电路基础第1-4章

合集下载

《电路分析基础》习题参考答案

《电路分析基础》习题参考答案

《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。

精品文档-电路基础(第三版)(王松林)-第1章

精品文档-电路基础(第三版)(王松林)-第1章

第 1 章 电路的规律
综合与设计两类问题。电路分析的任务是根据已知的电 路结构和元件参数,求解电路的特性; 电路综合与设计是根 据所提出的对电路性能的要求,确定合适的电路结构和元件 参数,实现所需要的电路性能。近年来,有些学者提出电路 的“故障诊断”应作为电路理论的第三类问题。电路的故障 诊断是指预报故障的发生及确定故障的位置、识别故障元件 的参数等技术。
第 1 章 电路的规律
1.1.3 电路理论起源于物理学中电磁学的一个分支,若从欧姆
定律(1827年)和基尔霍夫定律(1845年)的发现算起,至今至 少已有160多年的历史。随着电力和通信工程技术的发展, 电路理论逐渐形成为一门比较系统且应用广泛的工程学科。 自20世纪60年代以来,新的电子器件不断涌现,集成电路、 大规模集成电路、超大规模集成电路的飞跃进展,计算机技 术的迅猛发展和广泛使用等,都给电路理论提出了新课题,
(1.2-3)
第 1 章 电路的规律
能量对时间的变化率称为电功率。于是,电路元 件吸收的电功率p(t)
p(t)def d w(t) u(t)i(t) dt
(1.2-4a)
第 1 章 电路的规律
需要注意的是,式(1.2-4a)是在电压、电流为关联参考 方向下推得的(参看图1.2-4(a)),如果电压、电流为非关联 参考方向,如图1.2-4(b)所示,则电路元件吸收的功率p(t)
第 1 章 电路的规律
图 1.2-1 电流的参考方向
第 1 章 电路的规律
1.2.2 电路中,电场力将单位正电荷从某点移到另一点所
作的功定义为该两点之间的电压,也称电位差,用u或 u(t)
(1.2-2)
第 1 章 电路的规律
电压的参考极性是任意指定的,一般用“+”、“-”极性 表示; 有时也用箭头表示参考极性(如图1.2-2(b)所示),箭头 由“+”极指向“-”极; 也可用双下标表示,如uab表示a点为 “+”极,b点为“-”

电路基础课后习题集答案解析(专科教材)

电路基础课后习题集答案解析(专科教材)

第1章章后习题解析1.1 一只“100Ω、100 W ”的电阻与120 V 电源相串联,至少要串入多大的电阻 R 才能使该电阻正常工作?电阻R 上消耗的功率又为多少?解:电阻允许通过的最大电流为1100100'===R P I A 所以应有 1120100=+R ,由此可解得:Ω=-=201001120R电阻R 上消耗的功率为 P =12×20=20W1.2 图1.27(a )、(b )电路中,若让I =0.6A ,R =? 图1.27(c )、(d )电路中,若让U =0.6V ,R =?解:(a)图电路中,3Ω电阻中通过的电流为 I ˊ=2-0.6=1.4A R 与3Ω电阻相并联,端电压相同且为 U =1.4×3=4.2V 所以 R =4.2÷0.6=7Ω(b)图电路中,3Ω电阻中通过的电流为 I ˊ=3÷3=1A R 与3Ω电阻相并联,端电压相同,因此 R =3÷0.6=5Ω (c)图电路中,R 与3Ω电阻相串联,通过的电流相同,因此R =0.6÷2=0.3Ω(d)图电路中,3Ω电阻两端的电压为 U ˊ=3-0.6=2.4V R 与3Ω电阻相串联,通过的电流相同且为 I =2.4÷3=0.8A 所以 R =0.6÷0.8=0.75ΩΩΩ 图1.27 习题1.2电路图1.3 两个额定值分别是“110V ,40W ”“110V ,100W ”的灯泡,能否串联后接到220V 的电源上使用?如果两只灯泡的额定功率相同时又如何?解:两个额定电压值相同、额定功率不等的灯泡,其灯丝电阻是不同的,“110V ,40W ”灯泡的灯丝电阻为: Ω===5.302401102240P U R ;“110V ,100W ”灯泡的灯丝电阻为:Ω===12110011022100P U R ,若串联后接在220V 的电源上时,其通过两灯泡的电流相同,且为:52.01215.302220≈+=I A ,因此40W 灯泡两端实际所加电压为:3.1575.30252.040=⨯=U V ,显然这个电压超过了灯泡的额定值,而100 W 灯泡两端实际所加电压为:U 100=0.52×121=62.92V ,其实际电压低于额定值而不能正常工作,因此,这两个功率不相等的灯泡是不能串联后接到220V 电源上使用的。

