2015年高考数学《新高考创新题型》之1:集合与常用逻辑用语(含精析)
2015届高考数学 集合、常用逻辑用语专题汇编及详细答案

2015届高考数学集合、常用逻辑用语专题汇编1.(2013·高考新课标全国卷Ⅰ文)已知集合A={1,2,3,4},B={x|x=n2,x∈A},则A∩B =()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:选A.∵A={1,2,3,4},B={x|x=n2,x∈A},∴B={1,4,9,16},∴A∩B={1,4}.2.(2013·高考新课标全国卷Ⅰ理)已知集合A={x|x2-2x>0},B={x|-5<x<5},则() A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B.∵A={x|x>2或x<0},B={x|-5<x<5},∴A∩B={x|-5<x<0或2<x<5},A∪B=R.3.(2013·高考新课标全国卷Ⅱ理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}解析:选A.集合M={x|-1<x<3,x∈R},∴M∩N={0,1,2},故选A.4.(2013·高考新课标全国卷Ⅱ文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:选C.M∩N={-2,-1,0},故选C.5.(2013·高考大纲全国卷理)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4C.5 D.6解析:选B.由题意可知,集合M={5,6,7,8},共4个元素.6.(2013·高考大纲全国卷文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅解析:选B.∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.7.(2013·高考山东卷理)已知集合A={0,1,2},则集合B={x-y |x∈A, y∈A}中元素的个数是()A.1 B.3C.5 D.9解析:选C.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.8.(2013·高考山东卷文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅解析:选A.∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.9.(2013·高考浙江卷理)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=() A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)解析:选C.因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.10.(2013·高考浙江卷文)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=() A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]解析:选D.S∩T={x|x>-2}∩{x|-4≤x≤1}={x|-2<x≤1}.11.(2013·高考北京卷理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}解析:选B.∵A={-1,0,1},B={x|-1≤x<1}且1∉B,∴A∩B={-1,0}.12.(2013·高考天津卷理)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=() A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]解析:选D.由已知得A={x|-2≤x≤2},于是A∩B={x|-2≤x≤1}.13.(2013·高考福建卷文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为() A.2 B.3C.4 D.16解析:选C.A∩B={1,3},其子集有∅,{1},{3},{1,3},共4个.14.(2013·高考辽宁卷文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选B.B={x||x|<2}={x|-2<x<2},A∩B={0,1}.15.(2013·高考辽宁卷理)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=() A.(0,1) B.(0,2]C.(1,2) D.(1,2]解析:选D.因为A={x|0<log4x<1}={x|1<x<4},B={x|x≤2},所以A∩B={x|1<x<4}∩{x|x≤2}={x|1<x≤2}.16.(2013·高考湖南卷文)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.解析:∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}17.(2013·高考江西卷理)已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.-2i B.2iC.-4i D.4i解析:选C.因为M={1,2,z i},N={3,4},由M∩N={4},得4∈M,所以z i=4,所以z=-4i.18.(2013·高考江西卷文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=() A.4 B.2C.0 D.0或4解析:选A.当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.19.(2013·高考湖北卷理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}解析:选C.A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1={x |x ≥0},B ={x |x 2-6x +8≤0}={x |2≤x ≤4},所以∁R B ={x |x <2或x >4},于是A ∩∁R B ={x |0≤x <2或x >4}.20.(2013·高考湖北卷文)已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩∁U A =( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}解析:选B.∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5},∴B ∩∁U A ={2,3,4}∩{3,4,5}={3,4}21.(2013·高考四川卷文)设集合A ={1,2,3},集合B ={-2,2},则A ∩B =( )A .∅B .{2}C .{-2,2}D .{-2,1,2,3}解析:选B.A ∩B ={1,2,3}∩{-2,2}={2},故选B.22.(2013·高考四川卷理)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .∅解析:选A.∵A ={x |x +2=0},∴A ={-2}.∵B ={x |x 2-4=0},∴B ={-2,2}.∴A ∩B ={-2}.故选A.23.(2013·高考重庆卷文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.24.(2013·高考重庆卷理)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.25.(2013·高考广东卷)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选D.集合M ={0,-2},N ={0,2},故M ∪N ={-2,0,2},故选D.26.(2013·高考广东卷文)设集合S ={x |x 2+2x =0,x ∈R },T ={x |x 2-2x =0,x ∈R },则S ∩T =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选A.集合S ={0,-2},T ={0,2},故S ∩T ={0},故选A.27.(2013·高考安徽卷文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}解析:选A.因为集合A ={x |x >-1},所以(∁R A )={x |x ≤-1},则(∁R A )∩B ={x |x ≤-1}∩{-2,-1,0,1}={-2,-1}.28.