Python I, II, and III CMB Anisotropy Measurement Constraints on Open and Flat-Lambda CDM Co
python 亥姆霍兹方程 pinn

Pinn是一种求解亥姆霍兹方程的数值方法,它基于有限元方法。
下面是一个Python代码示例,使用Pinn方法求解二维亥姆霍兹方程:python复制代码import numpy as npimport matplotlib.pyplot as plt# 定义网格大小和边界条件nx, ny = 100, 100dx, dy = 1.0 / (nx - 1), 1.0 / (ny - 1)x = np.linspace(0, 1, nx)y = np.linspace(0, 1, ny)X, Y = np.meshgrid(x, y)# 定义初始条件和源项u = np.zeros((ny, nx))f = np.zeros((ny, nx))g = np.zeros((ny, nx))h = np.zeros((ny, nx))# 初始化边界条件u[:, 0] = 0u[:, -1] = 0u[0, :] = 0u[-1, :] = 0# 定义源项f[:, :] = -4 * (X**2 + Y**2) * (X**2 - Y**2)**2 * (X**2 + Y**2 - 1)**2 / dx**2 / dy**2g[:, :] = -4 * (X**2 + Y**2) * (X**2 - Y**2)**2 * (X**2 + Y**2 - 1)**2 / dx**2 / dy**2h[:, :] = -4 * (X**2 + Y**2) * (X**2 - Y**2)**2 * (X**2 + Y**2 - 1)**2 / dx**2 / dy**2# 时间步长和迭代次数dt = 0.01nt = 5000# Pinn方法求解for n in range(nt):unew = u.copy()for i in range(1, nx-1):for j in range(1, ny-1):unew[j, i] = u[j, i] + dt * (f[j, i] + g[j, i] + h[j, i])u += unew - uu /= 2.0# 对流项的处理方式可能不同,这里使用平均值方法处理f[:, :] = -4 * (X**2 + Y**2) * (X**2 - Y**2)**2 * (X**2 + Y**2 - 1)**2 / dx**2 / dy**2# 重新计算源项if n % 100 == 0: # 每100步输出一次结果,用于绘图plt.imshow(u, cmap='hot', origin='lower') # origin='lower' 表示将图像下边缘作为原点plt.colorbar()plt.show()上述代码中,我们使用Pinn方法求解二维亥姆霍兹方程。
微纳卫星热状态仿真及分析

3):
35
42.
YAN X Q,
LIY Q,
ZHANG C X,
e
ta
l.
S
imu
l
a
t
i
onandana
l
i
so
ft
he
rma
ls
t
a
t
ef
o
rmi
c
r
o
nanos
a
t
e
l
l
i
t
e[
J].
Ch
i
ne
s
eSpa
c
eSc
i
enc
eandTe
chno
l
ogy,2023,
ys
43(
3):
35
42 (
律验证了内热源 是 决 定 电 推 力 器 整 体 温 度 水 平
的主导因素 [9]。 通 过 物 理 实 验 方 法 进 行 动 态 热
分析研究较为不便且不适用,热网络法细节繁多
复杂,计 算 耗 时,传 统 的 数 字 仿 真 并 不 能 满 足 微
纳卫星快速热分析的需要。
本文将综合 考 虑 卫 星 内 外 的 受 热 情 况 等 因
t
an
t
mE
Thr
e
e
ax
i
s
s
t
ab
i
l
i
z
a
t
i
on
18
18
22
卫星微元表 面 dF 上 地 球 红 外 辐 照 热 流 的
计算与经过 F 面的地 球 切 线 与 地 心 连 线 的 夹 角
孙昌璞 - 中国科学院理论物理研究所

CEV
Controlled Evolution
̃, 1 1
1,0 ̃ 3 p 1,1 S , D |1, 0 〈1, 0| p S , D 1 , 1
̃ p 0,1 S ,D 0, 1
̃ , 1 p 0,0 |0, 0 〈0, 0|. 0 S ,D
中国科学院理论物理研究所
正功条件与热机效率
Measurement do not lead to entropy increase
,1 1, 0 ρ ( 2) = p 1 S , D | 1, 0〉〈1, 0 | + p S , D | 1, 1〉〈1, 1 | 0 ,1 0, 0 + pS , D | 0,1〉〈 0, 1 | + p S , D | 0, 0〉〈 0, 0 | .
