经典数列求和公式

合集下载

经典数列求和公式

经典数列求和公式

数列求和的基本方法和技巧利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 自然数列 4、 )12)(1(6112++==∑=n n n k S nk n 自然数平方组成的数列 [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:*提示:不要觉得重复和无聊,乘公比错位相减的关键就是熟练! 通项为{a n · b n },1、an 是自然数列,bn 是首项为1,q 为2的等比数列2、an 是正偶数数列,bn 是首项为1,q 为2的等比数列3、an 是正奇数数列,bn 是首项为1,q 为2的等比数列4、an 是正偶数数列,bn 是首项为3,q 为3的等比数列5、an 是正奇数数列,bn 是首项为3,q 为3的等比数列6、an 是自然数列,bn 是首项为3,q 为3的等比数列三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n四、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1))()1(n f n f a n -+= (2)111)1(1+-=+=n n n n a n ====》升级分母是n(n+2)呢?---重点掌握这个型[例7] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例8] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

常用的一些求和公式

常用的一些求和公式

常用的一些求和公式在数学中,求和公式是指通过特定的公式或者规律来表示一系列数的和。

求和公式在数学证明、数列运算、级数计算等方面有着广泛的应用。

下面是一些常用的求和公式:1.等差数列求和公式:对于一个等差数列,其前n项和可以通过以下公式求得:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项,an表示第n项。

2.等差数列通项公式:等差数列的通项公式为:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。

3.等比数列求和公式:对于一个等比数列,其前n项和可以通过以下公式求得(当公比r不等于1时):Sn=a1*(1-r^n)/(1-r)其中,Sn表示前n项和,a1表示首项,r表示公比。

4.等比数列通项公式:等比数列的通项公式为:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。

5.二项式定理:二项式定理是一个关于幂的展开公式,它可以用来求解任意整数幂的展开式。

二项式定理的公式如下:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 其中,C(n,k)表示从n个元素中选择k个元素的组合数。

6.等差数列前n项和的立方:对于一个等差数列的前n项和的立方,可以利用以下公式进行求解:(Sn)^3 = (n^2 * (a1 + an)^2) / 47.平方数和公式:平方数和公式用来求解1到n的所有平方数的和。

平方数和公式为:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/68.立方数和公式:立方数和公式用来求解1到n的所有立方数的和。

立方数和公式为:1^3+2^3+3^3+...+n^3=((n*(n+1))/2)^29.等差数列平方和公式:等差数列平方和公式用来求解一个等差数列的前n项平方的和。

等差数列平方和公式为:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/610.等差数列立方和公式:等差数列立方和公式用来求解一个等差数列的前n项立方的和。

数列求和公式方法总结

数列求和公式方法总结

数列求和公式方法总结数列是数学中一个重要的概念,它是由一系列按照一定规律排列的数构成的序列。

在数列中,求和是一个常见的问题,而求和公式和方法则是解决这一问题的关键。

本文将对数列求和的常见公式和方法进行总结,希望能够帮助读者更好地理解和掌握数列求和的技巧。

一、等差数列求和公式。

等差数列是指数列中相邻两项之差都相等的数列,常用的求和公式有以下两种:1. 等差数列的前n项和公式,Sn = (a1 + an) n / 2,其中a1为首项,an为末项,n为项数。

2. 等差数列的通项公式,an = a1 + (n-1) d,其中an为第n项,a1为首项,d为公差。

二、等比数列求和公式。

等比数列是指数列中相邻两项的比值都相等的数列,常用的求和公式有以下两种:1. 等比数列的前n项和公式,Sn = a1 (1 q^n) / (1 q),其中a1为首项,q为公比,n为项数。

2. 等比数列的通项公式,an = a1 q^(n-1),其中an为第n项,a1为首项,q为公比。

三、其他常见数列求和公式。

除了等差数列和等比数列外,还有一些其他常见的数列求和公式,如:1. 平方和公式,1^2 + 2^2 + 3^2 + ... + n^2 = n (n + 1) (2n + 1) / 6。

2. 立方和公式,1^3 + 2^3 + 3^3 + ... + n^3 = (n (n + 1) / 2)^2。

3. 斐波那契数列求和公式,F(n) = F(n+2) 1,其中F(n)为斐波那契数列的前n项和。

四、数列求和的常用方法。

除了利用求和公式外,还有一些常用的方法可以帮助我们求解数列的和,如:1. 数学归纳法,通过证明首项成立,然后假设第k项成立,推导出第k+1项也成立,从而得出结论。