《电路分析基础》第一章~第四章练习题

《电路分析基础》第一章~第四章练习题
填空题参考答案:
1、电路;2、理想器件;3、电路模型;4、电路模型;5、集总参数元件;6、几何尺寸;7、用来描述电路性能;8、i u q ψ;9、正电荷;10、参考方向;11、电位差;12、电流参考方向与电压降的选择一致;13、P(t)=dW(t)/ dt;14、吸收功率产生功率;15、能量传输;16、任意选取;17、任意选取;18、一条支路;19、支路电压;20、支路电流;21、节点;22、回路;23、网孔;24、网络;25、拓扑约束;26、元件约束;27、拓扑约束元件约束;28代数和;29、支路电流;30、电压降;31、路径;32、线性;33、原点;34、电导;35、线性电阻非线性电阻;36、P=UI;37电源;38、外电路;39、外电路;40、串联;41、并联;42、分压;43、分流;44、控制受控;45、控制量;46、n-1 b-n+1;47、线性电路;48、线性含源;49、完备性独立性;50、假设;51、网孔分析法;52、KVL;53、独立节点;54、单口网络;55、端口电压与电流的伏安关系等效电路;56、外接电压源外接电流源;57、外接电路;58、非线性电路;59、伏安特性曲线;60、网络内部;61、理想电压源;62、理想电流源;63、一个理想电压源uS;64、一个理想电流源iS;65、大小相等且极性一致;66、大小相等且方向一致;67、线性含源单口网络;68、uOC/iSC;69、外加电源法开路短路法;70、负载RL应与戴维南等效
三、计算分析题
1、电路如图1所示,已知us 12V,试求u2和等效电阻Rin。
2、电路如图2所示,试求电流i和电压u。
3、电路如图3所示,试用叠加定理求电压U和电流I。
4、电路如图4所示,试用叠加定理求电压U。
5、电路如图5所示,试用叠加定理求电压U和电流I。

电工基础第1章知识要点解读

电工基础第1章知识要点解读
表1.2常见固定电阻器比较
序号
名称
图形符号
主要用途
1
碳膜
电阻器
目前电子、电气产品使用量最大、价格最便宜、品质稳定性和信赖度较高的电阻器
2
金属膜
电阻器
常用在要求较高的电路中,如各种测试仪表
3
线绕
电阻器
在大功率电阻电路中作为分压电阻和分流电阻,在电源电路中作为限流电阻
2.可变电阻器
可变电阻器是阻值可变的电阻器,也称电位器,分为半可变电阻器和电位器。常见可变电阻器比较见表1.3。
(3)表达式:Q=I2Rt
4.最大功率输出定理
(1)内容:当负载电阻R和电源内阻r相等时,电源输出功率最大(负载获得最大功率)Pmax。
(2)表达式:当R=r时
Pmax=
(3)负载匹配(阻抗匹配):负载电阻等于电源电阻。——欧姆(Ω)6
电能
W
电荷定向移动形成的电流所做的功
W=Uq=UIt
——
焦耳
(J)
7
电功率
P
描述电流做功快慢的物理量
——
瓦特(W)
三、电阻器
电阻器是利用金属或非金属材料对电流起阻碍作用的特性制成,通常被称为电阻。它在电路中起分压、分流和限流等作用。
1.固定电阻器
固定电阻器是阻值不能改变的电阻器,文字符号为R。常见固定电阻器比较见表1.2。
序号
(2)电阻器的主要参数
电阻器的主要参数有标称阻值、允许误差和额定功率等。电阻器主要参数的标注方法有直标法、文字符号法、数码法和色标法,见表1.5。
表1.5电阻器主要参数标注方法比较
序号
标注方法
电阻值识读要点
允许误差识读要点
1

