∈Z ,解得263k x k ππππ+≤≤+,所以函数()f x 的单调减区间为2[+,],63k k k ππππ+∈Z .(Ⅱ)因为02x π≤≤,所以72666x πππ≤+≤,所以1sin(2)126x π-≤+≤ ,于是 12sin(2)26x π-≤+≤ ,所以2()1f x -≤≤.当且仅当2x π=时 ()f x 取最小值min ()()22f x f π==-;当且仅当262x ππ+=,即6x π=时最大值max ()()16f x f π==.18. 解:定义域为[)0,+∞.22222()1(1)(1)(1)a ax a f x ax x ax x +-'=-=++++. (Ⅰ)若1a =,则221()(1)(1)x f x x x -'=++,令()0f x '=,得1x =(舍1-).所以1a =时,()f x 的单调增区间为(1,)+∞,减区间为(0,1).(Ⅱ)222()(1)(1)ax a f x ax x +-'=++,∵0,0,x a ≥> ∴10.ax +> ①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 在[)1,+∞单调递增,所以()(0)1;f x f =的最小值为②当02a <<时,由'()0'()0f x x f x x >><<解得由解得∴()f x +∞的单调减区间为(0).所以()f x在x =处取得最小值,注意到(0)1,f f <=,所以不满足 综上可知,若()f x 得最小值为1,则a 的取值范围是[2,).+∞19. 解:()f x ∞(I )函数的定义域为(0,+),()2()ln ln ln .x x x b b a bb f x a x e a x e a x e x x x xx '⎛⎫⎛⎫⎛⎫''=+++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)2,(1).f f e '==由题意可得 21,.a b e==故 (Ⅱ)2(),'()(1)x x g x xe g x e x e--=-=-则.(0,1)()0;(1,)()0.()1()(0,)(1).x g x x g x g x g x g e ''∈>∈+∞<∞∞=-所以当时当时,故在(0,1)单调递增,在(1,+)单调递减,从而在的最大值为 (Ⅲ)12()ln ,x x f x e x e x-=+由(I )知又0(1)ln12=21,f e e =+>于是函数()f x 的图象与直线1y =没有公共点等价于()1f x >。

2017届北京市第四中学高三上学期期中考试数学(理)试卷(解析版)

2017届北京市第四中学高三上学期期中考试数学(理)试卷(解析版)

