汽车防撞避撞控制系统

合集下载

汽车防撞预警系统设计开题报告

汽车防撞预警系统设计开题报告

开题报告1.文献综述1.1课题设计(或研究)的内容编程实现以单片机为核心的汽车智能防撞报警功能。

选择某一频率的超声波,通过测量其发送和接收的时间差,计算汽车与周围物体之间的距离,利用LED对距离进行显示,当距离小于安全距离时给出报警,到危险距离时输出信号对汽车制动,达到防撞的目的。

1.2设计(或研究)的依据与意义近年来,随着经济的快速发展和人民生活水平的提高。

到2010年,全球汽车保有量达到十亿辆,中国达到了七千万辆。

据中国工业协会统计,2009年我国累计生产汽车1379.10万辆,同比增长48.3%;销售汽车1364.48万辆,同比增长46.2%,这样的数据说明了中国是拥有一个勃勃生机的汽车市场和经济前景。

建设部近日提供的统计数据显示,我国私人汽车拥有量年均增速在20%左右,大大快于经济增速。

然而随着汽车拥有量的快速增加,交通安全等一系列问题也越发明显。

为应对这一问题,各种智能交通系统也应运而生。

智能交通系统ITS 是目前世界上交通运输科学技术的前沿技术,它在充分发挥现有基础设施的潜力,提高运输效率,保障交通安全,缓解交通赌塞,改善城市环境等方面的卓越效能,已得到各国政府的广泛关注。

中国政府也高度重视智能交通系统的研究开发与推广应用。

汽车防撞系统作为ITS 发展的一个基础,它的成功与否对整个系统有着很大的作用。

从传统上说,汽车的安全可以分为两个主要研究方向:一是主动式安全技术,即防止事故的发生,该种方式是目前汽车安全研究的最终目的;二是被动式安全技术,即事故发生后的乘员保护。

在过去20—30年中,人们主要把精力集中于汽车的被动安全性方面,例如,在汽车的前部或后部安装保险杠、在汽车外壳四周安装某种弹性材料、在车内相关部位安装各种形式的安全带及安全气囊等等,以减轻汽车碰撞带来的危害。

安装防撞保险杠固然能在某种程度上减轻碰撞给本车造成损坏,却无法消除对被撞物体的伤害;此外,车上安装的安全气囊系统,在发生车祸时不一定能有效地保护车内乘务员的安全。

汽车雷达防撞

汽车雷达防撞

一.汽车防撞系统的定义及组成。

CCAS就是「Car Collision Avoidance System 」的简称,即为「汽车防撞系统」。

防撞雷达装置即汽车防撞系统,是防止汽车发生碰撞的一种智能装置。

它能够自动发现可能与汽车发生碰撞的车辆、行人、或其它障碍物体,发出警报或同时采取制动或规避等措施,以避免碰撞的发生。

防撞雷达装置主要由三个部分组成:(1)信号采集系统:采用雷达、激光、声纳等技术自动测出本车速度、前车速度以及两车之间的距离;(2)数据处理系统:计算机芯片对两车距离以及两车的瞬时相对速度进行处理后,判断两车的安全距离,如果两车车距小于安全距离,数据处理系统就会发出指令;(3)执行机构:负责实施数据处理系统发来的指令,发出警报,提醒司机刹车,如司机没有执行指令,执行机构将采取措施,比如关闭车窗、调整座椅位置、锁死方向盘、自动刹车等;防撞雷达装置高集成化、高智能化、高适应性:集声、光、电、机多方面的高科技组合。

智能化的处理器,识别处理指令速度远远高于人脑的最快反映速度。

适用于各种类型汽车的安装。

由于车祸事件日驱严重,所以近年来各国(尤以欧洲为主),都在致力发展CCAS,但由于其成本高昂而未得到广泛的应用。

二.DSP(Digital Signal Processing)的介绍DSP是一种价格低廉但性能高的芯片,将接受到的讯号(从雷达那)转成数字讯给计算机,让计算机做距离等的运算判断,别于现在市面上的倒车雷达,它必须精密计算,并且自动煞车,此芯片也正朝自动驾驶迈进!DSP是微处理器的一种。