第一章电路基础知识中专

第一章电路基础知识中专

§1—4 电功和电功率
1.理解电功、电功率的概念。 2.掌握电功、电功率和焦耳热的计算方法。 3.能正确识读电气设备所标额定值的含义。
一、电功 电流做功的过程,实质上就是将电能转化为其 他形式的能的过程。
电流所做的功,称为电功,用字母W 表示。电
流在一段电路上所做的功等于这段电路两端的电
压U 、电路中的电流I和通电时间t三者的乘积,即:
电路的组成
一、电路各组成部分的功能 1、电源是把其他形式的能量转换为电能的装置。 2、负载是消耗电能的装置, 也称为用电器。负 载的作用是把电能转换为其他形式的能量。 3、控制装置及导线用于连接电源和负载,使它 们构成电流的通路,把电源的能量输送给负载, 并根据需要控制电路的通、断。 4、 保护装置保证电路的安全运行。
之间的电压,即Uab=Ua-Ub,故电压又称电位差。
电路中某点的电位与参考点的选择有关,但 两点间的电位差与参考点的选择无关。
3. 电动势
电源力将单位正电荷从电源负极经电源内部移到 正极所做的功称为电源的电动势,用E 表示,单位 为伏特(V)。
电源的电动势在数值上等于电源没有接入电路 时两极间的电压。电动势的方向规定为在电源内 部由负极指向正极。
遵循欧姆定律的电阻称为线性电阻,它表示该段 电路电压与电流的比值为常数。
即: RU常数 I
电路端电压与电流的关系称为伏安特性。
线性电阻的伏安特性
I/A
是一条过原点的直线。
o
U/V
线性电阻的伏安特性
电源与负载的判别
(1) 根据 U、I 的实际方向判别
电源:
U、I 实际方向相反,即电流从“+”端流出,
例: 应用欧姆定律对下图电路列出式子,并求电阻R。