2016-2017学年北京市第四中学高三上学期期中考试数学(理)一、选择题:共8题1.已知全集,集合,则A. B. C. D.【答案】B【解析】本题主要考查集合的基本运算.由补集的定义可知,2.设命题,则为A. B.C. D.【答案】C【解析】本题主要考查全称命题与特称命题的否定.由特称命题否定的定义可知,答案为C.3.为了得到函数的图象,只需把函数y=lg x的图象上所有的点A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】本题主要考查对数的运算性质的应用以及图象的变换问题.,所以为了得到函数的图象,只需把函数y=lg x的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度.答案C【备注】函数4.若,满足则的最大值为A.0B.1C.D.2【答案】D【解析】本题主要考查线性规划问题,考查了数形结合思想.作出不等式组所表示的平面区域,如图所示,由目标函数z与直线在y轴上的截距之间的关系可知,当直线过点A()时,目标函数取得最大值2.5.等比数列满足则A.21B.42C.63D.84【答案】B【解析】本题主要考查等比数列的通项公式,考查了计算能力.设公比为q,因为,所以,则,所以6.已知,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】本题主要考查充分条件与必要条件、三角函数的诱导公式,考查了逻辑推理能力.当时,,当时,,因此“”是“”的充分不必要条件7.定义在上的偶函数满足,且在区间上单调递增,设,, ,则大小关系是A. B. C. D.【答案】D【解析】本题主要考查抽象函数的性质,考查了逻辑推理能力.因为,所以,所以偶函数的周期为2,又函数在区间上单调递增,所以函数在区间上单调递减,又,,,所以8.已知函数,若,则实数的取值范围是A. B. C. D.【答案】D【解析】本题主要考查导数、函数的性质,考查了数形结合思想与逻辑推理能力.作出函数的图像与的图像,如图所示,由图像可知:函数的图像为过原点的直线,当直线介于直线l与x 轴之间时符合题意,直线l为曲线的切线,且此时函数在第二象限的部分解析式为,,因为,故,故直线l的斜率为,故只需直线的斜率a介于与0之间即可,即二、填空题:共6题9.设是虚数单位,则 .【答案】【解析】本题主要考查复数的四则运算.10.执行如图所示的框图,输出值 .【答案】12【解析】本题主要考查条件结构与循环结构的程序框图,考查了逻辑推理能力.运行程序:x=1;x=2;x=4,x=5;x=6;x=8,x=9;x=10;x=12,此时满足条件,循环结束,输出x=12.11.若等差数列满足,,则当________时,的前项和最大.【答案】8【解析】本题主要考查等差数列的通项公式、前项和公式与性质,考查了逻辑推理能力.在等差数列中,因为,,所以,即前8项均为正数,从第9项开始均为负数,所以当n=8时,的前项和最大.12.已知是定义在上的奇函数.当时,,则不等式的解集为______.【答案】【解析】本题主要考查函数的性质,考查了转化思想与逻辑推理能力.设,因为是定义在上的奇函数,所以是上的偶函数,且,时,解不等式可得x>4,所以不等式的解集为13.要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米200元,侧面造价是每平方米100元,则该容器的最低总造价是________元.【答案】1600【解析】本题主要考查函数的解析式与性质、基本不等式的应用,考查了分析问题与解决问题的能力.设长方体的底面的长为x m,则宽为m,总造价为y元,则,当且仅当,即x=2时,等号成立,故答案为1600元14.已知函数,任取,定义集合:,点,满足.设分别表示集合中元素的最大值和最小值,记.则(1) 若函数,则=______;(2)若函数,则的最小正周期为______.【答案】2 2【解析】本题主要考查新定义问题、集合、三角函数,考查了逻辑推理能力与计算能力.(1)若函数,则点P(t,t),Q(x,x),因为,所以,化简可得,即,即,因为,所以;(2)若函数,此时,函数的最小正周期为T=4,点P(),Q(),如图所示:当点P在A点时,点O在曲线OAB上,,,当点P在B点时,,,当点P在曲线上从B接近C时,逐渐减小,当点P在曲线上从C接近D时,逐渐增大,,,当点P在曲线上从D接近E时,逐渐减小,,,依次类推,发现的最小正周期为2,因此,本题正确答案为2.三、解答题:共6题15.集合,,,其中.(Ⅰ)求;(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);;所以;(Ⅱ),若,则,若,则;若,则,不满足,舍;若,则,不满足,舍;综上.【解析】本题主要考查集合的基本运算、集合间的基本关系、指数函数,考查了分类讨论思想与计算能力.(1)求出集合A、B,再利用交集的定义求解即可;(2),再分、、三种情况讨论求解即可.16.已知是等差数列,满足,,数列满足,,且是等比数列. (Ⅰ)求数列和的通项公式;(Ⅱ)求数列的前项和.【答案】(Ⅰ)设等差数列的公差为,由题意得.所以.设等比数列的公比为,由题意得,解得.所以.从而.(Ⅱ)由(Ⅰ)知.所以,数列的前项和为.【解析】本题主要考查等差数列、等比数列的通项公式与前项和公式,考查了逻辑推理能力与计算能力.(1) 设等差数列的公差为, 设等比数列的公比为,结合题意,求出d与q,则可得结论;(2),利用等差数列与等比数列的通项公式与前项和公式求解即可.17.已知函数,.(Ⅰ)求函数的单调减区间;(Ⅱ)求函数在上的最大值与最小值.【答案】.(Ⅰ)令,解得,所以函数的单调减区间为.(Ⅱ)因为,所以,所以 ,于是 ,所以.当且仅当时取最小值;当且仅当,即时最大值.【解析】本题主要考查二倍角公式、两角和与差公式、三角函数的性质,考查了转化思想与计算能力.(1)化简,由正弦函数的单调性可得结论;(2)由题意可得,结合正弦函数的性质即可求出结果.18.已知函数,其中.(Ⅰ)若,求的单调区间;(Ⅱ)若的最小值为1,求的取值范围.【答案】定义域为..(Ⅰ)若,则,令,得(舍).所以时,的单调增区间为,减区间为.(Ⅱ),∵∴当时,在区间上∴在单调递增,所以的最小值为.当时,由解得,由解得∴的单调递减区间为,单调递增区间为所以在处取得最小值,注意到,所以不满足综上可知,若得最小值为1,则的取值范围是【解析】本题主要考查导数、函数的性质,考查了分类讨论思想与逻辑推理能力.(1)求导,并解不等式,,即可得出结论;(2),分、两种情况讨论函数的单调性,即可求出结论.19.设函数,曲线在点处的切线方程为.(Ⅰ)求;(Ⅱ)设,求的最大值;(Ⅲ)证明函数的图象与直线没有公共点.【答案】函数的定义域为由题意可得故(Ⅱ)则.所以当时当时故在单调递增在单调递减从而在的最大值为(Ⅲ)由知又于是函数的图象与直线没有公共点等价于而等价于设函数则所以当时当时故在单调递减在单调递增从而在的最小值为由(Ⅱ)知综上当时即【解析】本题主要考查导数与导数的几何意义、函数的性质,考查了转化思想、逻辑推理能力与计算能力.(1)由题意可得,求解即可;(2),判断函数的单调性,即可求出最大值;(3)由(1)知,由题意可得,等价于,设函数,求导并求出的最小值,结合(2)即可得出结论.20.对于集合,定义函数对于两个集合,定义集合. 已知,.(Ⅰ)写出和的值,并用列举法写出集合;(Ⅱ)用表示有限集合所含元素的个数,求的最小值;(Ⅲ)有多少个集合对,满足,且?【答案】(Ⅰ),,.(Ⅱ)根据题意可知:对于集合,①且,则;②若且,则.所以要使的值最小,2,4,8一定属于集合;1,6,10,16是否属于不影响的值;集合不能含有之外的元素.所以当为集合{1,6,10,16}的子集与集合{2,4,8}的并集时,取到最小值4.(Ⅲ)因为,所以.由定义可知:.所以对任意元素,,.所以.所以.由知:.所以.所以.所以,即.因为,所以满足题意的集合对的个数为.【解析】本题主要考查新定义问题、集合与集合间的基本关系、函数、集合的基本运算,考查了分类讨论思想与逻辑推理能力.(1)由题意易得结论;(2)根据题意可知:对于集合,若且,则;若且,则,由此可得结论;(3)由题意易得,由定义可知:,易知,由可得,则结论易得.。