2. Telescoping series,利用数列中相邻项之间的关系,将求和式中的部分项相互抵消,从而简化求和过程。

3. 倒序相消法,将数列按照相反的顺序排列,然后与原数列相加,利用相邻项之间的关系进行相消,从而简化求和过程。

数列求和公式七个方法

数列求和公式七个方法

数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。

一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。

二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。

三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。

Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。

四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。

递归数列的求和可以通过编写一个递归函数来实现。

例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。

五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。

斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。

六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。

设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。

七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。

数列求和公式的几种方法

数列求和公式的几种方法

数列求和公式的几种方法数列求和是数学中的一个重要问题,其解法有多种,下面将介绍几种常用的求和方法。

1.等差数列求和公式:当数列为等差数列时,可以使用等差数列求和公式来求和。

设首项为a,公差为d,共有n项,则等差数列的和Sn可以通过公式给出:Sn=(n/2)*(2a+(n-1)d)这个公式的推导比较复杂,不再详述。

2.等差数列求和的几何解释:我们可以通过对等差数列进行几何解释来得到求和公式。

首先,我们将等差数列排列成一个逆序的数列,然后把它与原数列叠加。

下面以等差数列1,2,3,4,5为例,进行解释。

1,2,3,4,55,4,3,2,1相加得到:6,6,6,6,6其和是n(a+an)/2,等差数列求和公式的等效形式。

3.等差数列和的差分法:我们可以利用数列的差分来求等差数列的和,方法如下:令Sn为等差数列的和,An为等差数列的第n项。

则Sn=A1+A2+A3+...+An=(A1+An)+(A2+An-1)+(A3+An-2)+...+(An)将上两行相加得到:2Sn=(A1+An)+(A1+An)+...+(A1+An)=(n/2)*(A1+An)这样就得到了等差数列求和公式。

4.等比数列求和公式:当数列为等比数列时,可以使用等比数列求和公式来求和。

设首项为a,公比为r,共有n项,则等比数列的和Sn可以通过公式给出:Sn=(a*(1-r^n))/(1-r)这个公式的证明需要使用数学归纳法。

5.级数求和:在数学中,级数是指无限等差数列的和。

常见的级数求和有等差级数、等比级数和调和级数等。

对于等差级数,其和可以通过等差数列求和公式得出。

对于等比级数,其和可以通过等比数列求和公式得出。

调和级数的和是一个无穷大,它表示为:S=1+1/2+1/3+1/4+...+1/n+...调和级数有很多有趣的性质和应用,但关于调和级数的求和公式目前还没有找到。

6.微积分方法:在微积分中,我们可以使用积分来求和。

对于连续函数f(x),我们可以通过积分得到其在区间[a,b]上的和:S = ∫[a, b] f(x) dx这种方法可以求解一些特殊的数列求和问题,比如调和级数的和。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

数列的求和公式

数列的求和公式

数列的求和公式数列是数学中常见的一个概念,指的是按照一定规律排列的一组数。

在实际问题中,经常需要求解数列的和,即把数列中的所有数相加得到一个结果。

为了方便计算,数学家们总结出了一些数列求和的公式。

1. 等差数列求和公式等差数列是指数列中每个相邻元素之间的差值相等的数列。

常见的等差数列求和公式如下:Sn = n/2 * (a1 + an)其中,Sn 表示等差数列的前n项和,n 表示项数,a1 表示首项,an 表示末项。

公式中的 "*" 表示乘法运算。

2. 等比数列求和公式等比数列是指数列中每个相邻元素之间的比值相等的数列。

常见的等比数列求和公式如下:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn 表示等比数列的前n项和,n 表示项数,a1 表示首项,q表示公比。