(2013·高考新课标全国卷文Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:选B.当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x 是假命题.如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题.∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴綈p ∧q 是真命题.选B.29.(2013·高考山东卷理)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈pq ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件. 30.(2013·高考山东卷文)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p q ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件.31.(2013·高考浙江卷理)已知函数f (x )=A co s (ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.若f (x )是奇函数,则f (0)=0,所以co s φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A co s (ωx +π2)=-As in(ωx ),f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.32.(2013·高考浙江卷文)若α∈R ,则“α=0”是“s in α<co s α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.若α=0,则s in α=0,co s α=1,所以s in α<co s α,即α=0⇒s in α<co s α;但当α=-π2时,有s in α=-1<0=co s α,此时α≠0.所以α=0是s in α<co s α的充分不必要条件.33.(2013·高考北京卷文)“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当φ=π时,y =s in(2x +φ)=s in(2x +π)=-s in 2x ,此时曲线y =s in(2x +φ)必过原点,但曲线y =s in(2x +φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的充分而不必要条件.34.(2013·高考天津卷文)设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件解析:选A.由不等式的性质知(a -b )·a 2<0成立,则a <b 成立;而当a =0,a <b 成立时,(a -b )·a 2<0不成立,所以(a -b )·a 2<0是a <b 的充分而不必要条件.35.(2013·高考天津卷理)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:选C.对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确. 36.(2013·高考福建卷文)设点 P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.37.(2013·高考福建卷理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.38.(2013·高考陕西卷文)设全集为R, 函数f (x )=1-x 的定义域为M, 则∁R M 为( )A .(-∞,1)B .(1,+∞)C .(-∞,1]D .[1,+∞)解析:选B.函数f (x )的定义域M =(-∞,1],则∁R M =(1,+∞).39.(2013·高考湖南卷)“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.设A ={x |1<x <2},B ={x |x <2},∴A B ,即当x 0∈A 时,有x 0∈B ,反之不一定成立.因此“1<x <2”是“x <2”成立的充分不必要条件.40.(2013·高考辽宁卷)下面是关于公差d>0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列{a n n}是递增数列;p 4:数列{a n +3n d}是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4解析:选D.因为d>0,所以a n +1>a n ,所以p 1是真命题.因为n +1>n ,但是a n 的符号不知道,所以p 2是假命题.同理p 3是假命题.由a n +1+3(n +1)d -a n -3n d =4d>0,所以p 4是真命题.41.(2013·高考陕西卷理)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)解析:选D.由1-x 2≥0,知-1≤x ≤1,∴M =[-1,1],∴∁R M =(-∞,-1)∪(1,+∞).42.(2013·高考湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A.依题意得綈p :“甲没有降落在指定范围”,綈q :“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p )∨(綈q ).43.(2013·高考四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉BB .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 解析:选D.命题p 是全称命题:∀x ∈A,2x ∈B ,则綈p 是特称命题:∃x ∈A,2x ∉B .故选D. 44.(2013·高考重庆卷理)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0 解析:选D.因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,綈p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.45.(2013·高考安徽卷)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当x =0时,显然(2x -1)x =0;当(2x -1)x =0时,x =0或x =12,所以“(2x -1)x =0”是“x =0”的必要不充分条件.46.(2013·高考陕西卷)设a ,b 为向量,则“|a·b |=|a||b|”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.若|a ·b |=|a ||b |,若a ,b 中有零向量,显然a ∥b ;若a ,b 均不为零向量,则|a ·b |=|a ||b ||co s 〈a ,b 〉|=|a ||b |,∴|co s 〈a ,b 〉|=1,∴〈a ,b 〉=π或0,∴a ∥b ,即|a ·b |=|a ||b |⇒a ∥b .若a ∥b ,则〈a ,b 〉=0或π,∴|a ·b |=||a ||b |co s 〈a ,b 〉|=|a ||b |,其中,若a ,b 有零向量也成立,即a ∥b ⇒|a ·b |=|a ||b |.综上知,“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件.47.(2013·高考江苏卷理)集合{-1,0,1}共有________个子集.解析:由于集合中有3个元素,故该集合有23=8(个)子集.答案:848.(2013.高考湖南卷)对于E ={a 1,a 2,...,a 100}的子集X ={a i 1,a i 2,...,a i k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中x i 1=x i 2=...=x i k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________.(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列” q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.解析:(1)子集{a 1,a 3,a 5}的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,…,0.