已知最小公倍数和一个原数,求另一个原数
小学五年级奥数第27讲 最小公倍数(二)后附答案

第27讲最小公倍数(二)一、专题简析:最小公倍数的应用题,解题方法比较独特。
当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。
二、精讲精练例题1 有一个自然数,被10除余7,被7除余4,被4除余1。
这个自然数最小是多少?练习一1、学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。
六年级最少多少人?2、一个数能被3、5、7整除,但被11除余1。
这个数最小是多少?例题2 有一批水果,总数在1000个以内。
如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。
这批水果共有多少个?练习二1、一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?2、有一批乒乓球,总数在1000个以内。
4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。
这批乒乓球到底有多少个?例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?练习三1、有一批树苗,9棵一捆多7棵,10棵一捆多8棵,12棵一捆多10棵。
这批树苗数在150至200之间,求共有多少棵树苗。
2、五(1)班的五十多位同学去大扫除,平均分成4组多2人,平均分成5组多3人。
请你算一算,五(1)班有多少位同学?例题4 从学校到少年宫的这段公路上,一共有37根电线杆,原来每两根电线杆之间相距50米,现在要改成每两根之间相距60米,除两端两根不需移动外,中途还有多少根不必移动?练习四1、插一排红旗共26面。
原来每两面之间的距离是4米,现在改为5米。
如果起点一面不移动,还可以有几面不移动?2、一行小树苗,从第一棵到最后一棵的距离是90米。
原来每隔2米植一棵树,由于小树长大了,必须改为每隔5米植一棵。
部编版五年级数学下册第四单元《公倍数和最小公倍数的认识及应用》 (复习课件)

对。
(选题源于教材P71第4题)
5. 每只蝴蝶只落在自己数字的倍数的花朵上。哪朵花上 两只蝴蝶都会停留,就将这朵花涂上紫色。
24,48,72这三朵花上两只蝴蝶都会停留,涂色
略。
(选题源于教材P71第5题)
知识点 1 认识公倍数和最小公倍数
1.写出6和9的倍数、公倍数和最小公倍数。 6的倍数:_6_,__1_2_,__1_8_,__2_4_,__3_0_,__…______ 9的倍数:__9_,__1_8_,__2_7_,__3_6_,__4_5_,__…______ 6和9的公倍数:______1_8_,__3_6_,__5_4_,__…____ 6和9的最小公倍数:_________1_8____________ 我发现:两个数的公倍数是它们最小公倍数的( 倍数)。
3×2×3+3=21(个) 答:这些苹果最少有21个。
提升点 2 三个数最小公倍数的运用
6.五年级参加植树的学生人数在50~70范围内,如 果每3人、5人、6人一组都正好分完,五年级参加 植树的有多少人? 3,5,6的最小公倍数是30。 30×2=60(人) 答:五年级参加植树的有60人。
7.一次聚餐共用了66个碗,每人一碗饭,两人一碗 菜,3人一碗汤,参加聚餐的有多少人?
6和18的公倍数中有36,21和14的公倍数中有84, 12和8的公倍数中有48。
(选题源于教材P71第3题)
4. 下面的说法正确吗?说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
错。因为当两个数成倍数关系时,它们的最小公
倍数是它们中较大的数。
(2)两个数的积一定是这两个数的公倍数。
8和12的最小公倍数是24。 答 : 这 些 白 菜 至 少 有 24 棵 。
北师大版六年级数学下册知识点归纳总结

北师大版六年级数学下册知识点归纳总结目录1. 第一单元 (3)1.1 分数的概念与表示方法 (3)1.2 分数的基本性质 (4)1.3 同分母分数的比较 (5)1.4 异分母分数的转换 (6)2. 第二单元 (7)2.1 小数的概念与表示方法 (7)2.2 小数的性质 (8)2.3 小数与分数之间的联系与区别 (8)2.4 小数的四则运算 (9)3. 第三单元 (10)3.1 百分数的含义和表示方法 (10)3.2 百分数与小数的关系 (11)3.3 百分数在实际生活中的应用 (12)3.4 百分数与其他比的转换 (14)4. 第四单元 (14)4.1 方程的意义及类型 (16)4.2 解一元一次方程的方法 (17)4.3 方程的应用实例 (17)4.4 实际问题中的方程求解策略 (18)5. 第五单元 (19)5.1 平面图形的面积计算 (19)5.2 平面图形的周长计算 (21)5.3 立体图形的体积计算 (21)5.4 立体图形的表面积计算 (23)6. 第六单元 (24)6.1 数据的收集方法 (24)6.2 数据整理的方法与步骤 (26)6.3 如何制作统计表和统计图 (27)6.4 数据分析与解读 (29)7. 第七单元 (29)7.1 概率的含义及表示方法 (30)7.2 事件发生的可能性大小 (31)7.3 简单随机抽样的原理和方法 (32)7.4 概率在现实生活中的应用 (33)8. 第八单元 (35)8.1 图形的平移与旋转 (35)8.2 轴对称图形的性质 (36)8.3 中心对称图形的性质 (37)8.4 几何图形变换与对称的应用 (37)9. 第九单元 (38)9.1 实际问题中的数据收集与分析 (39)9.2 综合运用概率知识解决实际问题 (40)9.3 统计与概率综合题的典型例题解析 (41)10. 第十单元 (42)10.1 数学综合应用题的类型与解题思路 (43)10.2 数学综合应用题的解题技巧 (44)10.3 数学综合应用题的实践案例分析 (45)1. 第一单元自然数的认识与整数的认识。
高斯小学奥数五年级上册含答案_公约数与公倍数进阶