公式中的 "*" 表示乘法运算。

3. 平方数列求和公式平方数列是指数列中每个元素都是其下标的平方的数列。

平方数列求和公式如下:Sn = n/6 * (2n + 1) * (n + 1)其中,Sn 表示平方数列的前n项和,n 表示项数。

公式中的 "*" 表示乘法运算。

4. 立方数列求和公式立方数列是指数列中每个元素都是其下标的立方的数列。

立方数列求和公式如下:Sn = [n(n + 1)/2]^2其中,Sn 表示立方数列的前n项和,n 表示项数。

公式中的 "^" 表示乘方运算。

除了以上常见数列的求和公式外,还有许多其他类型的数列,每种数列都有相应的求和公式。

在实际应用中,根据所给数列的规律,可以推导出相应的求和公式,从而高效地计算数列的和。

总结数列的求和公式是数学中常用的工具,可以帮助我们快速计算数列的和。

根据不同类型的数列,有不同的求和公式。

熟练掌握这些公式,能够在解决实际问题时提高计算效率。

在应用公式时,需要注意各个参数的含义和取值范围,确保计算结果的准确性。

数列求和常用公式

数列求和常用公式

数列求和常用公式数列是数学中研究的一个重要概念,常常用来描述一系列按照一定规律排列的数。

在实际问题中,经常需要计算数列的和,因此数列求和的公式也是非常常用的。

数列求和的常用公式有很多种,下面我们将介绍其中一些常见的公式和相关的性质。

首先,最简单也是最基本的数列求和公式是等差数列的和公式。

等差数列是指数列中相邻两项之间的差值相等的数列。

对于一个等差数列,其和公式可以表示为:Sn = (a1 + an) × n / 2其中,Sn表示数列的前n项和,a1为数列的首项,an为数列的末项,n为数列的项数。

例如,对于等差数列1, 2, 3, 4, 5,其首项a1=1,末项an=5,项数n=5,代入公式可以得到:S5=(1+5)×5/2=15因此,该等差数列的前5项和为15对于一些特殊的数列,也可以应用其他数列求和公式。

例如,斐波那契数列是一个非常有趣的数列,其每一项都是前两项的和。

斐波那契数列的前n项和可以通过递推公式计算得到:S(n)=F(n+2)-1其中,S(n)表示斐波那契数列前n项的和,F(n)表示斐波那契数列的第n项。

除了等差数列和斐波那契数列之外,数列求和还有其他的一些常见公式。

例如,几何数列是指数列中相邻两项之间的比值相等的数列,其和公式可以表示为:Sn=a1×(1-q^n)/(1-q)其中,Sn表示几何数列的前n项和,a1为首项,q为公比。

还有一种常见的数列是平方数列,它的每一项都是一个平方数。

平方数列的和公式可以表示为:Sn=n×(n+1)×(2n+1)/6其中,Sn表示平方数列的前n项和,n为项数。

此外,还有一些其他的数列求和公式,例如等比数列、调和数列等。

这些公式在不同的数学问题中都有它们特定的应用。

需要注意的是,数列求和公式只适用于具有特定规律的数列。

对于一般的数列,我们通常需要借助数学的方法来推导求和公式。

数学中有很多求和方法,例如差分法、母函数法、递归关系等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的基本方法和技巧
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:d n n na a a n
S n n 2)
1(2)
(11-+=+=
2、等比数列求和公式:⎪⎩⎪⎨⎧
≠--=--==)1(11)1()
1(111q q q
a a
q q a q na S n n
n
3、 )1(211+==∑=n n k S n
k n 自然数列
4、 )12)(1(61
1
2
++==∑=n n n k S n
k n 自然数平方组成的数列
[例1] 已知3
log 1
log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.
[例2] 设S n =1+2+3+…+n ,n ∈N *,求1
)32()(++=n n
S n S
n f 的最大值.
二、错位相减法求和
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·
b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.
[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①
[例4] 求数列⋅⋅⋅⋅⋅⋅,2
2,,26,24,2232n n 前n 项的和.
通项为{a n · b n },
1、an 是自然数列,bn 是首项为1,q 为2的等比数列
2、an 是正偶数数列,bn 是首项为1,q 为2的等比数列
3、an 是正奇数数列,bn 是首项为1,q 为2的等比数列
4、an 是正偶数数列,bn 是首项为3,q 为3的等比数列
5、an 是正奇数数列,bn 是首项为3,q 为3的等比数列
6、an 是自然数列,bn 是首项为3,q 为3的等比数列
三、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a
a a n ,…
[例6] 求数列{n(n+1)(2n+1)}的前n 项和.
四、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1))()1(n f n f a n -+=
(2)1
11)1(1+-=+=n n n n a n ====》升级分母是n(n+2)呢?---重点掌握这个型 [例7] 求数列
⋅⋅⋅++⋅⋅⋅++,11
,,321
,211
n n 的前n 项和.
[例8] 在数列{a n }中,11211++⋅⋅⋅++++=
n n n n a n ,又1
2+⋅=n n n a a b ,求数列{b n }的前n 项的和.。

相关文档
最新文档