故该数列前3项的和为2.(2)E 的子集P 的“特征数列”p 1,p 2,…,p 100中,由于p 1=1,p i +p i +1=1(1≤i ≤99),因此集合P 中必含有元素a 1.又当i =1时,p 1+p 2=1,且p 1=1,故p 2=0.同理可求得p 3=1,p 4=0,p 5=1,p 6=0,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,…,1,0,即P ={a 1,a 3,a 5,a 7,…,a 99}.E 的子集Q 的“特征数列”q 1,q 2,…,q 100中,由于q 1=1,q j +q j +1+q j +2=1(1≤j ≤98),因此集合Q 中必含有元素a 1.又当j =1时,q 1+q 2+q 3=1,当j =2时,q 2+q 3+q 4=1,当j =3时,q 3+q 4+q 5=1,…,故q 1=1,q 2=q 3=0,q 4=1,q 5=q 6=0,q 7=1,….所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,…,0,1,即Q ={a 1,a 4,a 7,a 10,…,a 100}.因为100=1+(n -1)×3,故n =34.所以集合Q 中有34个元素,其下标为奇数的有17个.因此P ∩Q ={a 1,a 7,a 13,a 19,…,a 97},共有17个元素.答案:(1)2 (2)1749.(2013·高考重庆卷)对正整数n ,记I n ={1,2,…,n },P n =⎩⎨⎧⎭⎬⎫m k m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解:(1)当k =4时,⎩⎨⎧⎭⎬⎫m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因为1+3=22,故3∉A ,即3∈B .同理,6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集合⎩⎨⎧⎭⎬⎫m k m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可求解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集合⎩⎨⎧⎪⎪m k ⎭⎬⎫m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133, B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集合C =⎩⎨⎧⎭⎬⎫m k m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上可知,所求n 的最大值为14.注:对P 14的分析方法不是唯一的.。
2015最新高考文科数学真题专题分类汇编01集合与常用逻辑用语

A ( B)= ( )
(A) {3}
(B) {2,5}
(C) {1,4,6}
(D) {2,3,5}
7.【 2015 高考天津,文 4】设 x ? R ,则 “1 < x < 2 ”是 “| x - 2 |< 1”的( )
(A) 充分而不必要条件
(B) 必要而不充分条件
(C)充 要条件
(D) 既不充分也不必要条件
第一章 集合与常用逻辑用语
1.【 2015 高考新课标 1,文 1】已知集合 A { x x 3n 2,n N}, B {6,8,10,12,14} ,则集合 A B 中的
元素个数为 ( )
( A) 5
(B)4
(C)3
( D ) 2[来源 学。科。网 ]
2.【 2015 高考重庆,文 1】已知集合 A = {1,2,3},B = {1,3} ,则 A B ( )
8.【 2015 高考四川,文 1】设集合 A= { x|- 1< x< 2} ,集合 B= { x|1< x< 3} ,则 A∪B= (
)
(A){ x|- 1< x< 3} (B){ x|- 1< x< 1}
(C){ x|1< x< 2}
(D ){ x|2<x< 3}
9.【 2015 高考山东,文 1】 已知集合 A x | 2 x 4 , B { x(| x 1)( x 3) 0} ,则 A B ( )
A. x0 (0, ) , ln x0 x0 1 C. x (0, ) , ln x x 1
B. x0 (0, ) , ln x0 x0 1 D. x (0, ) , ln x x 1
18. 【 2015 高考北京,文 1】若集合
x 5 x 2,
2015年高考数学试题分项专题01集合与常用逻辑用语(含解析)

2015年高考数学试题分项版解析 专题01 集合与常用逻辑用语1.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x <<【答案】A【考点定位】集合的基本运算.2.【2015高考广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( ) A .∅ B .{}1,4-- C .{}0 D .{}1,4 【答案】A .【考点定位】一元二次方程的解集,集合的基本运算.3.【2015高考新课标1,理3】设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤ (C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈ 【答案】C【考点定位】本题主要考查特称命题的否定4.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.5.【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【考点定位】等比数列的判定,柯西不等式,充分条件与必要条件.6.【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【考点定位】不等式解法与充分条件、必要条件.7.【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA 【答案】D【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ 【答案】C【考点定位】1、复数的概念;2、集合的运算.9.【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【答案】B【考点定位】充分必要条件.10.【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( ) A .{}1,0A =- B .{}0,1 C .{}1,0,1- D .{}0,1,2 【答案】A【考点定位】集合的运算.11.【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B = ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8 【答案】A【考点定位】集合的运算.12.【2015高考安徽,理3】设:12,:21xp x q <<>,则p 是q 成立的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【考点定位】1.指数运算;2.充要条件的概念.13.【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B = ( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】C【考点定位】1、一元二次不等式;2、集合的运算.14.【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n > 【答案】D.【考点定位】命题的否定15.【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q = ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2] 【答案】C.【考点定位】1.解一元二次不等式;2.集合的运算. 16.【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 【答案】1【考点定位】1、命题;2、正切函数的性质.17.【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【考点定位】集合运算。
【创新设计】2015届高考数学一轮总复习 培养解题能力精讲系列 专题一 集合与常用逻辑用语课件 理 苏教版

依题, 可知由 S 的 3 个元素构成的 所有集合中, 不含“好元素”, 则这 3 个元素一定是
相连的 3 个数.