北京市第四中学2016-2017学年高一下学期期中考试数学

北京市第四中学2016-2017学年高一下学期期中考试数学

北京四中2016-2017学年下学期高一年级期中考试数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分考试时间:120分钟卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1. 不等式x2+x-2>0的解集为()A. {x| x<-2或x>1}B. {x| -2<x<1}C. {x| x<-1或x>2}D. {x| -1<x<2} 【答案】A【解析】,解得,故选A.2. 在△ABC中,若a2=b2+c2-bc,则A等于()A. 120°B. 60°C. 45°D. 30°【答案】B【解析】在△ABC中,由余弦定理可得:,所以,故选B.3. S n是等差数列{a n}的前n项和,如果S10=120,那么a1+a10的值是()A. 12B. 24C. 36D. 48【答案】B【解析】试题分析:根据等差数列的性质可知,项数之和为11的两项之和都相等,即可求出a1+a10的值.解:S10=a1+a2+…+a10=(a1+a10)+(a2+a9)+(a3+a8)+(a4+a7)+(a5+a6)=5(a1+a10)=120 +a10=24所以a故选B考点:等差数列的前n项和.4. 对于任意实数a、b、c、d,下列结论:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<;正确的结论为()A. ①B. ②C. ③D. ④【答案】C【解析】①若a>b,当时有,,故不正确;②若a>b,当时有,故不正确;...③若,显然,两边同除以,可得,正确;④若a>b,当a>0>b,时>,故不正确;故选C.5. 在△ABC中,若a=2,b=2,A=30°,则B等于()A. 60°B. 60°或120°C. 30°D. 30°或150°【答案】B【解析】在△ABC中,由正弦定理可得,解得,故选B.6. 已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a1等于()A. -4B. -6C. -8D. -10【答案】C【解析】等差数列{a n}的公差为2,所以,又a1,a3,a4成等比数列,所以有,即,解得,故选C.7. 已知实数x,y满足约束条件,则z=2x+4y的最大值为()A. 24B. 20C. 16D. 12【答案】B【解析】试题分析:画出可行域如图所示,为目标函数,可看成是直线的纵截距四倍,画直线,平移直线过点时有最大值20,故选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年北京市第四中学高一上学期期中考试数学试题试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分。