2. 固态量子计算与关联系统演化的动力学敏感性
Quan, Song, Liu, Zanardi, and Sun, Decay of Loschmidt Echo Enhanced by Quantum Criticality, Phys. Rev. Lett. 96, 140604 (2006)
3. 量子信息启发的未来量子器件
中国科学院理论物理研究所
量子信息载体的物理实现
Ion Traps, Photons Liquid NMR
Nuclear Spins in Semiconductors
相干性
可规模化
易控制
Cooper-pair box ,SQUID, Single Juction
约瑟芬森结
2002-2003年JJ Q-比特的相干性得到极大改进
|e
|g
0 or 1
Quantum State
python对landsat8数据进行辐射校正和大气校正

python对landsat8数据进⾏辐射校正和⼤⽓校正 Landsat8 L1 T数据是辐射校正数据使⽤地⾯控制点和数字⾼程模型数据进⾏精确校正后的数据产品,还需要做辐射校正(辐射定标和⼤⽓校正)。
⼀、辐射定标 辐射亮度L=DN*Gain+Biasfrom osgeo import gdalfrom osgeo import gdal_arrayimport numpy as npfrom show import TwoPercentLinearfrom matplotlib import pyplot as pltimport cv2 as cvclass Landsat8Reader(object):def__init__(self):self.base_path = r"D:\ProfessionalProfile\LandsatImage\LC08_L1TP_134036_20170808_20170813_01_T1\LC08_L1TP_134036_20170808_20170813_01_T1"self.bands = 7self.band_file_name = []self.nan_position = []def read(self):for band in range(self.bands):band_name = self.base_path + "_B" + str(band + 1) + ".tif"self.band_file_name.append(band_name)ds = gdal.Open(self.band_file_name[0])image_dt = ds.GetRasterBand(1).DataTypeimage = np.zeros((ds.RasterYSize, ds.RasterXSize, self.bands),dtype=np.float)for band in range(self.bands):ds = gdal.Open(self.band_file_name[band])band_image = ds.GetRasterBand(1)image[:, :, band] = band_image.ReadAsArray()self.nan_position = np.where(image == 0)image[self.nan_position] = np.nandel dsreturn imagedef write(self, image, file_name, bands, format='GTIFF'):ds = gdal.Open(self.band_file_name[0])projection = ds.GetProjection()geotransform = ds.GetGeoTransform()x_size = ds.RasterXSizey_size = ds.RasterYSizedel dsband_count = bandsdtype = gdal.GDT_Float32driver = gdal.GetDriverByName(format)new_ds = driver.Create(file_name, x_size, y_size, band_count, dtype)new_ds.SetGeoTransform(geotransform)new_ds.SetProjection(projection)for band in range(self.bands):new_ds.GetRasterBand(band + 1).WriteArray(image[:, :, band])new_ds.FlushCache()del new_dsdef show_true_color(self, image):index = np.array([3, 2, 1])true_color_image = image[:, :, index].astype(np.float32)strech_image = TwoPercentLinear(true_color_image)plt.imshow(strech_image)def show_CIR_color(self, image):index = np.array([4, 3, 2])true_color_image = image[:, :, index].astype(np.float32)strech_image = TwoPercentLinear(true_color_image)plt.imshow(strech_image)def radiometric_calibration(self):# 辐射定标image = self.read()def get_calibration_parameters():filename = self.base_path + "_MTL" + ".txt"f = open(filename, 'r')# f = open(r'D:\ProfessionalProfile\LandsatImage\LC08_L1TP_134036_20170808_20170813_01_T1\LC08_L1TP_134036_20170808_20170813_01_T1_MTL.txt', 'r')# readlines()⽅法读取整个⽂件所有⾏,保存在⼀个列表(list)变量中,每⾏作为⼀个元素,但读取⼤⽂件会⽐较占内存。
光谱波段选择python

光谱波段选择是光谱分析中的一个重要步骤,可以通过Python编程实现。
以下是一个示例代码,用于读取光谱数据并选择特定的波段:python复制代码import numpy as npimport matplotlib.pyplot as plt# 读取光谱数据filename = 'spectrum.txt'data = np.loadtxt(filename, delimiter=',')# 选择特定波段wavelength = data[:,0] # 波长列flux = data[:,1] # 光谱列# 选择波长范围min_wavelength = 500# 最小波长max_wavelength = 700# 最大波长mask = (wavelength >= min_wavelength) & (wavelength <= max_wavelength)# 提取选择的波段并绘制图像selected_flux = flux[mask]plt.plot(wavelength[mask], selected_flux)plt.xlabel('Wavelength (nm)')plt.ylabel('Flux (a.u.)')plt.title('Selected Spectral Band')plt.show()在这个示例中,我们假设光谱数据存储在一个逗号分隔的文本文件中,第一列是波长(以纳米为单位),第二列是光谱强度(任意单位)。
我们使用numpy库中的loadtxt函数读取数据。
然后,我们使用布尔掩码来选择特定波长范围内的数据,并使用matplotlib库中的plot函数绘制所选波段的光谱图像。
Journal of The Korean Astronomical Society

This is an apparently di erent relationship from the Freedman (1990) calibration we have adopted up to now (Figure 1). The di erence is not something to dwell on. The previous calibration was limited by small number statistics, and the interim calibration is still
Jeremy Mould
ABSTRACT
With an interim calibration based upon half the Key Project's galaxies, the Tully-Fisher relation, the (D ; ) relation and type II supernovae yield H0 = 73 10 km/sec/Mpc.
n
The aim of the Key Project on the Extragalactic Distance Scale is the determination of the Hubble Constant to 10% accuracy. This is a tall order when you consider that no distances outside the local 100 pc are known to better than 5% accuracy. Nevertheless, the Key Project in the rst ve years of the Hubble Space Telescope program is laying down the database which will remain as the ducial system for distance determinations in the expanding Universe over the Milky Way's 20 Mpc neighborhood. These Cepheid distance measurements are used in the Key Project to calibrate secondary distance indicators of various kinds. These in turn extend the measurements out to 100 Mpc and beyond. The soundest basis for the extragalactic distance scale is the concurrence of a set of secondary distance indicators with di erent underlying astrophysics. Controversy about the Hubble Constant outside the margins of 10% will be about how best to deploy secondary distance indicators, about which are the best standard candles. One of the most successful has been the Tully-Fisher relation (Fisher & Tully 1977). The Tully-Fisher standard candle is a galaxy of a standard 21 cm velocity width. The role of HST is to determine the luminosity of that standard galaxy. The primary data in the H band remains the work of Aaronson et al. (1982). Aaronson et al. presented H magnitudes evaluated at a fractional isophotal diameter log(A=D1 ) = {0.5, where A is the aperture size and D1 was closely related to the RC2 D0 diameter.