倒计时
如果三个数都不相邻,如1、3、5 故这样的集合共有 6 个.则显然都是好元素; 如果三个数有两个相邻,如2、4、5 答案 A 则2是好元素。 所以必须都相邻,其实是:123、234 、345、456、567、678共六组。
由题意 x-y∈A,
y
x-y
x 1
2
3
4
5
故 x-y 只能取 1,2,3,4, 由表可知实数对(x, y)的取值满 足条件的共有 10 个,
即 B 中的元素个数为 10,
1 2
故选 D.
3 4 5
0 -1 -2 -3 -4 1 0 -1 -2 -3 2 1 0 -1 -2 3 2 1 0 -1 4 3 2 1 0
解析
题目中 x<y<z, y<z<x, z<x<y 恰有 倒计时 一个成立说明 x,y,z 是互不相等的三个正整数, 可用特殊值法求解, 不妨取 x=1,y=2,z=3,w=4 满足题意, 且(2,3,4)∈S,(1,2,4)∈S, 从而(y,z,w)∈S,(x,y,w)∈S 成立. 答案 B
2、设 A 是整数集的一个非空子集,对于 k∈A,如果 k -1∉A,且 k+1∉A,那么称 k 是 A 的一个“好元素”.给定 S= {1,2,3,4,5,6,7,8},由 S 的 3 个元素构成的所有集合中,不含“好元 素”的集合共有( ).A.6 个 B.12 个 C.9 个 D.5 个
第一步 第二步 第三步 第四步 第五步
求命题 p、q 对应的参数的范围. 求命题乛 p、 乛 q 对应的参数的范围. 根据已知条件构造新命题,如本题构造新命题“p 真 q 假”或“p 假 q 真”.
2015年高考数学(新课标Ⅱ版)分项汇编专题01集合与常用逻辑用语(含解析)理

专题01 集合与常用逻辑用语一.基础题组1. 【2013课标全国Ⅱ,理1】已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N =( ).A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}【答案】:A2. 【2012全国,理2】已知集合A={1,3,},B={1, m},A∪B=A,则m=( )A.0或 B.0或3 C.1或 D.1或3【答案】 B3. 【2015高考新课标2,理1】已知集合,,则()A.B.C.D.【答案】A二.能力题组1.【2014新课标,理1】设集合M={0,1,2},N=,则=( )A. {1}B. {2}C. {0,1}D. {1,2}【答案】D【解析】因为N=,所以,故选D.2. 【2006全国2,理1】已知集合M={x|x<3},N={x|log2x>1},则M∩N等于(A. B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}【答案】:D3. 【2005全国2,理9】已知集合,,则为()(A) 或(B) 或(C) 或(D) 或【答案】A三.拔高题组1. 【2011新课标,理10】已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1: |a+b|>1θ∈[0,)p2:|a+b|>1θ∈(,π]p3:|a-b|>1θ∈[0,)p4:|a-b|>1θ∈(,π]其中的真命题是( )A.p1,p4B.p1,p3C.p2,p3D.p2, p4【答案】A【解析】2. 【2005全国2,理16】下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是______________.(写出所有真命题的编号)【答案】①④。
2015届高考数学文科一轮总复习集合与常用逻辑用语.docx

2015 届高考数学(文科)一轮总复习集合与常用逻辑用语第一篇集合与常用逻辑用语第 1 讲集合及其运算基础巩固题组( 建议用时: 40 分钟 )一、填空题1 .(2013 ?安徽卷改编 ) 已知 A= {x|x + 1> 0} ,B= { - 2,-1,0,1} .则 ( ?RA)∩ B= ________.解析因为 A= {x|x >- 1} ,则 ?RA= {x|x ≤- 1} ,所以( ?RA)∩B= { - 2,- 1} .答案{ -2,- 1}2.已知集合= {1,2,3} ,N= {2,3,4} ,则下列各式不正确的是 ________.①? N;② N? ;③∩ N={2,3} ;④∪ N= {1,4} .解析由已知得∩ N={2,3},故选①②④ .答案①②④3.已知集合={0,1,2,3,4},N= {1,3,5},P=∩N,则P 的子集个数有________.解析P=∩ N= {1,3},故P 的子集共有 4 个.答案44.已知集合 A= {x|x2 -x- 2< 0} ,B= {x| - 1<x< 1} ,则 A 与 B 的关系是 ________.解析集合 A= {x| - 1< x<2} ,B= {x| -1< x< 1} ,则BA.答案BA5.设集合 A= {x|x2 + 2x- 8< 0} , B= {x|x < 1} ,则图中阴影部分表示的集合为 ________.解析阴影部分是A∩ ?RB.集合 A= {x| - 4< x<2} ,?RB={x|x ≥1} ,所以 A∩?RB= {x|1 ≤ x<2} .答案 {x|1 ≤ x< 2}6 .(2013 ?湖南卷 ) 已知集合 U= {2,3,6,8},A={2,3},B= {2,6,8},则( ?UA)∩ B=________.解析由集合的运算,可得 ( ?UA)∩ B={6,8}∩{2,6,8}={6,8} .答案 {6,8}7 .集合A= {0,2 , a} , B= {1 , a2} ,若A∪ B={0,1,2,4,16},则 a 的值为________.解析根据并集的概念,可知{a, a2}= {4,16},故只能是a= 4.答案48.集合 A= {x ∈ R||x - 2| ≤ 5} 中的最小整数为________.解析由 |x- 2|≤ 5,得-5≤ x- 2≤ 5,即-3≤ x≤ 7,所以集合 A 中的最小整数为- 3.答案- 3二、解答题9.已知集合 A= {a2 , a+ 1,- 3} , B={a - 3,a- 2,a2+ 1} ,若 A∩ B={ -3} ,求 A∪ B.解由 A∩B={ -3} 知,- 3∈B.又 a2+ 1≥ 1,故只有 a- 3, a- 2 可能等于- 3.①当 a-3=- 3 时,a= 0,此时 A= {0,1 ,- 3} ,B= { -3,- 2,1} , A∩B= {1 ,- 3} .故 a= 0 舍去.②当 a-2=- 3 时, a=- 1,此时 A={1,0 ,- 3} , B= { - 4,- 3,2} ,满足 A∩B= { - 3} ,从而 A∪ B= { - 4,- 3,0,1,2}.10.设 A= {x|x2 + 4x= 0} , B= {x|x2+ 2(a +1)x + a2-1=0} ,(1)若 B? A,求 a 的值;(2)若 A? B,求 a 的值.解(1)A = {0 ,- 4} ,①当 B=?时,=4(a+1)2-4(a2-1)=8(a+1)<0,解得 a<- 1;②当 B 为单元素集时,a=- 1,此时 B= {0} 符合题意;③当 B=A 时,由根与系数的关系得:-2 a+ 14, a2-1= 0,解得 a=1.综上可知: a≤- 1 或 a= 1.(2)若 A? B,必有 A= B,由 (1) 知 a= 1.能力提升题组( 建议用时: 25 分钟 )一、填空题1 .若集合 A= { - 1,1} ,B= {0,2} ,则集合 {z|z = x+ y,x∈ A, y∈ B} 中的元素的个数为 ________.解析当 x=- 1,y= 0 时, z=- 1;当 x=- 1, y= 2时, z=1;当 x= 1,y= 0 时, z= 1;当 x= 1,y= 2 时, z= 3. 