数列公式大全
高中数列基本公式大全

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式:an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{an}为等差数列,则(c>0)是等比数列。
12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c1) 是等差数列。
数列公式大全(高考)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
高中数学数列公式大全

一、高中数列基本公式:二、1、一般数列的通项a n与前n项和S n的关系:a n=三、2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d(其中a1为首项、a k为已知的第k项)当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n= S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n= S n=二、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3一、11、{a n}为等差数列,则(c>0)是等比数列。
高中数学数列公式大全(很齐全哟~!)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
数列公式总结

数列公式总结数列是数学中一个非常重要的概念,它是由一系列按照一定规律排列的数所组成的序列。
数列公式是描述数列规律的表示方法,用于求解数列中的任意项或特定位置的值。
在数学中,有多种常见的数列公式,如等差数列公式、等比数列公式以及级数公式等。
下面我将对这些常见的数列公式进行详细的总结。
一、等差数列公式等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d,则等差数列的通项公式为:an = a₁ + (n-1)d其中an为等差数列的第n项,n为项数。
等差数列的前n项和公式为:Sn = (n/2)(a₁ + an)其中Sn为等差数列的前n项和。
二、等比数列公式等比数列是指数列中相邻两项之比都相等的数列。
等比数列的首项为a₁,公比为q,则等比数列的通项公式为:an = a₁ * q^(n-1)其中an为等比数列的第n项,n为项数。
等比数列的前n项和公式为:Sn=a₁*(1-q^n)/(1-q)注意,在等比数列中,如果公比q>1,那么数列呈现递增趋势;如果0<q<1,数列呈现递减趋势。
三、级数公式级数是指无穷个数项的和。
级数也可以看作是数列的前n项和在n趋近于无穷时的极限。
常见的级数公式有以下几种:1.等差级数的通项和公式为:Sn = n/2 * (a₁ + an)其中Sn为等差级数的前n项和,a₁为等差级数的首项,an为等差级数的第n项,n为项数。
2.等比级数的通项和公式为:Sn=a₁*(1-q^n)/(1-q)其中Sn为等比级数的前n项和,a₁为等比级数的首项,q为等比级数的公比,n为项数。
3.幂级数是指以x为变量的无穷项幂次和的级数。
幂级数可以表示为:S(x)=a₀+a₁x+a₂x²+a₃x³+...其中a₀,a₁,a₂,a₃,...为系数。
四、斐波那契数列公式斐波那契数列是指从第三项起,每一项都是前两项之和的数列。
斐波那契数列的通项公式为:an = a₁ + a₂ + a₃ +... + aₙ = (a₁ + (√5 - 1) / 2)^(n+2) /√5 - (a₂ + (√5 + 1) / 2)^n / √5其中a₁和a₂为斐波那契数列的前两项。
数列常用公式

数列常用公式一.等比数列(字母q表示公比)1.通项公式:A n= A1·q n-1若通项公式变形为:A n=A1/q·q n (n∈N*),当q>0时,则可把A n看作自变量n的函数,点(n, A n)是曲线y= A1/q·q x上的一群孤立的点。
2.任意两项A m,A n的关系为A n=A m·q (n-m)3.A1·A n=A2·A n-1=A3·A n-2=…=A k·A n-k+1,k∈{1,2,…,n}4.等比中项:A q·A p=A r2,A r则为A q,A p等比中项。
另外,一个各项均为正数的等比数列各项取同底数对数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂C An,则是等比数列。
在这个意义下,一个正项等比数列与等差数列是“同构”的。
性质:①若m、n、p、q∈N*,且m+n=p+q,则A m·A n= A q·A p;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G2=a·b(G≠0)”.5. 等比数列前n项之和:S n=A1(1-q n)/(1-q)或S n=( A1- A n·q)/(1-q)(q≠1)S n=n·A1(q=1)等比数列中,首项A1与公比q都不为零.二.等差数列(字母d表示公差)1.通项公式:A n=A1+(n-1)·d或A n=A m+(n-m)·d2.前n项和公式:S n=n·A1+[n·(n-1)/2] dS n=(A1+A n)·n/2若m+n=2p则:A m+A n=2A p三.基本方法A n=S n-S n-1(n≥2)1.累和法(A n-A n-1= A n-1 - A n-2=… A2- A1=…将以上各项相加可得A n)。
数列公式总结