《电路基础》教材目录

《电路基础》教材目录

《电路基础》目录第1章电路的基本概念、基本定律1.1 电路和电路模型1.1.1电路的组成及功能1.1.2 电路模型1.2 电路的基本物理量1.2.1 电流1.2.2 电压、电位和电动势1.2.3 电功和电功率1.2.4 参考方向1.3 基尔霍夫定律1.3.1 几个常用的电路名词1.3.2 结点电流定律(KCL)1.3.3 回路电压定律(KVL)1.4 电压源和电流源1.4.1 理想电压源1.4.2 理想电流源1.4.3 实际电源的两种电路模型1.5 电路的等效变换1.5.1 电阻之间的等效变换1.5.2 电源之间的等效变换1.6 直流电路中的几个问题1.6.1电路中各点电位的计算1.6.2 电桥电路1.6.3 负载获得最大功率的条件1.6.4 受控源小结习题技能训练项目一:电路测量预备知识及技能的训练技能训练项目二:实验一:基尔霍夫定律的验证第2章电路的基本分析方法2.1 支路电流法2.2 回路电流法2.3 结点电压法2.3.1 结点电压法2.3.2 弥尔曼定理2.4 叠加定理2.5 戴维南定理小结习题实验二:叠加定理和戴维南定理的验证第3章单相正弦交流电路3.1 正弦交流电路的基本概念3.1.1正弦量的三要素3.1.2 相位差3.2 单一参数的正弦交流电路3.2.1 电阻元件3.2.2 电感元件3.2.3 电容元件小结习题实验三:三表法测量电路参数第4章相量分析法4.1 复数及其运算4.1.1复数及其表示方法4.1.2 复数运算法则4.2 相量和复阻抗4.2.1 相量4.2.2 复阻抗4.3 相量分析法4.3.1 RLC串联电路的相量模型分析4.3.2 RLC并联电路的相量模型分析4.3.3 应用实例4. 4 复功率小结习题实验四:日光灯电路的连接及功率因数的提高第5章谐振电路5.1 串联谐振5.1.1 RLC串联电路的基本关系5.1.2 串联谐振的条件5.1.3 串联谐振电路的基本特性*5.1.4 串联谐振回路的能量特性5.1.5 串联谐振电路的频率特性5.2 并联谐振5.2.1 并联谐振电路的谐振条件5.2.2 并联谐振电路的基本特性5.2.3 并联电路的频率特性5.2.4 并联谐振电路的一般分析方法5.2.5 电源内阻对并联谐振电路的影响5.3 正弦交流电路的最大功率传输5.4 谐振电路的应用小结习题实验五:串联谐振的研究第6章互感耦合电路与变压器6.1 互感的概念6.1.1互感现象6.1.2 互感电压6.1.3 耦合系数和同名端6.2 互感电路的分析方法6.2.1 互感线圈的串联6.2.2 互感线圈的并联6.2.3 互感线圈的T型等效6.3 空心变压器6.4 理想变压器6.4.1 理想变压器的条件6.4.2 理想变压器的主要性能6.5 全耦合变压器6.5.1 全耦合变压器的定义6.5.2 全耦合变压器的等效电路6.5.3 全耦合变压器的变换系数小结习题实验六:变压器参数测定及绕组极性判别第7章三相电路7.1 三相交流电的基本概念7.2 三相电源的连接7.2.1 三相电源的Y形连接7.2.2 三相电源的Δ形连接7.3 三相负载的连接7.3.1 三相负载的Y形连接7.3.2 三相负载的Δ形连接7.4 三相电路的功率小结习题实验七:三相电路电压、电流的测量第8章电路的暂态分析8.1 换路定律8.1.1基本概念8.1.2 基本定律8.2 一阶电路的暂态分析8.2.1 一阶电路的零输入响应8.2.2 一阶电路的零状态响应8.2.3 一阶电路的全响应8.2.4 一阶电路暂态分析的三要素法8.3 一阶电路的阶跃响应8.3.1 单位阶跃函数8.3.2 单位阶跃响应8.4 二阶电路的零输入响应小结习题实验八:一阶电路的响应测试第9章非正弦周期电流电路9.1 非正弦周期信号9.1.1非正弦周期信号的产生9.1.2 非正弦周期信号9.2 谐波分析和频谱9.2.1 非正弦周期信号的傅里叶级数表达式9.2.2 非正弦周期信号的频谱9.2.3 波形的对称性与谐波成分的关系9.2.4 波形的平滑性与谐波成分的关系9.3 非正弦周期信号的有效值、平均值和平均功率9.3.1 非正弦周期量的有效值和平均值9.3.2 非正弦周期量的平均功率9.4 非正弦周期信号作用下的线性电路分析小结习题实验九:非正弦周期电流电路研究第10章二端口网络10.1 二端口网络的一般概念10.2 二端口网络的基本方程和参数10.2.1阻抗方程和Z参数10.2.2 导纳方程和Y参数10.2.3 传输方程和A参数10.2.4 混合方程和h参数势10.2.5 二端口网络参数之间的关系10.2.6 实验参数10.3 二端口网络的输入阻抗、输出阻抗和传输函数10.3.1 输入阻抗和输出阻抗10.3.2 传输函数10.4 线性二端口网络的等效电路10.4.1 无源线性二端口网络的T形等效电路10.4.2 无源线性二端口网络的Π形等效电路10.4.3 T形网络和Π形网络的等效变换10.4.4 多个简单二端口网络的连接10.5 二端口网络的特性阻抗和传输常数10.5.1 二端口网络的特性阻抗10.5.2 二端口网络的传输常数10.6 二端口网络的应用简介10.6.1相移器10.6.2 衰减器10.6.3 滤波器小结习题实验十:线性无源二端口网络的研究第11章均匀传输线11.1 分布参数电路的概念11.1.1分布参数电路11.1.2 分布参数电路的分析方法11.2 均匀传输线的正弦稳态响应方程式11.2.1 均匀传输线的微分方程11.2.2 均匀传输线方程的稳态解11.3 均匀传输线上的波和传播特性11.3.1 行波11.3.2 特性阻抗11.3.3 传播常数11.4 终端有负载的传输线11.4.1 反射系数11.4.2 终端阻抗匹配的均匀传输线11.4.3 终端不匹配的均匀传输线小结习题第12章拉普拉斯变换12.1 拉普拉斯变换的定义12.2 拉普拉斯变换的基本性质12.3 拉普拉斯反变换12.4 应用拉氏变换分析线性电路12.4.1 单一参数的运算电路12.4.2 耦合电感的运算电路12.4.3 应用拉氏变换分析线性电路小结习题实训项目二:常用元器件的识别、测试及焊接技术练习实训项目三:常用电工工具的使用及配盘练习。