这种微处理器具有极高的处理速度。

DSP的出现使得极大的推动了汽车防撞雷达技术研究,使汽车防撞雷达系统在普通汽车中的实现和普及成为可能。

三.汽车防撞的几种探测方式目前汽车防撞系统按目标探测方式主要有激光、超声波、红外等一些测量方法,不同的目标探测方式其工作过程和原理有不同之处,但它们的主要目的都是通过前方返回的探测信息判断前方车辆和本车间的相对距离,并根据两车间的危险性程度做出相应的预防措施。

汽车防碰撞系统研究文献综述

汽车防碰撞系统研究文献综述

汽车防碰撞系统研究文献综述1.引言汽车碰撞有汽车碰撞到固定的物体或与行驶中的汽车相撞两种类型。

为了防止汽车在行驶中,特别在高速行驶时发生碰撞,一些现代汽车已装备了自动控制防碰撞系统,这是一种主动安全系统。

汽车行驶时,防碰撞系统处于监测状态,当汽车接近前车车尾或超越前车时,该系统将发出警告信号。

在发出警告后,如果驾驶员没有采取减速制动措施,该系统便启动紧急制动装置,以避免发生碰撞事故。

2.概述防碰撞控制系统装有测距传感器,它们利用激光、超声波或红外线,测得汽车与障碍物间的距离,这个距离信号,加上车速传感器和车轮转角传感器的信号送入电子控制器,通过计算求出行驶汽车与前方物体的实际距离以及相互接近的相对速度,并向驾驶员发出预告信号或显示前方物体的距离。