Bi2Se3未考虑vdw的错误汇总

在没有考虑vdw作用之前,算Bi2Se3材料soc中出现的错误汇总V ASP自旋轨道耦合计算错误汇总静态计算时,报错:VERY BAD NEWS! Internal内部error in subroutine子程序IBZKPT:Reciprocal倒数的lattice and k-lattice belong to different class of lattices. Often results are still useful (48)INCAR参数设置:对策:根据所用集群,修改INCAR中NPAR。
将NPAR=4变成NPAR=1,已解决!错误:sub space matrix类错误报错:静态和能带计算中出现警告:W ARNING: Sub-Space-Matrix is not hermitian共轭in DA V结构优化出现错误:WARNING: Sub-Space-Matrix is not hermitian in DA V 4 -4.681828688433112E-002对策:通过将默认AMIX=0.4,修改成AMIX=0.2(或0.3),问题得以解决。
以下是类似的错误:WARNING: Sub-Space-Matrix is not hermitian in rmm -3.00000000000000RMM: 22 -0.167633596124E+02 -0.57393E+00 -0.44312E-01 1326 0.221E+00BRMIX:very serious problems the old and the new charge density differ old charge density: 28.00003 new 28.06093 0.111E+00错误:WARNING: Sub-Space-Matrix is not hermitian in rmm -42.5000000000000ERROR FEXCP: supplied Exchange-correletion table is too small, maximal index : 4794错误:结构优化Bi2Te3时,log文件:WARNING in EDDIAG: sub space matrix is not hermitian 1 -0.199E+01RMM: 200 0.179366581305E+01 -0.10588E-01 -0.14220E+00 718 0.261E-01BRMIX: very serious problems the old and the new charge density differ old charge density: 56.00230 new 124.70394 66 F= 0.17936658E+01 E0= 0.18295246E+01 d E =0.557217E-02curvature: 0.00 expect dE= 0.000E+00 dE for cont linesearch 0.000E+00ZBRENT: fatal error in bracketingplease rerun with smaller EDIFF, or copy CONTCAR to POSCAR and continue但是,将CONTCAR拷贝成POSCAR,接着算静态没有报错,这样算出来的结果有问题吗?对策1:用这个CONTCAR拷贝成POSCAR重新做一次结构优化,看是否达到优化精度!对策2:用这个CONTCAR拷贝成POSCAR,并且修改EDIFF(目前参数EDIFF=1E-6),默认为10-4错误:WARNING: Sub-Space-Matrix is not hermitian in DA V 1 -7.626640664998020E-003网上参考解决方案:对策1:减小POTIM: IBRION=0,标准分子动力学模拟。
人工智能练习题库(含参考答案)

人工智能练习题库(含参考答案)一、单选题(共103题,每题1分,共103分)1.卷积神经网络(convolu-tional neural network,CNN),是一种专门用来处理具有类似( )的数据的神经网络。
A、网格结构B、数组结构C、序列结构D、表格结构正确答案:A2.在证据理论中,信任函数与似然函数的关系为()。
A、Bel≤PlB、Bel<PlC、Bel≥PlD、Bel>Pl正确答案:A3.在Python中,函数()。
A、不可以嵌套定义B、不可以嵌套调用C、不可以递归调用D、以上都不对正确答案:D4.在IBMSPSS中,将评判准则和评判方法抽象为数学计算方法,就是()的内容。
A、数据挖掘B、统计分析C、数理统计D、优化技术正确答案:D5.隐马尔可夫模型(HiddenMarkovModel,简称HMM)主要用于(___)数据建模A、时长B、时间C、时态D、时序正确答案:D6.下列对《国务院关于印发新一代人工智能发展规划的通知》中关于到2030年人工智能发展战略目标,表述错误的是()。
A、成为世界主要人工智能创新中心B、人工智能理论、技术与应用达到世界领先水平C、人工智能产业成为新的重要经济增长点D、智能经济、智能社会取得明显成效正确答案:C7.数组与列表的区别在于()A、数组元素可变,列表元素不可变B、以上都不对C、列表元素类型必须一致,数组可以不一致D、数组元素类型必须一致,列表可以不一致正确答案:D8.下列哪部分不是专家系统的组成部分A、用户B、综合数据库C、知识库D、推理机正确答案:A9.SOM网络是一种()的无监督神经网络,它能将高维输入数据映射到低维空间。
A、竞争学习型B、匹配学习型C、在线学习型D、增量学习型正确答案:A10.Word2Vec提出了哪两个算法训练词向量?A、COBWSoftmaxB、Softmax、CBOWC、CBOW、Skip-gramDD、Skip-gramCOBWC正确答案:C11.在数据加工过程中,将特征值按比例缩小,使之落入一个特定的区间的方法是()A、标准化B、聚集C、平滑处理D、特征构造正确答案:A12.图像灰度的方差表示图像的哪种属性A、&图像细节B、&图像对比度&C、图像整体亮度&D、&图像饱和度&正确答案:B13.通常池化操作的效果是:A、使图片变大B、使图片变成圆形C、使图片变成三角形D、使图片变小正确答案:D14.TensorF1ow 是下列哪个公司首先开发的?A、OracleB、FacebookC、GoogleD、英伟达正确答案:C15.关于update语句和delete语句的使用需要注意的问题,下列说法正确的是()A、使用delete语句的时候需要注意把where字句写上,如果没有指定WHERE 子句,MySQL 表中的所有记录将被删除B、在iris表中删除sepal_length等于6的记录,写法是“delete * from iris where sepal_length = 6C、”D、更新数据的时候可以忽略更新数据的数据类型E、每一次使用update更新数据的时候,只可以更新一个字段正确答案:A16.算法性能显著不同时,需要进行(___)来进一步区分各算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:as tr o-ph/995127v111May1999KSUPT-99/1,KUNS-1552February 1999Python I,II,and III CMB Anisotropy Measurement Constraints on Open and Flat-ΛCDM Cosmogonies Gra¸c a Rocha 1,2,Rados l aw Stompor 3,4,Ken Ganga 5,Bharat Ratra 1,Stephen R.Platt 6,Naoshi Sugiyama 7,and Krzysztof M.G´o rski 8,9ABSTRACT We use Python I,II,and III cosmic microwave background anisotropy data to constrain cosmogonies.We account for the Python beamwidth and calibration uncertainties.We consider open and spatially-flat-Λcold dark matter cosmogonies,with nonrelativistic-mass density parameter Ω0in the range 0.1–1,baryonic-mass density parameter ΩB in the range (0.005–0.029)h −2,and age of the universe t 0in the range (10–20)Gyr.Marginalizing over all parameters but Ω0,the combined Python data favors an open (spatially-flat-Λ)model with Ω0≃0.2(0.1).At the 2σconfidence level model normalizations deduced from the combined Python data are mostly consistent with those drawn from the DMR,UCSB South Pole 1994,ARGO,MAX 4and 5,White Dish,and SuZIE data sets.Subject headings:cosmic microwave background—cosmology:observations—large-scale structure of the universe 1.Introduction Ganga et al.(1997a,hereafter GRGS)developed a technique to account for uncertainties,such as those in the beamwidth and the calibration,in likelihood analyses of cosmic microwavebackground(CMB)anisotropy data.This technique has been used in conjunction with theoretically-predicted CMB anisotropy spectra in analyses of the Gundersen et al.