电路基础(贺洪江)第二版-第1章

电路基础(贺洪江)第二版-第1章
换路定则
在分析暂态过程时,需要设定初 始条件,换路定则是确定初始条 件的规则。
一阶电路的响应
01
02
03
一阶电路
由一阶元件(如电阻、电 容、电感)组成的电路。
响应类型
根据激励源的性质,一阶 电路的响应可以分为零状 态响应、零输入响应和全 响应。
时间常数
决定一阶电路响应快慢的 参数,由电路的元件参数 和电路结构决定。
二阶电路的响应
二阶电路
由二阶元件(如RLC串联或并联 电路)组成的电路。
响应类型
二阶电路的响应也可以分为零状态 响应、零输入响应和全响应。
阻尼比和自然频率
二阶电路中与响应速度相关的参数, 阻尼比决定了响应的振荡程度,自 然频率决定了无阻尼时的振荡频率。
THANKS FOR WATCHING
感谢您的观看
基尔霍夫定律
总结词
基尔霍夫定律是电路分析中的基本定律之一,它包括电流定律和电压定律,用于解决电路中的电流和电压问题。
详细描述
基尔霍夫电流定律(KCL)指出,对于电路中的任何节点,流入节点的电流之和等于流出节点的电流之和。基尔 霍夫电压定律(KVL)则指出,对于电路中的任何闭合回路,环路电压的积分等于零。这两个定律在解决复杂电 路问题时非常有用。
单位时间内完成的功, 用符号P表示。
表示导体对电流阻碍作 用的物理量,用符号R表
示。
02
电路的基本定律
欧姆定律
总结词
欧姆定律是电路分析中最基本的定律之一,它描述了电路中电压、电流和电阻 之间的关系。
详细描述
欧姆定律是指在一个线性电阻元件中,电压与电流成正比,即 $V = IR$,其中 $V$ 是电压,$I$ 是电流,$R$ 是电阻。这个定律适用于金属导体和电解液等 线性元件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章直流电阻电路【学习要点】:本章主要介绍电学中的一些基本概念、基本定律、直流电阻电路的分析计算方法。

这些内容也是本书涉及到的最基础的电学知识。

为了使读者对抽象的概念、定律有更加感性的认识,本章列举了一些与日常生活息息相关的实例,力求做到使概念、定律、计算融为一体。

学习本章时,应注意把基本概念、基本定律与实际应用联系起来。

1.1 电路1.2 直流电阻电路1.1 电路一.电路与电路图1.电路的组成电路有三种基本状态:(1)通路;(2)开路;(3)短路。

2.电路图常用电路符号二. 电路中的基本物理量1.电流电荷的定向移动形成电流,并且规定正电荷移动方向为电流方向。

电流强度为:常用的电流强度的单位和它们之间的换算关系如下:1 A =103mA (毫安) 1mA = 103μA (微安)电流根据其大小、方向随时间变化情况的不同,可以分为以下几种: (1)直流电流; (2)稳恒电流; (3)脉动直流电流; (4)交流电流。

2. 电阻电流流过导体时会受到阻碍作用,这种阻碍作用用电阻来表示。

电阻的单位为欧姆(Ω),常用的单位如下:1k Ω = 103Ω 1M Ω = 103kΩ = 106Ω在温度不变时,横截面积均匀的导体的电阻与导体的长度成正比,与导体的横截面积成反比,并与导体材料的电阻率有关:电阻率是衡量材料导电能力的物理量。

电阻率越大的材料,其导电能力越弱;电阻率越小的材料,其导电能力越强。

3.电压和电位用V ab 表示a 、b 两点之间的电压,V a 、V b 分别表示a 、b 两点的电位,则a 、b 两点之间的电压为:b a ab V V V -=在分析计算电路中各点的电位时,一般先选择电路中某一点作为参考点,并规定参考点电位为0V ,然后其它各点的电位在数值上就等于该点和参考点之间的电压。

用电流的方向来判定电路中各点电位的高低。

4. 电源与电动势电源为整个电路提供电能。

电源有正极和负极两个端子,电位高的一端为正极,电位低的一端为负极。

电动势的单位和电压的单位一样,也是伏特(V),它的方向规定为从电源的负极经内部指向正极。

三. 欧姆定律1.部分欧姆定律它的表达式为:2. 全电路欧姆定律它的表达式为:3. 路端电压及电源外特性路端电压与电源输出电流之间的关系,也称为电源的外特性:随着电源输出电流增大,加在外电路电阻两端的路端电压会降低。

四.电功和电功率电流流过负载时要作功,称为电功,它等于负载在工作时消耗的电能。

电功与电压、电流强度、通电时间之间的关系为:W=tVI在实际生产生活中,常用的电功、电能的单位是“度”。

1度= 1千瓦时= 1kW×1h = 1000 W×3600 s= 3.6×106 J电功率是衡量在单位时间里,电流所作电功多少的物理量:或(纯电阻电路)五.电阻消耗的能量电流流过电阻时所作的电功,都转化成了热量,这种现象称为电流的热效应。