考试时间:120分钟。

卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分1. 如果A=(-1,+∞),那么正确的结论是( )A. 0⊆AB. {0}∈AC. {0}⊂≠AD. A ∈Φ2. 函数f (x )=22-x ,则)21(f =( ) A. 0 B. -2 C. 22 D. -22 3. 与函数y=lg (x-1)的定义域相同的函数是( ) A. y=x-1 B. y=|x-1|C. y=11-xD. y=1-x 4. 若函数f (x )=x x -+33与g (x )= x x --33的定义域均为R ,则( )A. f (x )与g (x )均为偶函数B. f (x )为奇函数,g (x )为偶函数C. f (x )与g (x )均为奇函数D. f (x )为偶函数,g (x )为奇函数5. 设a=lg 0.2,b=2log 3,c=215,则( )A. a<b<cB. b<c<aC. c<a<bD. c<b<a 6. 若指数函数y=x a )1(+在(-∞,+∞)上是减函数,那么( )A. 0<a<1B. -1<a<0C. a=-1D. a<-17. 设函数y=x 3与y=x)21(的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A. (0,1) B. (1,2) C. (2,3) D. (3,4)8. 已知函数f (x )是R 上的偶函数,当x ≥0时f (x )=2x -2,则f (x )<0的解集是( )A. (-1,0)B. (0,1)C. (-1,1)D. (-∞,-1)⋃(1,+∞)9. 某商店卖出两套不同品牌的西服,售价均为1680元。

以成本计算,一套盈利20%,另一套亏损20%,此时商店( )A. 不亏不盈B. 盈利372元C. 亏损140元D. 盈利140元10. 设函数f (x )在(-∞,+∞)上是减函数,则( )A. )2()(a f a f >B. )()(2a f a f <C. )()(2a f a a f <+D. )()1(2a f a f <+二、填空题:本大题共4小题,每小题5分,共20分11. 326689log 4log -+=_______。

12. 已知函数y=f (x )为奇函数,若f (3)-f (2)=1,则f (-2)-f (-3)=_______。

13. 函数f (x )=32+--ax x 在区间(-∞,-1]上是增函数,则实数a 的取值范围为_____。

14. 已知关于x 方程2log (x-1)+k-1=0在区间[2,5]上有实数根,那么k 的取值范围是_______。

三、解答题:本大题共3小题,每小题10分,共30分15. 记函数f (x )=)32(log 2-x 的定义域为集合M ,函数g (x )=)1)(3(--x x 的定义域为集合N 。

求:(Ⅰ)集合M 、N ;(Ⅱ)集合M N 、M N 。

16. 已知函数f (x )=222--x x 。

(Ⅰ)用定义证明:函数f (x )在区间(-∞,1]上是减函数;(Ⅱ)若函数g (x )=f (x )-mx 是偶函数,求实数m 的值。

17. 已知函数f (x )=)(log x a ka a -,其中0<a<1,k ∈R。

(Ⅰ)若k=1,求函数f (x )的定义域;(Ⅱ)若a=21,且f (x )在[1,+∞)内总有意义,求k 的取值范围。

卷(Ⅱ)一、选择题:本大题共3小题,每小题5分,共15分18. 定义在R 上的奇函数f (x )满足f (2x )=-2f (x ),且f (-1)=21,则f (2)的值为 A. 1 B. -2 C. 2D. -1 19. 若a>1,-1<b<0,则函数f (x )=a x +b 的图象一定不过A. 第一象限B. 第二象限C. 第三象限D. 第四象限20. 如果x>1,a=5.0log x ,那么A. a a a >>22B. 22a a a >>C. a a a 22>>D. 22a a a >>二、填空题:本大题共3小题,每小题5分,共15分21. 若函数f (x )=32212+-x x 在区间[0,m](m>0)有最大值3,最小值1,则m 的取值范围是_______。