当将要碰撞时,控制器向制动装置和节气门控制电路发出控制指令,使汽车发动机降速并及时制动,从而有效地避免碰撞。

3.测距传感器(1)防碰撞传感器① CCD照相机CCD(电荷耦合器件)摄像元件可以读取受光元件接收的光通量放出的电流值,并作为图像信号输出。

在夜间,由于照相机处于低照度的环境,只有在汽车前、后照灯打开时才能确认障碍物。

汽车装设的CCD照相机如上图所示,当点火开关接通时,变速器换档杆换到前进档或倒档,多功能显示板上就能显示出车辆前方或后方的图像。

② 激光雷达激光雷达是从激光发送至被测物体,然后反射回来被接收,其间的时间差即用来计算至障碍物的距离。

早期的车用激光雷达都是发送多股激光光束,并依靠前车反射镜的反射时间来测定距离。

现代汽车除了测定前方车的距离外还要对前方多辆车的位置进行辨识,因而开始采用扫描式激光雷达。

根据物体的反射特性,激光的反射光亮变化很大,因此可能检测出的距离也是变化的。

由于车辆后部的反射镜等容易反射,故可以检测出稳定的较长距离。

有少许凹凸的铁板等因不能得到充足的反射光量,故测出的距离较短。

另外,在检测侧面方向及后方的障碍物时,与检测前方障碍物的情况不同,如果障碍物上没有反射镜,那么由于各种障碍物的反射特性变化很大,故可能稳定测出的距离 变短。

aeb系统设计与实现

aeb系统设计与实现

aeb系统设计与实现
AEB系统,即自动紧急制动系统,是一种主动安全技术,旨在在车辆可能发生碰撞前自动触发制动器。

以下是AEB系统的设计与实现:
1. 传感器:AEB系统使用不同类型的传感器来探测车辆前方的障碍物,包括毫米波雷达、激光雷达和摄像头等。

这些传感器可以实时监测车辆周围的环境,并将数据传输到AEB系统的处理器中。

2. 处理器:AEB系统的处理器是整个系统的核心,它负责接收传感器数据,并通过算法进行分析和处理。

处理器通过计算车辆与障碍物的相对速度和距离,以及障碍物的形状和大小等信息,来预测可能发生的碰撞。

3. 制动器:当AEB系统判断需要紧急制动时,它会通过控制液压或气压来制动车辆。

制动器会根据需要施加足够的制动力,以避免碰撞或减轻碰撞造成的伤害。

4. 警告系统:AEB系统通常配备有警告系统,用于向驾驶员发出警告。

警告系统可以是声音、视觉或触觉等多种形式,以便驾驶员采取措施避免碰撞。

5. 校准和测试:在设计和实现AEB系统时,需要进行大量的校准和测试工作。

这些工作包括在不同环境和条件下测试系统的性能和准确性,以确保系统能够在各种情况下正常工作。

总之,AEB系统的设计与实现需要综合考虑传感器、处理器、制动器、警告系统和校准测试等多个方面。

只有通过精密的设计和严谨的测试,才能确保AEB系统
能够有效地降低交通事故的发生概率,提高道路安全性。

基于AT89S52汽车倒车防撞预警系统的设计

基于AT89S52汽车倒车防撞预警系统的设计

N l 计算 距 离l


◇+


l 开 外 部 中 断
』 Y N
l 停止 发 射l
外部 中断子程序
)K
图l 0 蜂 鸣器报警 电路
3 软件 设计
系统软件部分采用 C语言编写, 并进行模块化 设计 ,主要包括主程序、定时中断子程序 、外部中 断子程序和报警显示子程序等。程序的设计流程如
第6 期
唐阳山等: 基于A T 8 9 S 5 2 汽车倒车防撞预警系统的设计
3 8 5
正 常操 作 所需 的 时钟 脉冲 和 定时信 号 。晶振 电路 的 连 接方 式 如 图 4所示 。复位 电路 的作用 是 重新确 定 单 片机 的工作 起 始状 态 ,例如 把状 态机 初 始化 到 空
口电路 , 电路连 接 方式 如 图 8 所示。

I I RS 2 3 2 - 一 i -
T l o u t T l i n
8 Rl i n Rl o u t
M AX2 3 2
图 5 串行通信 电路
图 6 超声波发射 电路 图 8 数码 管显示电路
图l 1 所示。
( 8 ) 主程 序
( b ) 定时中断子程序 ( c ) 外 部中断子程序
图l l 程序设计流程图
参考文献 :
【 l 】朱利娜 . 基 于单片机 的超 声测距倒车 雷达的研究 [ J ] .微 计算机信息, 2 0 0 7 , ( 2 3 ) : l l O — l l 1 .
4 实验结果分析
通过多次实车试验发现, H C . S R 0 4 超声波测距 模块 3 0 , - - 4 0 0 c m 范 围 内实现准 确测 距 ,最 大 误差不 超过 2 %,能够满足驾驶员的倒车需求。误差的存

基于毫米波雷达的汽车主动巡航控制系统与防撞预警系统

基于毫米波雷达的汽车主动巡航控制系统与防撞预警系统
标的距离、速度和方位角等信息。另外,毫米波雷达除了要 求测量的准确性,对测量的实时性要求也很高。如果算法繁 杂,计算缓慢,即使可以得到精确的结果。也已因为过长的
连续波(LFMCW)体制,连续波调频体制与脉冲雷达相比有
许多明显的优越性:
①可测量短距离,且能获得较高的测距精度和距离分
辨率。
②雷达接收机的带宽较窄,因此抗各种杂波干扰和噪
ACC和CWS的关键技术
作为应用于自动巡航系统和防撞预警系统的毫米波汽车
雷达,目前适用的主要有脉冲体制雷达、调频连续波(FM— CW)雷达两种雷达体制。脉冲体制的雷达应用于汽车,由于 测量距离很短,需要的发射脉冲非常窄,这将导致信号产生
的工作频段既要满足无线电频率管理,又不能与已用的某些
1044
SAE—C2007E616
道路情况相对比较简单的高速公路行车环境为例分析。当汽 车行驶在高速公路上时,公路上一般有左中右三条行车道,
道路本身可以是平直的,也可能存在转弯和上下斜坡,在高
以及系统工程化实现所面临的关键技术作了简单介绍。
速公路的两侧存在有安全护栏、树木、标识牌等物体。车辆
参考文献
Waiter Nagy,Joseph Wilhelm,system and parametric
Cruise
Control,ACC)系统是利用雷达系统探测周围信息,
并自行调节自车的行驶速度,从而实现以设定速度行驶的一 种电子控制装置。与前导车辆保持一定的距离,并自动跟 进。汽车在高速公路上长时间行驶时,打开该系统的自动操 纵开关后,恒速行驶装置将根据行车阻力自动增减节气门开 度,使汽车行驶速度保持一定,省去了驾驶员频繁地踩加速 踏板的动作,在汽车行驶时驾驶员只要把住转向盘即可,可 以减轻驾驶员长途行驶的疲劳,也减少了交通事故的发生。 同时由于巡航系统自动维持车速,避免了不必要的加速踏板