(1995)UCSB South Pole1994data,the Church et al.(1997)SuZIE data,the MAX4+5data(Tanaka et al. 1996;Lim et al.1996),the Tucker et al.(1993)White Dish data,and the de Bernardis et al. (1994)ARGO data(GRGS;Ganga et al.1997b,1998;Ratra et al.1998,1999a,hereafter R99a).A combined analysis of all these data sets is presented in Ratra et al.(1999b,hereafter R99b).In this paper we present a similar analysis of CMB anisotropy data from the Python I,II, and III observations performed at the South Pole(Dragovan et al.1994,hereafter D94;Ruhl et al.1995b,hereafter R95;Platt et al.1997,hereafter P97).The Python detectors and telescope are described by Ruhl(1993)and D94;also see Ruhl et al.(1995a)and Alvarez(1996).In what follows we review the information needed for our analysis.Python I,II,and III CMB data were taken in a frequency band centered at90GHz with four bolometric detectors centered at the corners of a2.◦75by2.◦75square on the sky.The beam profiles are well-approximated by a Gaussian of FWHM0.◦75±0.◦05(one standard deviation uncertainty). Observations were centered atα=23.h37,δ=−49.◦44(J2000.0).Python I and II data were taken at a single telescope elevation.Python III data were taken at thisfiducial elevation as well as two additional elevations offset2.◦75/3on the sky above and below thefiducial elevation.The reduced Python data are shown in Figure1.All of the Python measurements were made by switching the four beams horizontally across the sky in a three-point pattern by rotating a verticalflat mirror at2.5Hz.This chopping pattern was then combined with slow(typically0.1Hz)azimuthal beam switching of the entire telescope to produce a four-beam response to a sky signal.The chopper throw and azimuthal telescope beam switching were both2.◦75on the sky for the Python I and II observations.Python I(hereafter I)resulted in16data points,8each from the lower and upper rows of detectors(D94).Python II observed two sets of points on the sky (R95),although one of the detectors did not work during this season.Thefirst set of observations, hereafter IIA,overlapped the I points and yielded7measurements from the lower row of detectors and8from the upper row.The second set,hereafter IIB,measured the same number of points on the sky as thefirst set,but these were offset in azimuth relative to the I points by−2.◦75/2on the sky.Two series of measurements were made at each of the three elevations observed during the Python III season(P97).For each series,the physical throw of the chopper was the same at all elevations.Because the actual throw on the sky depends on elevation,the Python III beam was smeared to a Gaussian FWHM of0.◦82±0.◦05(one standard deviation uncertainty)when forming the four-beam pattern to account for the imperfect overlap of the beams caused by this effect. This procedure also accounted for the relative pointing uncertainty andfluctuations in the chopper throw.Thefirst series of Python III measurements,hereafter IIIL,used the same chopper and beamswitch parameters as Python I and II.The IIIL data consists of two sets of points taken at the I elevation but offset in right ascension by−2.◦75/3and−2×2.◦75/3on the sky.Two sets of measurements were also made at each of the lower and upper elevations,but these were offset in right ascension by0.◦0and+2×2.◦75/3on the sky relative to I.The second series of Python III measurements,hereafter IIIS,were made with both the chopper throw and telescope beam switch reduced to2.◦75/3.For each of the three telescope elevations,the IIIS data consists of points separated horizontally by2.◦75/3on the sky for each of the2rows of detectors.Figure1shows the points observed by IIIL and IIIS at each elevation. Together,I,II,and III densely sample a5.◦5by22◦region of the sky.The1σabsolute calibration uncertainty in the Python data is20%(D94;R95;P97)and is accounted for in our analysis.The absolute pointing uncertainty is0.◦1(D94;R95)and is not accounted for in our analysis.In§2we summarize the computational techniques used in our analysis.See GRGS and R99a for detailed discussions.Results are presented and discussed in§3.Conclusions are given in§4.2.Summary of ComputationThe zero-lag window function for the Python observations are shown in Figure2and the zero-lag window function parameters are in Table1.In this paper we focus on a spatially open CDM model and a spatiallyflat CDM model with a cosmological constantΛ.These low density models are largely consistent with current observational constraints.10For recent discussions see Park et al.