故z 的值为- 1,1,3 ,故所求集合为 { - 1,1,3} ,共含有 3 个元素.答案32.已知集合A= {x∈ R||x+ 2|解析A= {x|- 5答案-113.设g(x) = (axa, b, c+ 1)(cx2为实数,+ bx+1)f(x)=(x.记集合+ a) ?(x2S= {x|f(x)+ bx+ c) ,=0, x∈R}, T= {x|g(x)=0,x∈ R}.若|S|,|T|分别为集合S, T 的元素个数,则下列结论:①|S| = 1 且|T| = 0;② |S| = 1且 |T| =1,③ |S| =2 且 |T| = 2;④ |S| = 2 且 |T| =3,其中不可能成立的是________.解析取 a= 0,b= 0,c= 0,则 S= {x|f(x)=x3=0},|S| = 1,T= {x|g(x)=1≠0},|T|=0.因此①可能成立.取a= 1, b= 0, c=1,则 S= {x|f(x)= (x + 1)(x2 + 1) = 0} ,|S| = 1, T= {x|g(x) = (x + 1)(x2+ 1) =0} , |T| =1,因此②可能成立.取 a=- 1, b= 0, c=- 1,则 S= {x|f(x)=(x - 1)(x2 - 1) = 0} , |S| = 2, T= {x|g(x) = ( - x+1)?( -x2+ 1) =0} ,|T| = 2. 因此③可能成立.对于④,若 |T|= 3,则= b2- 4c> 0,从而导致 f(x)= (x + a)(x2 + bx+c)也有3 解,因此 |S| = 2 且 |T| =3 不可能成立.故④不可能成立.答案④二、解答题4.已知集合A= {y|y= 2x- 1,0< x≤ 1}, B= {x|(x-a)[x- (a + 3)]< 0} .分别根据下列条件,求实数 a 的取值范围.(1)A∩ B=A;(2)A∩ B≠ ?.解因为集合 A 是函数 y= 2x- 1(0 < x≤ 1) 的值域,所以 A= ( - 1,1] , B= (a , a+ 3) .(1)A∩ B=A? A? B? a≤-1,a+3>1,即- 2< a≤- 1,故当 A∩ B=A 时,a 的取值范围是 ( - 2,-1] .(2)当 A∩B= ?时,结合数轴知, a≥ 1 或 a+ 3≤- 1,即a≥ 1 或 a≤- 4.故当 A∩B≠ ?时, a 的取值范围是 ( - 4,1).。
(新课标)高考数学总复习5高考真题分类汇编第一章集合与常用逻辑用语

五年高考真题分类汇编:集合与常用逻辑用语一. 选择题1.(2015四川高考,理1)设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =U ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【解析】选A {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<U ,选A.2.(2015广东高考,理1)若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I ( )A .∅B .{}1,4--C .{}0D .{}1,4【解析】选A 因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅I ,故选A .3.( 2015新课标全国卷1,理3)设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【解析】选C p ⌝:2,2n n N n ∀∈≤,故选C.4.( 2015陕西高考,理1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】选A {}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =U ,故选A .5.(2015湖北高考,理5)设12,,,n a a a ∈R L ,3n ≥. 若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【解析】A6.(2015天津高考,理4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件【解析】选A 2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.7.(2015重庆高考,理1)已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【解析】选D 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .8.(2015福建高考,理1)若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B I 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【解析】选C 由已知得{},1,,1A i i =--,故A B =I {}1,1-,故选C .9.(2015重庆高考,理4)“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B【解析】选B 12log (2)0211x x x +<⇔+>⇔>-,因此选B .10.(2015全国卷新课标Ⅱ,理1)已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =I ( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【解析】选A 由已知得{}21B x x =-<<,故{}1,0A B =-I ,故选A .11. (2015天津高考,理1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =I ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【解析】选A {2,5,8}U B =ð,所以{2,5}U A B =I ð,故选A.12.(2015安徽高考,理3)设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件13.(2015山东高考,理1)已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =I ( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【解析】选C .因为{}{}243013A x x x x x =-+<=<<,所以{}{}{}132423A B x x x x x x =<<<<=<<I I .故选:C.14.(2015浙江高考,理4)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【解析】选D 根据全称命题的否定是特称命题,可知选D. 15.(2015浙江高考,理1)已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =I ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【解析】选C 由题意得,)2,0(=P C R ,∴()(1,2)R P Q =I ð,故选C.16.(2015湖南高考,理2).设A ,B 是两个集合,则“A B A =I ”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C. 