第十五讲公约数与公倍数进阶这一讲我们来继续学习有关约数与倍数更深入的知识.首先来看一下最大公约数、最小公倍数与原数之间的关系.两个数,如果它们的最大公约数是k .那么可以假设这两个数分别为、,其中a 、b 互质.而它们的最小公倍数可以表示为.通过观察,我们发现.由此可得: 两数的最大公约数乘以最小公倍数等于两数乘积注意,这个性质只在两个数的时候有效,如果数更多就不成立,同学们可以尝试举例说明.性质虽然好用,但它要求给出最大公约数,最小公倍数和两数中的一个才行.如果只给出最大公约数和最小公倍数,能不能把原来的两个数都求出来呢?例题1.(1)两个自然数不成倍数关系,它们的最大公约数是18,最小公倍数是216.这两个数是多少?(2)若两个数的最大公约数是18,最小公倍数是1080.这两个数有哪几组?「分析」最大公约数是18,说明两个数都是18的倍数,可以分别设为18a ⨯和18b ⨯,且a 、b 互质.接下来,我们讨论一下a 、b 的取值.(1)两个互质的自然数的最小公倍数是432.求这两个数.(2)若两个不成倍数关系的自然数,最大公约数是45,最小公倍数是900.求这两个数.经过前面的例题,我们知道,如果知道两个数的最大公约数,就可以把这两个数表示出来.比如说两数的最大公约数是12,那么这两个数都是12的倍数,可以设为12a 和12b ,而且a 和b 互质.那么这两个数的最小公倍数、和、差以及乘积就都可以用a 和b 表示出来了.例题2.两个小于150的自然数的乘积是2028,它们的最大公约数是13,求这两个数. 「分析」可以设两个数分别是13a ⨯和13b ⨯,且a 、b 互质.()()()k a k b k k a b ⨯⨯⨯=⨯⨯⨯ k a b ⨯⨯ k b ⨯a 和b 互质 k a⨯k b ⨯ k a ⨯两个自然数的乘积是288,它们的最大公约数是6,求这两个数.例题3.两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?「分析」两个数的最大公约数是6,我们可以假设这两个数是6a⨯,它们的最小公⨯,6b倍数是6a b⨯⨯等于420.那a,b可以取哪些值呢?相差18又怎么保障⨯⨯,那么可知6a b呢?两个数的最大公约数是10,最小公倍数是300,如果这两个数相差70,那么较小的数是多少?约数与倍数的问题,最重要的就是分析清楚数的构成,最常用的方法就是分解质因数,由此同学们可以看出分解质因数在数论问题中是多么的重要.例题4.甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126.请问:甲数是多少?「分析」这道题只告诉了三个数中每两个数的最小公倍数,能否通过分解质因数,然后比较它们质因数的构成来求解呢?三个正整数a、b、c,已知a与b,a与c,b与c的最小公倍数分别是525,28和300.那么a的值是多少?例题5.有4个不同的自然数,它们的和是1111.它们的最大公约数最大是多少?「分析」这4个数的最大公约数和1111有什么关系呢?根据前面的题目可知,几个数的和,一定是这几个数的最大公约数的倍数.那么最大公约数可能是多少?之前在学习约数的时候,我们学习过如果知道约数个数怎么去反求原数.有些题目里面,利用约数个数反求原数和利用公约数公倍数反求原数都会用到.例题6.甲、乙是两个不同的自然数.它们都只含有质因数2和3,并且都有12个约数.它们的最大公约数是12.请问:甲、乙两数之和是多少?「分析」甲、乙只含有质因数2和3,且它们都是12的倍数,所以都是23a b ⨯的形式.并且它们都有12个约数,由约数个数公式可得()()1112a b +⨯+=.所以要把12拆成两个大于1的数相乘,这只能是26⨯或34⨯.我们可以把这样的数都写出来,从中选取符合题目要求的数.亲和数你能看出220和284之间有什么关系吗?大数学家毕达哥拉斯的回答是:220的约数除本身外为1,2,4,5,10,11,20,22,44,55,110,它们的和为284;而284的约数除本身外为1,2,4,71,142,它们的和为220。
最小公倍数法解决问题