(1998),Retzlaffet al.(1998), Croft et al.(1999),and Peebles(1999).The models have Gaussian,adiabatic primordial energy-density power spectra.Theflat-Λmodel CMB anisotropy computations use a scale-invariant energy-density perturbation power spectrum(Harrison1970;Peebles&Yu1970;Zel’dovich1972),as predicted in the simplest spatially-flat inflation models(Guth1981;Kazanas1980;Sato1981).The open model computations use the energy-density power spectrum(Ratra&Peebles1994,1995;Bucher, Goldhaber,&Turok1995;Yamamoto,Sasaki,&Tanaka1995)predicted in the simplest open-bubble inflation models(Gott1982).The computation of the CMB anisotropy spectra is described by Stompor(1994)and Sugiyama(1995).As discussed in R99a,the spectra are parameterized by their quadrupole-moment amplitudeQ rms−PS,the nonrelativistic-mass density parameterΩ0,the baryonic-mass density parameterΩB, and the age of the universe t0.The spectra are computed for a range ofΩ0spanning the interval 0.1to1in steps of0.1,for a range ofΩB h2[the Hubble parameter h=H0/(100km s−1Mpc−1)] spanning the interval0.005to0.029in steps of0.004,and for a range of t0spanning the interval10to20Gyr in steps of2Gyr.In total798spectra were computed to cover the cosmological-parameter spaces of the open andflat-Λmodels.Figure2shows examples of the CMB anisotropy spectra used in our analysis.Other examples are in Figure2of R99a and Figure 1of R99b.While it is of interest to also consider other cosmological parameters,such as tilt or gravity wave fraction or a time-variable cosmological“constant”(instead of a constantΛ),to make the problem tractable we have focussed on the four parameters mentioned above.We emphasize however that the results of the analysis are model dependent.For instance,a time-variableΛmodel would likely lead to a different constraint onΩ0than that derived below in the constantΛmodel.Following GRGS,for each of the798spectra considered the“bare”likelihood function is computed at the nominal beamwidth and calibration,as well as at a number of other values of the beamwidth and calibration determined from the measurement uncertainties.The likelihood function used in the derivation of the central values and limits is determined by integrating (marginalizing)the bare likelihood function over the beamwidth and calibration uncertainties with weights determined by the measured probability distribution functions of the beamwidth and the calibration.See GRGS for a more detailed discussion.When marginalizing over the beamwidth uncertainty we have checked in a few selected cases that thefive-point Gauss-Hermite quadrature summation approximation to the integral agrees extremely well with the three-point Gauss-Hermite approximation used by GRGS(and for most of the analysis in this paper).The likelihoods are a function of four parameters mentioned above:Q rms−PS,Ω0,ΩB h2,and t0.We also compute marginalized likelihood functions by integrating over one or more of these parameters after assuming a uniform prior in the relevant parameters.The prior is set to zero outside the ranges considered for the parameters.GRGS and R99a describe the prescription used to determine central values and limits from the likelihood functions.In what follows we consider1,2,and3σhighest posterior density limits which include68.3,95.4,and99.7%of the area.3.Results and DiscussionTable2lists the derived values of Q rms−PS and bandtemperatureδT l for theflat bandpower spectrum,for various combinations of the I,II,and III data.These numerical values account for the beamwidth and calibration uncertainties.The last twoδT l entries in Table2are quite consistent with those derived by P97;the small differences reflect the different methods used to account for beamwidth and calibration uncertainties here and in P97.For theflat bandpower spectrum the combined I,II,and III data average1σδT l error bar is∼25%11:Python data results in a very significant detection of CMB anisotropy,even after accounting for beamwidth and calibration uncertainties.Note that the calibration uncertainty, 20%,is the most important contributor to this error bar.A number of other interesting conclusions follow from the entries in paring the I+II and IIIL results,which are from experiments which probe almost identical angular scales,we see that the IIIL amplitude is∼1σhigher than the I+II paring the result from the analysis of the coadded I and IIA data(which are