22. 设函数f (x )的定义域为D 。

如果对任意x ∈D ,都存在常数M ,使得f (x ) ≥M ,称f (x )具有性质Γ。

现给出下列函数:①f (x )=⎩⎨⎧≤->0,10,x x x ;②f (x )=3x -1; ③f (x )=|ln x|; ④f (x )=lg|x|。

其中具有性质Γ的函数序号是_______。

23. pH 值是水溶液的重要理化参数。

若溶液中氢离子的浓度为[H +](单位:mol/l ),则其pH 值为-lg[H +]。

在标准温度和气压下,若水溶液pH=7,则溶液为中性,pH<7时为酸性,pH>7时为碱性。

例如,甲溶液中氢离子浓度为0.0001mol/l ,其pH 为-1g 0.0001,即pH=4。

已知乙溶液的pH=2,则乙溶液中氢离子浓度为______mol/l 。

若乙溶液中氢离子浓度是丙溶液的两千万倍,则丙溶液的酸碱性为______(填中性、酸性或碱性)。

三、解答题:本大题共2小题,每小题10分,共20分)24. 设函数f (x )=)1(log log 22x x -+。

(Ⅰ)求f (x )的定义域;(Ⅱ)指出f (x )的单调递减区间(不必证明),并求f (x )的最大值。

25. 若定义在D 上的函数f (x )满足:对任意x ∈D ,存在常数M>0,都有-M<f (x )<M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界。

(Ⅰ)判断函数f (x )=2x -2x+2,x ∈[0,2]是否是有界函数,请说明理由; (Ⅱ)若函数f (x )=1+x a 2+x41,x ∈[0,+∞)是以3为上界的有界函数,求实数a 的取值范围。

【参考答案】一、选择题1~5、CACDA6~10、BACCD二、填空题11. -2;12. 1; 13. (-∞,2]; 14. [-1,1] 三、解答题15.(Ⅰ)M={x|2x-3>0}={x|x>23}; N={x|(x-3)(x-1) ≥0}={x|x ≥3或x ≤1}。

(Ⅱ)M N={x|x ≥3};M N=}231|{>≤x x x 或。

16.(Ⅰ)设,x x ,,,x x 1]1(2121≤<-∞∈且所以)22()22()()(22212121-----=-x x x x x f x f=)2)((2121-+-x x x x因为121≤<x x ,所以21x x -<0, 21x x +-2<0.所以)()(21x f x f ->0.即)()(21x f x f >.所以函数f (x )在区间(-∞,1]上是减函数.(Ⅱ)因为函数g (x )=f (x )-mx ,所以g (x )=x 2-2x-2-mx=x 2-(2+m )x-2.又因为g (x )是偶函数,所以g (-x )=g (x ).所以(-x )2-(2+m )(-x )-2=x 2-(2+m )x-2.所以2(2+m )x=0.因为x 是任意实数,所以2+m=0.所以m=-2.17.(Ⅰ)当k=1时,由a-a x >0得a>a x 。

因为0<a<1,所以x >1,即函数f (x )的定义域为{x|x>1}。

(Ⅱ)令a-ka x >0,即k<1)1(-x a =21-x 。

上式对于x ∈[1,+∞)恒成立,所以k 应小于21-x 的最小值。

因为x-1∈[0,+∞),所以21-x 的最小值为1。

所以k<1。

(Ⅱ)卷一、选择题18~20、 ADC二、填空题21. [2,4]22. ①②③; 23. 0.01,碱性。

三、解答题24.(Ⅰ)定义域为{x|0<x<1}。

(Ⅱ)f (x )=log 2(x-x 2)。

设u= x-x 2,其最大值为41,所以f (x )的最大值为log 241=-2。

单调递减区间为[211)。

25.(Ⅰ)f (x )=1)1(2222+-=+-x x x 。

当0≤x ≤2时,1≤f (x )≤2,则-2≤f (x )≤2。

由有界函数定义可知f (x )=x 2-2x+2,x ∈[0,2]是有界函数。

(Ⅱ)由题意知对任意x ≥0,都有3)(3≤≤-x f 。

所以有x x x a 4122414-≤≤--, 即x x x x a 21222124-⨯≤≤-⨯-在[1,+∞)上恒成立。

设t=2x ,由x ≥0,得t ≥1。

设h (t )=)1(14≥--t t t ,p (t )=)1(12≥-t t t 。

由题可得min max )()(t p a t h ≤≤。

而h (t )在[1,+∞)上递减,p (t )在[1,+∞)上递增。

(单调性证明略)h (t )在[1,+∞)上的最大值为h (1)=-5,p (t )在[1,+∞)上的最小值为p (1)=1。

所以实数a 的取值范围为[-5,1]。

相关文档
最新文档