由题意得,A B A A B =⇒⊆I ,反之,A B A B A =⇒⊆I ,故为充要条件,选C.17.(2015新课标全国卷Ⅰ,文1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2【解析】选D18(2015重庆高考,文1)已知集合{1,2,3},B {1,3}A ==,则A B =I ( )(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}【解析】选C 由已知及交集的定义得A B =I {1,3},故选C.19.(2015浙江高考,文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.20.(2015重庆高考,文2)“x 1=”是“2x 210x -+=”的( )(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.21.(2015浙江高考,文1)已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =I ( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3-【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =I ,故选A.22.(2015天津高考,文1)已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B I =()ð( ) (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}【答案】B【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B I =()ð,故选B. 23.(2015天津高考,文4)设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A 【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.24.(2015四川高考,文1)设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3}【答案】A25.(2015山东高考,文1) 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .26.(2015四川高考,文4)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A27.(2015陕西高考,文1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( ) A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N =U ,故答案选A . 28.(2015安徽高考,文2)设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =I ( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B =I {}1,∴选B . 29.(2015广东高考,文1)若集合{}1,1M =-,{}2,1,0N =-,则M N =I ( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C【解析】{}1M N =I ,故选C .30.(2015山东高考,文5)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤(C) 若方程20x x m +-=没有实根,则0m >(D) 若方程20x x m +-=没有实根,则0m ≤【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .31.(2015湖南高考,文3)设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.32.(2015福建高考,文2)若集合{}22M x x =-≤<,{}0,1,2N =,则M N I 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1【答案】D【解析】由交集定义得{}0,1M N =I ,故选D .33.(2015湖北高考,文3)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =- 【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C .34.(2015北京高考,文1)若集合{}52x x A =-<<,{}33x x B =-<<,则A B =I ( )A .{}32x x -<<B .{}52x x -<<C .{}33x x -<<D .{}53x x -<<【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,A B I 为图中阴影部分,即{}32x x -<<,故选A.35.(2015安徽高考,文3)设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】∵3:πx p ,31:ππx q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C .36.(2015湖南高考,文11)已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A U (UB ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A U (U B ð)={1,2,3}.37. (2014·新课标全国卷Ⅰ理) 已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:选A A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A. 38. (2014·新课标全国卷Ⅰ文) 已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)解析:选B 借助数轴可得M∩N=(-1,1),选B.39. (2014·新课标全国卷Ⅱ理) 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =( )A.{1} B.{2}C.{0,1} D.{1,2}解析:选D N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.40. (2014·新课标全国卷Ⅱ文) 已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=( )A.∅B.{2}C.{0} D.{-2}解析:选B 法一:因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B ={2},故选B.法二:(代值验证法)将-2,0,2分别代入x2-x-2=0,经检验知只有2满足题意,故选B.41. (2014·浙江高考理) 设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( )A.∅B.{2}C.{5} D.{2,5}解析:选B 由题意知U={x∈N|x≥2},A={x∈N|x≥5},所以∁U A={x∈N|2≤x<5}={2}.