最小公倍数法通过计算出几个数的最小公倍数,从而解答出问题的解题方法叫做最小公倍数法。
例1 用长36厘米,宽24厘米的长方形瓷砖铺一个正方形地面,最少需要多少块瓷砖?(适于六年级程度)解:因为求这个正方形地面所需要的长方形瓷砖最少,所以正方形的边长应是36、24的最小公倍数。
2×2×3×3×2=7236、24的最小公倍数是72,即正方形的边长是72厘米。
72÷36=272÷24=32×3=6(块)答:最少需要6块瓷砖。
*例2 王光用长6厘米、宽4厘米、高3厘米的长方体木块拼最小的正方体模型。
这个正方体模型的体积是多大?用多少块上面那样的长方体木块?(适于六年级程度)解:此题应先求正方体模型的棱长,这个棱长就是6、4和3的最小公倍数。
2×3×2=126、4和3的最小公倍数是12,即正方体模型的棱长是12厘米。
正方体模型的体积为:12×12×12=1728(立方厘米)长方体木块的块数是:1728÷(6×4×3)=1728÷72=24(块)答略。
例3 有一个不足50人的班级,每12人分为一组余1人,每16人分为一组也余1人。
这个班级有多少人?(适于六年级程度)解:这个班的学生每12人分为一组余1人,每16人分为一组也余1人,这说明这个班的人数比12与16的公倍数(50以内)多1人。
所以先求12与16的最小公倍数。
2×2×3×4=4812与16的最小公倍数是48。
48+1=49(人)49<50,正好符合题中全班不足50人的要求。
答:这个班有49人。
例4 某公共汽车站有三条线路通往不同的地方。
第一条线路每隔8分钟发一次车;第二条线路每隔10分钟发一次车;第三条线路每隔12分钟发一次车。
三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车?(适于六年级程度)解:求三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车,就是要求出三条线路汽车发车时间间隔的最小公倍数,即8、10、12的最小公倍数。
小学五年级奥数第26讲 最小公倍数(一)(含答案分析)

第26讲最小公倍数(一)一、专题简析:1、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。
自然数a、b的最小公倍数可以记作[a、b],当(a、b)=1时,[a、b]= a×b。
2、两个数的最大公约数和最小公倍数有着下列关系:最大公约数×最小公倍数=两数的乘积即(a、b)×[a、b]= a×b要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。
二、精讲精练例题1 两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?练习一1、两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?2、两个数的最大公约数是12,最小公倍数是60,求这两个数的和是多少?例题2 两个自然数的积是360,最小公倍数是120,这两个数各是多少?练习二1、求36和24的最大公约数和最小公倍数的乘积。
2、已知两个数的积是3072,最大公约数是16,求这两个数。
例题3 甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次。
甲3天去一次,乙4天去一次,丙5天去一次。
有一天,他们三人恰好在图书馆相会,问至少再过多少天他们三人又在图书馆相会?练习三1、1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。
当这三种路线的车同时发车后,至少要过多少分钟又这三种路线的车同时发车?2、甲、乙、丙从同一起点出发沿同一方向在圆形跑道上跑步,甲跑一圈用120秒,乙跑一圈用80秒,丙跑一圈用100秒。
问:再过多少时间三人第二次同时从起点出发?例题4 一块砖长20厘米,宽12厘米,厚6厘米。
要堆成正方体至少需要这样的砖头多少块?练习四1.用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?2、有200块长6厘米、宽4厘米、高3厘米的长方体木块,要把这些木块堆成一个尽可能大的正方体,这个正方体的体积是多少立方厘米?例题5 甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一地点同时同方向跑步,经过多少时间三人又同时从出发点出发?练习五1、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇;若二人同时同地出发,同向而行,则10分钟后第一次相遇。
2024年楚雄彝族自治州武定县六上数学期末达标检测试题含解析