from experiments with identical window functions)and the result from the full analysis of the I and IIA data(which takes into account all the spatial correlations),we see that the deduced amplitudes are almost identical.This is probably mostly a reflection of the fact that the individual I and IIA amplitudes are almost identical(see Table2).As discussed in R99a and R99b,the four-dimensional posterior probability density distribution function L(Q rms−PS,Ω0,ΩB h2,t0)is nicely peaked in the Q rms−PS direction but fairlyflat in the other three directions.Marginalizing over Q rms−PS results in a three-dimensional posterior distribution L(Ω0,ΩB h2,t0)which is steeper,but still relativelyflat.As a consequence,limits derived from the four-and three-dimensional posterior distributions are generally not highly statistically significant.We therefore do not show contour plots of these functions here. Marginalizing over Q rms−PS and one other parameter results in two-dimensional posterior probability distributions which are more peaked.See Figures3and4.As in the ARGO(R99a) and combination(R99b)data set analyses,in some cases these peaks are at an edge of the parameter range considered.Figure3shows that the two-dimensional posterior distributions allow one to distinguish between different regions of parameter space at a fairly high formal level of confidence.For instance,the open model nearΩ0∼0.75,ΩB h2∼0.03,and t0∼20Gyr,and theflat-Λmodel nearΩ0∼0.6,ΩB h2∼0.03,and t0∼20Gyr,are both formally ruled out at∼3σconfidence. However,we emphasize,as discussed in R99a and R99b,care must be exercised when interpreting the discriminative power of these formal limits,since they depend sensitively on the fact that the uniform prior has been set to zero outside the range of the parameter space we have considered.Figure4shows the contours of the two-dimensional posterior distribution for Q rms−PS and Ω0,derived by marginalizing the four-dimensional distribution overΩB h2and t0.These are shown for the combined Python I,II,and III data,the DMR data,and three combinations of data from the SP94,ARGO,MAX4+5,White Dish,and SuZIE experiments(R99b),for both the open and flat-Λmodels.Constraints on these parameters from the combined Python data are consistent with those from the DMR data for theflat-Λmodels,panel a),while for the open model,panel b),consistency at2σ(1σ)requiresΩ0>∼0.2(0.35).The combined Python data amplitudes are a little higher than those derived from the other small-scale data combinations,panels c)−h),but at2σconfidence the various amplitudes are mostly consistent.Figure5shows the one-dimensional posterior distribution functions forΩ0,ΩB h2,t0,and Q rms−PS,derived by marginalizing the four-dimensional posterior distribution over the other three parameters.From these one-dimensional distributions,the combined I,II,and III data favors an open(flat-Λ)model withΩ0=0.19(0.10),orΩB h2=0.005(0.005),or t0=10(13)Gyr,amongst the models considered.At2σconfidence the combined Python data formally rule out only small regions of parameter space.From the one-dimensional distributions of Figure5,the data requires Ω0<0.71or>0.8(Ω0<0.55or>0.63),orΩB h2<0.028(ΩB h2<0.028),or t0<20Gyr(t0 <20Gyr)for the open(flat-Λ)model at2σ.As discussed in R99a and R99b,care is needed when interpreting the discriminative power of these formal limits.These papers also discuss a more conservative Gaussian posterior distribution limit ing this more conservative prescription,wefind only an upper1σlimit onΩ0(<∼0.5)in the open model.While the statistical significance of the constraints on cosmological parameters is not high, it is reassuring that the combined Python data favor low-density,lowΩB h2,young models, consistent with some of the indications from the combinations of CMB anisotropy data considered by R99b,and the indications from most recent non-CMB observations(see discussion in R99b).The peak values of the one-dimensional posterior distributions shown in Figure5are listed in thefigure caption for the case when the four-dimensional posterior distributions are normalized such that L(Q rms−PS=0µK)= 1.With this normalization,marginalizing over the remaining parameter the fully marginalized posterior distributions are2×10106(1×10106)for the open (flat-Λ)model and the combined Python data.This is qualitatively consistent with the indication from panels a)and b)of Figure5that the most-favored open model is somewhat more favored than the most-favoredflat-Λone.4.ConclusionThe combined Python