故选B.42. (2014·浙江高考文) 设集合S={x|x≥2},T={x|x≤5},则S∩T=( )A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]解析:选D ∵S={x|x≥2},T={x|x≤5},∴S∩T=[2,5].43. (2014·重庆高考理) 已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是( )A.p∧q B.非p∧非qC.非p∧q D.p∧非q解析:选D 依题意,命题p是真命题.由x>2⇒x>1,而x>1⇒/x>2,因为此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则非q是真命题,p∧非q是真命题,选D.44. (2014·重庆高考文) 已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧非q B.非p∧qC.非p∧非q D.p∧q解析:选A 命题p为真命题,命题q为假命题,所以命题非q为真命题,所以p∧非q 为真命题,选A.45. (2014·安徽高考理) “x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.46. (2014·安徽高考文) 命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0解析:选C 命题的否定是否定结论,同时把量词作对应改变,故命题“∀x∈R,|x|+x2≥0”的否定为“∃x0∈R,|x0|+x20<0”,故选C.47. (2014·北京高考理) 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( )A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选C ∵A={x|x2-2x=0}={0,2},∴A∩B={0,2},故选C.48. (2014·北京高考文) 若集合A={0,1,2,4},B={1,2,3},则A∩B= ( )A.{0,1,2,3,4} B.{0,4}C.{1,2} D. {3}解析:选C 集合A与集合B的公共元素是1,2,即A∩B={1,2}.故选C.49.(2014·大纲高考理)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]解析:选B 由题意可得M={x|-1<x<4},所以M∩N={x|0≤x<4},故选B.50. (2014·大纲高考文) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为( )A.2 B.3C .5D .7解析:选B 由M ∩N ={1,2,6},故M ∩N 中含有3个元素,故选B.51. (2014·福建高考理) 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k=1”是“△OAB 的面积为12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件解析:选A 若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12”⇒/“k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.52. (2014·福建高考文) 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于 ( )A .{x |3≤x <4}B .{x |3<x <4}C .{x |2≤x <3}D .{x |2≤x ≤3}解析:选A 因为P ={x |2≤x <4},Q ={x |x ≥3},所以P ∩Q ={x |3≤x <4},故选A.53. (2014·广东高考理) 已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1}B .{-1,0,1,2}C .{-1,0,2}D .{0,1}解析:选B M ∪N 表示属于M 或属于N 的元素构成的集合,故M ∪N ={-1,0,1,2}.54. (2014·广东高考文) 已知集合M ={2,3,4},N ={0,2,3,5} ,则M ∩N =( )A .{0,2}B .{2,3}C .{3,4}D .{3,5}解析:选B 由交集的定义,注意到两集合的公共元素构成的集合为{2,3},故选B.55. (2014·湖北高考理) 设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C 是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件解析:选C “存在集合C 使得A ⊆C ,B ⊆∁U C ”⇔“A ∩B =∅”.故C 正确.56. (2014·湖北高考文) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=( )A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:选C 由题意知∁U A={2,4,7},选C.57. (2014·湖南高考理) 已知命题p:若x>y,则-x<-y:命题q:若x>y,则x2>y2,在命题①p∧q;②p∨q;③p∧(非q);④(非p)∨q中,真命题是( )A.①③ B.①④C.②③ D.②④解析:选C 由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③非q为真命题,则p∧(非q)为真命题,④非p为假命题,则(非p)∨q为假命题,所以选C.58. (2014·湖南高考文) 设命题p:∀x∈R,x2+1>0 ,则非p为( )A.∃x0∈R,x20+1>0 B.∃x0∈R,x20+1≤0C.∃x0∈R,x20+1<0 D.∀x∈R,x2+1≤0解析:选B 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p的否定为“∃x0∈R,x20+1≤0”,所以选B.59. (2014·江西高考文) 设全集为R ,集合A={x|x2-9<0},B={x|1<x≤5},则A∩(∁R B)= ( )A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)解析:选C 因为A={x|-3<x<3},∁R B={x|x≤-1或x>5},所以A∩(∁R B)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.60. (2014·辽宁高考理) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.61. (2014·辽宁高考文) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D 由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.62. (2014·山东高考理) 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B =( )A.[0,2] B.(1,3)C.[1,3) D.(1,4)解析:选C |x-1|<2⇔-2<x-1<2,故-1<x<3,即集合A=(-1,3).根据指数函数的性质,可得集合B=[1,4].所以A∩B=[1,3).63. (2014·山东高考文) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( ) A.(0,2] B.(1,2)C.