焦耳定律的表达式为:Q2=RtI六全电路中负载获得最大功率的条件只有当R = r o时,电源输出功率为最大值,即负载获得的功率最大,且最大值为:1.2 直流电阻电路直流电阻电路按复杂程度不同,可以分为简单直流电阻电路和复杂直流电阻电路。

简单直流电阻电路又可以分为电阻串联电路和电阻并联电路。

一.电阻串联电路电阻串联电路有如下一些特点:(1)电路的总电流等于流过各电阻的电流。

(2)电路的总电压等于各电阻两端电压之和。

(3)电路的总等效电阻等于各电阻之和。

(4)电路中各电阻两端的电压与电阻的阻值成正比,即阻值大的电阻,其两端的电压也大,阻值小的电阻,其两端的电压也小,这种关系称为分压关系。

(5)电路中各电阻消耗的功率与电阻的阻值成正比。

这表明阻值大的电阻消耗的功率多,阻值小的电阻消耗的功率少。

(6)电路中消耗的总功率等于各电阻消耗的功率之和。

二.电阻并联电路电阻并联电路有如下特点:(1)电路的总电流等于流过各电阻的分电流之和。

(2)电路的总电压等于各电阻两端的电压。

(3)电路总电阻的倒数等于各电阻倒数之和。

(4)电路中流过各电阻的电流与电阻的阻值成反比,即阻值大的电阻流过的电流小,阻值小的电阻流过的电流大,这种关系称为分流关系。

(5)电路中各个电阻消耗的功率与阻值成反比,表明阻值大的电阻消耗的功率少,阻值小的电阻消耗的功率多。

(6)电路中消耗的总功率等于各电阻消耗功率之和。

三.电阻混联电路既有电阻串联,又有电阻并联的电路,称为电阻混联电路。

1. 混联电路分类电阻混联电路可分为两大类:(1)能用电阻串、并联的方法简化为无分支回路的电路,称为简单直流电阻电路。

(2)不能用电阻串、并联的方法简化为无分支回路的,称为复杂直流电阻电路。

2. 电阻混联电路的简化简单直流电阻混联电路最终可以简化成无分支回路的电路形式。

常用的一种简化电路的方法是先利用电流的分、合关系,把电路转化为容易判断的串、并联形式,然后再等效变化为最简的无分支回路形式。

四.基尔霍夫定律1. 描述电路结构的基本概念(1)支路:指一个或多个元件连接而成的无分支电路。

(2)节点:指三条或三条以上的支路的连接点。

(3)回路:指任何一个闭合的电路。

2. 基尔霍夫定律基尔霍夫定律包含两个部分:1)基尔霍夫电流定律基尔霍夫电流定律又称节点电流定律,其内容为:电路中流入任意一个节点的电流之和等于流出该节点的电流之和。

2)基尔霍夫电压定律基尔霍夫电压定律又称回路电压定律,其内容为:电路中任意一个闭合回路中的所有电压降的代数和为零。

3. 应用基尔霍夫定律分析计算电路的基本步骤(1)假设各支路的电流方向,并标在电路图上;(2) 规定回路的绕行方向,并标在电路图上;(3) 对不同的回路,根据电流方向和绕行方向,判定各回路中所有电压降的正、负;(4)对应电路中的节点列节点电流方程,若电路有N个节点,列N-1个节点电流方程,具体对哪个节点列方程,不受限制;(5)对应电路中的回路列回路电压方程,若电路有M条支路,列M-(N-1)个回路电压方程;(6)根据节点电流方程和回路电压方程组,求解未知量;(7)根据求解结果,分析电路中未知量的实际方向,I为负值,表示电流I的实际方向与假设方向相反;I为正值,表示电流I的实际方向与假设方向相同。

五.电路中各点电位的计算电位的计算步骤。

(1) 选择电路中任意一点作为参考点,即零电位点,选择a点作为参考点;(2)分析并确定电路中电流的方向和大小;(3)求某一点的点位,它等于从该点起沿任意路径绕行到参考点,途经的所有电压降的代数和。