I,II,and III data results derived here are mostly consistent with those derived from the DMR,SP94,ARGO,MAX4+5,White Dish and SuZIE data.The combined Python data significantly constrains Q rms−PS(for theflat bandpower spectrumµK at1σ)and weakly favors low-density,lowΩB h2,young models.Q rms−PS=40+12−8We acknowledge helpful discussions with D.Alvarez,M.Dragovan,G.Griffin,J.Kovac,and J.Ruhl.This work was partially carried out at the Infrared Processing and Analysis Center and the Jet Propulsion Laboratory,California Institute of Technology,under a contract with the National Aeronautics and Space Administration.KG also acknowledges support from NASA ADP grant NASA-1260.BR and GR acknowledge support from NSF grant EPS-9550487with matchingsupport from the state of Kansas and from a K∗STAR First award.GR also acknowledges support from a PRAXIS XXI program of FCT(Portugal)grant.RS acknowledges support from NASA AISRP grant NAG-3941and help from Polish Scientific Committee(KBN)grant2P03D00813.Table1:Numerical Values for the Zero-Lag Window Function Parameters al e−0.5l e l m l e−0.5Python I/II5391.77399 1.34Python IIIL5287.77298 1.30Python IIIS1281711762300.623a The value of l where W l is largest,l m,the two values of l where W le−0.5=e−0.5W l m,l e−0.5,the effective multipole,l e=I(lW l)/I(W l),and I(W l)= ∞l=2(l+0.5)W l/{l(l+1)}.Table2:Numerical Values for Q rms−PS andδT l from Likelihood Analyses Assuming a Flat Bandpower SpectrumData Set a Q rms−PS b Ave.Abs.Err.c Ave.Frac.Err.dδT l b LR e(µK)(µK)(µK)REFERENCESAlvarez,D.L.1996,Princeton University Ph.D.ThesisBucher,M.,Goldhaber,A.S.,&Turok,N.1995,Phys.Rev.D,52,3314Carroll,S.M.1998,Phys.Rev.Lett.,81,3067Church,S.E.,Ganga,K.M.,Ade,P.A.R.,Holzapfel,W.L.,Mauskopf,P.D.,Wilbanks,T.M.,& Lange,A.E.1997,ApJ,484,523Croft,R.A.C.,Weinberg,D.H.,Pettini,M.,Hernquist,L.,&Katz,N.1999,ApJ,in pressde Bernardis,P.,et al.1994,ApJ,422,L33Dragovan,M.,Ruhl,J.E.,Novak,G.,Platt,S.R.,Crone,B.,Pernic,R.,&Peterson,J.B.1994, ApJ,427,L67(D94)Ferreira,P.G.,&Joyce,M.1998,Phys.Rev.D,58,023503Frieman,J.A.,&Waga,I.1998,Phys.Rev.D,57,4642Ganga,K.,Ratra,B.,Church,S.E.,Sugiyama,N.,Ade,P.A.R.,Holzapfel,W.L.,Mauskopf,P.D., &Lange,A.E.1997b,ApJ,484,517Ganga,K.,Ratra,B.,Gundersen,J.O.,&Sugiyama,N.1997a,ApJ,484,7(GRGS)Ganga,K.,Ratra,B.,Lim,M.A.,Sugiyama,N.,&Tanaka,S.T.1998,ApJS,114,165G´o rski,K.M.,Ratra,B.,Stompor,R.,Sugiyama,N.,&Banday,A.J.1998,ApJS,114,1Gott,J.R.1982,Nature,295,304Gundersen,J.O.,et al.1995,ApJ,443,L57Guth,A.1981,Phys.Rev.D,23,347Harrison,E.R.1970,Phys.Rev.D,1,2726Hu,W.,Eisenstein,D.J.,Tegmark,M.,&White,M.1999,Phys.Rev.D,59,023512Huterer,D.,&Turner,M.S.1999,Phys.Rev.Lett.,submittedKazanas,D.1980,ApJ,241,L59Liddle,A.R.,&Scherrer,R.J.1999,Phys.Rev.D,59,023509Lim,M.A.,et al.1996,ApJ,469,L69Park,C.,Colley,W.N.,Gott,J.R.,Ratra,B.,Spergel,D.N.,&Sugiyama,N.1998,ApJ,506,473 Peebles,P.J.E.1999,PASP,111,274Peebles,P.J.E.,&Ratra,B.1988,ApJ,325,L17Peebles,P.J.E.,&Yu,J.T.1970,ApJ,162,815Platt,S.R.,Kovac,J.,Dragovan,M.,Peterson,J.B.,&Ruhl,J.E.1997,ApJ,475,L1(P97)Ratra,B.,Ganga,K.,Stompor,R.,Sugiyama,N.,de Bernardis,P.,&G´o rski,K.M.1999a,ApJ, 510,11(R99a)Ratra,B.,Ganga,K.,Sugiyama,N.,Tucker,G.S.,Griffin,G.S.,Nguyˆe n,H.T.,&Peterson,J.B.1998,ApJ,505,8Ratra,B.,&Peebles,P.J.E.1994,ApJ,432,L5Ratra,B.,&Peebles,P.J.E.1995,Phys.Rev.D,52,1837Ratra,B.,&Quillen,A.1992,MNRAS,259,738Ratra,B.,Stompor,R.,Ganga,K.,Rocha,G.,Sugiyama,N.,&G´o rski,K.M.1999b,ApJ,517,in press(R99b)Retzlaff,J.,Borgani,S.,Gottl¨o ber,S.,Klypin,A.,&M¨u ller,V.1998,New Astron.,3,631 Ruhl,J.1993,Princeton University Ph.D.ThesisRuhl,J.E.,Dragovan,M.,Novak,G.,Platt,S.R.,Crone,B.K.,&Pernic,R.W.1995a,Astro.Lett.and Comm.,32,249Ruhl,J.E.,Dragovan,M.,Platt,S.R.,Kovac,J.,&Novak,G.1995b,ApJ,453,L1(R95) Sato,K.1981,Phys.Lett.B,99,66Starobinsky,A.A.1998,JETP Lett.,68,757Stompor,R.1994,A&A,287,693Stompor,R.1997,in Microwave Background Anisotropies,ed. F.R.Bouchet,R.Gispert,B.Guiderdoni,&J.Tran Thanh Van(Gif-sur-Yvette:Editions Frontieres),91Sugiyama,N.1995,ApJS,100,281Sugiyama,N.,&Sato,K.1992,ApJ,387,439Tanaka,S.T.,et al.1996,ApJ,468,L81Tucker,G.S.,Griffin,G.S.,Nguyˆe n,H.T.,&Peterson,J.B.1993,ApJ,419,L45Wang,L.,&Steinhardt,P.J.1998,ApJ,508,483Yamamoto,K.,Sasaki,M.,&Tanaka,T.1995,ApJ,455,412Zel’dovich,Ya.B.1972,MNRAS,160,1PFigure CaptionsFig.1.–Measured thermodynamic temperature differences(with±1-σerror bars).Panel a)shows Python I(open circles),IIA(filled squares,offset horizontally from true positions for clarity),IIB (open squares),and IIIL(crosses)data,while panel b)shows Python IIIS data(crosses).Fig.2.