数列公式总结数列是离散数学中的一个重要概念,在数学的许多分支中都有应用,如代数、几何、概率等。
数列公式是描述数列的规律的一种方式,它可以帮助我们更好地理解和分析数列的性质。
数列公式总结主要包括等差数列公式、等比数列公式和斐波那契数列公式。
1. 等差数列公式:等差数列是指数列中相邻两项之差保持不变的数列。
常用的等差数列公式有:a. 通项公式:第n项的公式为an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。
b. 前n项和公式:前n项和的公式为Sn = (n/2)(a1 + an),其中Sn为前n项的和。
2. 等比数列公式:等比数列是指数列中相邻两项之比保持不变的数列。
常用的等比数列公式有:a. 通项公式:第n项的公式为an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。
b. 前n项和公式:前n项和的公式为Sn = (a1 * (r^n - 1))/(r -1),其中Sn为前n项的和。
3. 斐波那契数列公式:斐波那契数列是指数列中每一项都是前两项之和的数列。
斐波那契数列公式如下:a. 通项公式:第n项的公式为Fn = F(n-1) + F(n-2),其中Fn 为第n项,F(1) = 1,F(2) = 1。
b. 递推公式:通过迭代计算可以求得斐波那契数列的各项。
在使用数列公式时,我们需要注意以下几点:a. 确定数列类型:首先要明确数列是等差数列、等比数列还是斐波那契数列,然后选择相应的公式。
b. 确定已知信息:根据已知条件,确定数列的首项、公差、公比等参数。
c. 应用公式计算:根据所选择的数列公式,将已知参数代入公式中,计算出需要的结果。
总之,数列公式是理解和分析数列的重要工具,掌握常用的数列公式可以帮助我们解决各种数学问题,提高数学思维能力。
数列公式大全(高考)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列公式大全
设An为等差数列,d为公差
性质1)An=A1+(n-1)d=Am+(n-m)d
Sn=n(A1+An)/2=nA1+n(n-1)d/2
2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k)
3)若a+b=c+d,则Aa+Ab=Ac+Ad
设An为某数列,Sn为前n项和,则有以下几点性质:
4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差
数,Sn是不含常数项的关于n的二次函数.
5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即
x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)]
所以Bn=An-b/(1-a)为等比数列
6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令
ax^2+bx+c=0的根为x1,x2,则
An-x1A(n-1)=x2[A(n-1)-x1A(n-2)]
An-x2A(n-1)=x1[A(n-1)-x2A(n-2)]
令B(n-1)=An-x1A(n-1) (1)
B(n-1)'=An-x2A(n-1) (2)
则Bn,Bn'为等比数列,从而可以求出Bn,Bn'。
再解(1)(2)方程组可求出An。
7)若An>0,形如An^a=cA(n-1)^b的数列可化为5)的形式,即两边取对数
即:algAn=blgA(n-1)+lgc,令Bn=lgAn,即aBn=bB(n-1)+c
等差数列:Sn=a1n+n(n-1)d/2
等比数列:1:q=1时;Sn=na1
2:q#1时;Sn=a1(1-q的n次方)/(1-q)
求和
等差“(首数+末数)*项数/2
等比数列求和公式=首项*(1-比值^项数)/(1-比值)
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:
2、 等比数列求和公式:
自然数方幂和公式:
3、 4、
5、
[例] 求和1+x2+x4+x6+…x2n+4(x≠0)
解: ∵x≠0
∴该数列是首项为1,公比为x2的等比数列而且有n+3项
当x2=1 即x=±1时 和为n+3
评注:
(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨
论.
(2)要弄清数列共有多少项,末项不一定是第n项.
对应高考考题:设数列1,(1+2),…,(1+2+ ),……的前顶和为 ,则 的
值。
二、错位相减法求和
错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an? bn}
的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比 ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
[例] 求和: ( )………………………①
解:由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积 设 ………………………. ② (设制错位)
①-②得 (错位相减)
再利用等比数列的求和公式得:
∴
注意、1 要考虑 当公比x为值1时为特殊情况
2 错位相减时要注意末项
此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对应高考考题:设正项等比数列 的首项 ,前n项和为 ,且 。
(Ⅰ)求 的通
项; (Ⅱ)求 的前n项和 。
三、反序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .
[例] 求证:
证明: 设 ………………………….. ①
把①式右边倒转过来得
(反序)
又由 可得
…………..…….. ②
①+②得 (反序相加)
∴
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
若数列 的通项公式为 ,其中 中一个是等差数列,另一个是等比数列,求和时
一般用分组结合法。
[例]:求数列 的前n项和;
分析:数列的通项公式为 ,而数列 分别是等差数列、等比数列,求和时一般用
分组结合法;
[解] :因为 ,所以
(分组)
前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此
五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通
项分解(裂项)如:
(1) (2)
(3) (4)
(5)
[例] 求数列 的前n项和.
解:设 (裂项)
则 (裂项求和)
=
=
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都
互相抵消了。
只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
[练习] 在数列{an}中, ,又 ,求数列{bn}的前n项的和.
六、合并法求和
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例] 在各项均为正数的等比数列中,若 的值.
解:设
由等比数列的性质 (找特殊性质项)
和对数的运算性质 得
(合并求和)
=
=
=10
数列的求和方法多种多样,它在高考中的重要性也显而易见。
我们的学生在学习中必须要掌握好几种最基本的方法,在解题中才能比较容易解决数列问题。