汽车防撞预警系统设计

汽车防撞预警系统设计

汽车防撞预警系统设计一、系统概述汽车防撞预警系统主要由传感器、控制器、报警装置和执行机构四部分组成。

传感器负责实时监测车辆周围的环境信息,控制器对收集到的信息进行处理和分析,判断是否存在碰撞风险,如有风险,立即启动报警装置并控制执行机构进行干预。

二、传感器选型与布局1. 传感器选型为实现全天候、全方位的监测,本系统选用毫米波雷达、摄像头和超声波传感器三种传感器。

毫米波雷达具有穿透力强、抗干扰能力强等优点,适用于雨雾等恶劣天气;摄像头可识别道路标志、行人和车辆等目标;超声波传感器则用于检测车辆周围的近距离障碍物。

2. 传感器布局根据车辆结构和行驶需求,本系统将传感器均匀分布在车辆的前后左右四个方向,确保无死角监测。

具体布局如下:(1)前方:安装两个毫米波雷达,分别位于车辆前保险杠两侧,覆盖前方120°的监测范围。

(2)后方:安装一个毫米波雷达,位于车辆后保险杠中央,覆盖后方60°的监测范围。

(3)左右两侧:各安装一个摄像头,分别位于车辆左右两侧,覆盖左右两侧60°的监测范围。

(4)四周:安装四个超声波传感器,分别位于车辆前后保险杠和左右两侧,用于检测近距离障碍物。

三、控制器设计1. 算法设计(1)数据预处理:对传感器采集到的数据进行去噪、滤波等处理,提高数据质量。

(2)目标检测与识别:通过摄像头识别道路标志、行人和车辆等目标,结合毫米波雷达和超声波传感器数据,确定目标的位置、速度等信息。

(3)碰撞风险评估:根据目标的位置、速度等信息,计算与本车的相对距离和相对速度,预测未来一段时间内可能发生的碰撞情况。

(4)预警决策:根据碰撞风险评估结果,判断是否触发预警。

2. 硬件设计控制器硬件部分主要包括处理器、存储器、通信接口等。

处理器选用高性能、低功耗的嵌入式芯片,满足系统实时性和稳定性的需求;存储器用于存储算法模型和运行数据;通信接口负责与传感器、报警装置和执行机构进行数据交互。

基于激光雷达汽车防撞预警系统的设计与实现

基于激光雷达汽车防撞预警系统的设计与实现

基于激光雷达汽车防撞预警系统的设计与实现全文共四篇示例,供读者参考第一篇示例:随着交通工具的普及和道路交通的日益繁忙,交通事故成为了一个不容忽视的问题。

为了降低交通事故的发生率,提高交通安全水平,汽车防撞预警系统应运而生。

而基于激光雷达的汽车防撞预警系统因其高精度、高可靠性等优点受到了广泛的关注。

1. 激光雷达技术的应用激光雷达是一种利用激光来测量目标距离、速度和方向的传感器。

它具有测距精度高、反应速度快、不受光照影响等优点,在汽车防撞预警系统中得到了广泛的应用。

激光雷达通过发射一束激光束,当激光束碰撞到障碍物时,激光束就会反射回来,通过检测激光束的反射时间和角度等信息,就可以确定障碍物的位置、距离以及速度等参数,从而实现对障碍物的检测和预警。

2. 汽车防撞预警系统的设计基于激光雷达的汽车防撞预警系统主要由激光雷达传感器、控制单元、驾驶员预警装置等部分组成。

激光雷达传感器负责实时监测车辆前方的道路情况,控制单元负责处理传感器采集的数据并进行分析,而驾驶员预警装置则负责向驾驶员发出预警信号。

整个系统通过这三个部分的协作,可以实现对车辆前方障碍物的及时监测和预警,从而帮助驾驶员避免碰撞事故的发生。

3. 实现过程在汽车防撞预警系统的实现过程中,需要克服一些技术难题。

首先是激光雷达传感器的精度和稳定性问题,由于激光雷达传感器需要在复杂的道路环境中工作,因此需要保证传感器具有足够的精度和稳定性来应对各种复杂情况。

其次是控制单元的算法设计和实时性要求,算法要能够对传感器采集的数据进行实时处理和分析,并且能够准确地对障碍物进行识别和预警。

最后是驾驶员预警装置的设计和人机交互性能,预警装置需要能够准确地向驾驶员发出预警信号,并且要求操作简单、易懂,不会影响驾驶员的正常驾驶。

4. 系统测试为了验证汽车防撞预警系统的可靠性,需要进行一系列的系统测试。

首先是在实验室中对系统的各个部分进行功能测试,包括激光雷达传感器的测距精度、控制单元的数据处理能力、以及驾驶员预警装置的预警效果等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档