各部分电压降的正、负由电流方向和绕行路径确定。

在求解电路中某一点电位时,无论沿哪条路径进行,其求解结果都是唯一的。

但一般来说,都是选择电压降数量较少的路径来计算。

第2章电容电路及电磁感应【学习要点】:本章主要分析电容电路及电磁感应现象。

要求读者掌握电容器、电感器在电路中的工作原理及作用,理解电磁感应现象和磁场的基本规律。

学习本章时应注意以定性分析为主,重点是要能熟练分析电容器、电感器在电路中的作用。

2.1 电场2.2 电容电路2.3 磁场及其基本物理量2.4 电磁感应和电感2.1 电场一.电场电场可以用电力线形象地描述它的大小和方向。

电力线的箭头表示了电场的方向,电力线的疏密程度表示了电场的大小。

二.静电屏蔽金属空壳对电场有屏蔽作用的现象,称为静电屏蔽。

在电子技术中,常常需要把电子元件,有时甚至是整个电路,用接地的金属空壳封装起来,其目的之一就是利用接地金属空壳的静电屏蔽作用,使它们与外电路隔离,以免通过电场相互干扰。

2.2 电容电路在电子技术中电容器应用十分广泛,有滤波、积分、微分、移相、传输信号、储存能量等作用。

一.电容器的结构1. 电容器的结构电容器由两个彼此绝缘而又相互靠近的导体构成。

2. 电容器的容量电容器所带的电量称为电容器的电容量,简称电容或容量,用C表示,即:常用的容量单位及它们之间的换算关系如下:1F = 106µF ,1µF=103nF ,1nF =103pF ,1µF=106pF电容器的容量C与电容器两极板的正对面积S成正比,与两极板的距离d成反比,并且还与两极板之间的绝缘材料(介质)的介电常数ε有关,它们的关系式为:3. 电容器的额定直流工作电压电容器两端的电压升高到一定值时,两极板之间的绝缘介质会被击穿而导电,这个电压值称为电容器的击穿电压。

电容器能够长时间正常工作所加的最高直流电压,称为电容器的额定直流工作电压,它比击穿电压小。

二.电容器的充电和放电1. 电容器的充电充电后的电容器,其内部存在电场,电源提供给电容器的能量就是以电场能的形式存储在电容器上。

2. 电容器的放电电容器在放电过程中,其存储的电场能逐渐转化为热能而被电阻消耗。

3. 电容器在交流电路中的充、放电在直流电路中,只有在电容器充、放电过程中才有电流,充、放电结束后,电流变为零,所以称电容器有“隔直流”的作用。

当电容器两端接交流电源时,电路中始终会存在充、放电电流,所以形象地称电容器有“通交流”的作用。

4 . RC电路的时间常数为了衡量电容器充、放电的快慢,常引入时间常数的概念,它等于电阻与电容的乘积,用τ表示,即:τ = RC时间常数越大,充、放电越慢,时间常数越小,充、放电越快。

三.电容器的联接电容器和电阻一样,在电路中也有串、并联联接方式。

1. 电容器的串联电容器串联电路有如下一些特点:(1)电路中每个电容所带电量都相等,且等于总等效电容所带电量;(2)电路的总电压等于各电容器两端电压之和;(3)电路总电容的倒数等于各电容的倒数之和;(4)电路中,各电容器两端的电压与电容器的容量成反比,即容量大的,两端的电压小,容量小的,两端的电压大,这种关系称为电容器的分压关系。

2. 电容器的并联电容器并联电路有如下一些特点:(1)电路中所有电容器所带的总电量,等于各电容器所带电量之和;(2)电路中各电容器两端电压都相等,且等于电路的总电压;(3)电路的总电容等于各电容之和;(4)电路中,电容器所带电量与电容器的容量成正比,即容量大的,所带电量多,容量小的,所带电量少。

2.3 磁场及其基本物理量一.磁场和磁力线磁场可以用磁力线形象地描述它的大小和方向。

二.电流的磁场自然界中除磁铁能产生磁场外,电流也能产生磁场,这种现象称为电流磁效应。

直导线中的电流产生的磁场的方向可以用安培定则来判定:用右手握住直导线,大拇指伸直指向电流方向,四指所指方向就是磁场方向。

环形导线中的电流产生的磁场方向也可以用安培定则来判定:用右手握住环形导线,四指指向电流方向,大拇指伸直所指的方向就是磁场方向。

三.磁场的基本物理量1. 磁感应强度磁感应强度是衡量磁场大小和方向的物理量,用B表示,单位为特斯拉(T),简称特。

相关文档
最新文档