2024年楚雄彝族自治州武定县六上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、仔细填空。
(每小题2分,共20分)1.一根2米长的铁丝,剪成长度相等的5段,每段长是这根铁丝的________,每段长是________米.2.12∶________=38=()40=________÷64=________%3.端午节当天,中百超市上午卖出350个粽子,下午卖出200个,每个粽子a元,这一天卖粽子的总收入是_____元.当a=4时,上午比下午多卖_____元.4.下面3个物体,从(_________)面看到的形状是相同的。
5.用36的因数组成一个比例是(______):(______)=(______):(______).6.沿着某路的一边从头开始插彩旗,每隔4米插一面,插到路的另一端共插了37面彩旗。
如果改成每隔6米插一面彩旗,可以有(________)面彩旗不用移动。
7.一根铁丝围成的长方体框架长8米,宽6米,高4米,这根铁丝长________米.如果在这个长方体外围糊一层纸,最少需要________米2纸.这个长方体的体积是________米1.如果用这根铁丝围成正方体,这个正方体的表面积和体积分别是________米2和________米1.8.一项工程,甲队独做20天完成,乙队独做30天完成,甲、乙两队工作效率的比是_____。
9.有若干个学生参加数学奥林匹克竞赛,其中14获一等奖,5n(n为自然数)获二等奖,其余91人获三等奖,共有(_______)学生参赛.10.李叔叔带了30kg行李从南京禄口机场乘飞机去天津,按民航的规定,旅客最多可免费携带20kg行李,超重部分每千克按飞机票价的1.5%购买行李票,王叔叔此次乘坐飞机一共花了920元,他的飞机票价是(_________)元。
2022年9月山东省聊城市小升初数学内招思维应用题专项模拟三卷含答案解析

2022年9月山东省聊城市小升初数学内招思维应用题专项模拟三卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.师、徒二人共做一批零件.师傅每天做48个,徒弟两天做68个,6天完成任务,这批零件共有多少个?2.甲乙两辆汽车分别从A、B两城同时相向而行,早上8时出发,下午1时两车相遇.已知甲车每小时行驶52千米,乙车每小时行驶78千米.这两辆汽车共行驶多远?3.在一个长50厘米,宽40厘米的长方体玻璃缸中,有一块棱长为20厘米的正方体铁块,铁块完全浸没,这时水深40厘米,若把铁块取出,缸中水深多少厘米?4.某工程由甲、乙两队合做24天完成,由乙、丙两队合做30天完成,由甲、丙两队合做40天完成,那么甲队单独做需要多少天完成.5.一个长方形的周长是24厘米,长是8厘米,宽是多少厘米.6.甲乙两港相距200千米,一艘轮船以每小时32千米的速度从甲港开往乙港,行了一段时间后,距乙港还有72千米,这艘船行了多少小时?7.甲、乙两车分别从两地相对开出,甲车每小时行86千米,乙车每小时行78千米,相遇时,相遇地点距两地的中点24千米.两地相距多少千米?8.两架模型飞机用不同长度的金属线缚住,绕同一个定点水平地旋转,方向相反,里面的一架飞机转一圈需要30秒,外边的需要60秒,从它们第一次相互错过到第二次相错,所需的时间是多少秒?9.农场有一块长200米,宽150米的长方形试验田,平均每公顷产稻谷13.8吨,这块试验田一共产稻谷多少吨?10.某校六年级一共有120名学生,每人至少参加电脑兴趣小组和科技兴趣小组中的一个,其中3/4的同学参加电脑兴趣小组,7/12的同学参加科技兴趣小组.两种兴趣小组都参加的学生一共有多少名?11.一件衣服若卖100元,可赚钱25%,若卖60元,则要亏本百分之几?12.甲乙两辆卡车同时从某地出发,运送一批货物到距离165千米的农场.甲车比乙车早到0.8小时,当甲车到达时,乙车还距离农场24千米,甲车行驶全程用了多少小时.13.王军在做一道加法计算题时,把一个加数个位上的3看成了8,十位上的9看成了5,结果得387,正确的结果应该是多少?14.爱民粮站有甲乙两个粮仓,原来乙仓存米的吨数是甲仓的2/3,从甲仓运出了40吨后,甲仓剩下的吨数与原来乙仓存米的吨数的比变为5:6.原来甲乙两仓各存米多少吨?15.仓库里有一批大米,第一天运出全部大米的一半少2吨,第二天运出余下的一半多3吨,这时仓库里还剩下12吨,仓库里原有大米多少吨?16.一辆客车和一辆货车同时从甲城开往乙城.已知客车平均每小时行驶89千米,货车平均每小时行驶71千米,4小时后两车相距多少千米?17.一个长方体汽油箱长5分米,宽2.5分米,高4分米。