–CMB anisotropy multipole moments l(l+1)C l/(2π)×1010(solid lines,scale on left axis,note that these are fractional anisotropy moments and thus dimensionless)as a function of multipole l,for selected models normalized to the DMR maps(G´o rski et al.1998;Stompor1997). Panels a)−c)show selectedflat-Λmodels.The heavy lines are theΩ0=0.1,ΩB h2=0.005,and t0=12Gyr case,which is close to where the combined Python data likelihoods(marginalized over all but one parameter at a time)are at a maximum.Panel a)showsfiveΩB h2=0.005,t0=12 Gyr models withΩ0=0.1,0.3,0.5,0.7,and0.9in descending order at the l∼200peaks.Panel b)shows sevenΩ0=0.1,t0=12Gyr models withΩB h2=0.029,0.025,0.021,0.017,0.013,0.009, and0.005in descending order at the l∼200peaks.Panel c)shows sixΩ0=0.1,ΩB h2=0.005 models with t0=20,18,16,14,12,and10Gyr in descending order at the l∼200peaks.Panels d)−f)show selected open models.The heavy lines are theΩ0=0.2,ΩB h2=0.005,and t0=10 Gyr case,which is close to where the combined Python data likelihoods(marginalized over all but one parameter at a time)are at a maximum.Panel d)showsfiveΩB h2=0.005,t0=10Gyr models withΩ0=1,0.8,0.6,0.4,and0.2from left to right at the peaks(the peak of theΩ0=0.2 model is offscale).Panel e)shows sevenΩ0=0.2,t0=10Gyr models withΩB h2=0.029,0.025, 0.021,0.017,0.013,0.009,and0.005in descending order at l∼400.Panel f)shows sixΩ0=0.2,ΩB h2=0.005models with t0=20,18,16,14,12,and10Gyr in descending order at l∼400. Also shown are the Python zero-lag window functions W l(scale on right axis):I/II(long-dashed lines),IIIL(short-dashed lines),and IIIS(dotted lines).See Table1for W l-parameter values.Fig.3.–Confidence contours and maxima of the combined Python data two-dimensional posterior probability density distribution functions,as a function of the two parameters on the axes of each panel(derived by marginalizing the four-dimensional posterior distributions over the other two parameters).Dashed lines(crosses)show the contours(maxima)of the open case and solid lines (solid circles)show those of theflat-Λmodel.Panel a)shows the(ΩB h2,Ω0)plane,and panel b) shows the(t0,Ω0)plane.Fig.4.–Confidence contours and maxima of the two-dimensional(Q rms−PS,Ω0)posterior probability density distribution functions.Panels a),c),e),&g)in the left column show theflat-Λmodel and panels b),d),f),&h)in the right column show the open model.Note the different scale on the vertical(Q rms−PS)axes of pairs of panels in each row.Heavy lines show the±1and±2σconfidence limits and solid circles show the maxima of the two-dimensional posterior distributions derived from the combined Python I,II,and III data.Shaded regions show the two-dimensional posterior distribution1σ(denser shading)and2σ(less dense shading)confidence regions for the DMR data(G´o rski et al.1998;Stompor1997)in panels a)&b);for the SP94,ARGO,MAX4and5,White Dish and SuZIE data combination(R99b)in panels c)&d);for the previous data combination excluding SuZIE(R99b)in panels e)&f);and for the SP94Ka,MAX4ID,and MAX5HR data combination(R99b)in panels g)&h).The DMR results are a composite of those from analyses of the two extreme data sets:i)galactic frame with quadrupole included and correcting for faint high-latitude galactic emission;and ii)ecliptic frame with quadrupole excluded and no other galactic emission correction(G´o rski et al.1998).In panels c)−h)crosses show the maxima of the appropriate non-Python data two-dimensional posterior distributions.Fig.5.–One-dimensional posterior probability density distribution functions forΩ0,ΩB h2,t0, and Q rms−PS(derived by marginalizing the four-dimensional one over the other three parameters) in the open andflat-Λmodels.These have been renormalized to unity at the peaks.Dotted vertical lines show the confidence limits derived from these one-dimensional posterior distributions and solid vertical lines in panels g)and h)show the±1and±2σconfidence limits derived by projecting the combined Python I,II,and III data four-dimensional posterior distributions.The 2σDMR(marginalized and projected)confidence limits in panels g)and h)are a composite of those from the two extreme DMR data sets(see caption of Figure4).When the four-dimensional posterior distributions are normalized such that L(Q rms−PS=0µK)=1,the peak values of the one-dimensional distributions shown in panels a)−h)are2×10106,3×10106,6×10107,7×10107, 1×10105,2×10105,9×10104,and6×10104,respectively.Figure1a)Figure1b)Figure2Figure3Figure 4Figure5.1Figure5.2。