[1,2) D.(1,4)解析:选C 由题意得集合A=(0,2),集合B=[1,4],所以A∩B=[1,2).64. (2014·陕西高考理) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D 由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.65.(2014·陕西高考文) 已知集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.(0,1)C.(0,1] D.[0,1)解析:选D 由题意知,集合M=[0,+∞),N=(-1,1),∴M∩N=[0,1).66. (2014·四川高考理) 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=( ) A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}解析:选A 因为A={x|-1≤x≤2},B=Z,故A∩B={-1,0,1,2}.67. (2014·四川高考文) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B =( )A.{-1,0} B.{0,1}C .{-2,-1,0,1}D .{-1,0,1,2}解析:选D 由二次函数y =(x +1)(x -2)的图象可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.68. (2014·天津高考理) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选C 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C. 69. (2014·天津高考文) 已知命题p :∀x >0,总有(x +1)e x>1,则非p 为 ( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤1解析:选B 全称命题的否定是特称命题,所以命题p :∀x >0,总有(x +1)e x >1的否定是非p :∃x 0>0,使得(x 0+1)e x 0≤1.70.(2013·福建高考理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ” 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题考查集合与充分必要条件等基础知识,意在考查考生转化和化归能力、逻辑推理能力和运算求解能力.因为A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以A ⊆B ⇒/ a =3,所以“a =3”是“A ⊆B ”的充分而不必要条件.71.(2013·辽宁高考理)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]【解析】选D 本题考查集合的运算,同时考查对数不等式的解法.求解对数不等式时注意将常数转化为对应的对数,而后准确应用对数函数的单调性进行求解.0<log 4x <1,即log 41<log 4x <log 44,故1<x <4,∴集合A ={x |1<x <4},∴A ∩B ={x |1<x ≤2}.72.(2013·安徽高考理) “a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选C 本题考查二次函数图象性质以及图象变换,意在考查转化与化归思想.根据二次函数的图象可知f (x )在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,本题不难求解.f (x )=|(ax -1)x |在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,故“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)内单调递增”的充要条件,故选C.73.(2013·浙江高考理)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)【解析】选C 本题考查无限元素集合间的交、并、补运算以及简单的一元二次不等式的解法.浙江省每年都会有一道涉及集合的客观题,主要考查对集合语言的理解以及简单的集合运算.T = {x |-4≤x ≤1},根据补集定义,∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.74.(2013·浙江高考理)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题考查对必要条件、充分条件与充要条件的理解,考查三角函数的诱导公式、三角函数的奇偶性等,意在考查考生的推理能力以及三角函数性质的掌握等.若f (x )是奇函数,则φ=π2+k π(k ∈Z),且当φ=π2时,f (x )为奇函数. 75.(2013·重庆高考理)已知全集U ={1,2,3,4},集合A ={1,2} ,B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题考查集合运算,意在考查考生运算能力.由题意A ∪B ={1,2,3},且全集U ={1,2,3,4},所以∁U (A ∪B )={4}.76.(2013·重庆高考理)命题“对任意x ∈R ,都有x 2≥0”的否定为 ( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0【解析】选D 本题考查全称命题和特称命题,意在考查考生对基本概念的掌握能力.全称命题的否定为特称命题,所以答案为D.77.(2013·新课标Ⅰ高考理)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A.A∩B=∅ B.A∪B=R C.B⊆A D.A⊆B【解析】选B 本题考查一元二次不等式的解法和集合的运算,意在考查考生运用数轴进行集合运算的能力.解题时,先通过解一元二次不等式求出集合A,再借助数轴求解集合的运算.集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,选择B.78.(2013·新课标Ⅱ高考理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 【解析】选A 本题主要涉及简单不等式的解法以及集合的运算,属于基本题,考查考生的基本运算能力.不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M={x|-1<x<3},则M∩N={0,1,2},故选A.79.(2013·北京高考理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1} 【解析】选B 本题考查集合的含义与运算,意在考查考生基本的运算求解能力.集合B 含有整数-1,0,故A∩B={-1,0}.80.(2013·北京高考理) “φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题考查三角函数的诱导公式、三角函数的性质、充要条件的判断等基础知识和基本方法,意在考查考生分析问题、解决问题的能力.由sin φ=0可得φ=kπ(k ∈Z),此为曲线y=sin(2x+φ)过坐标原点的充要条件,故“φ=π”是“曲线y=sin(2x +φ)过坐标原点”的充分而不必要条件.81.(2013·陕西高考理)设全集为R ,函数f (x )= 1-x 2的定义域为M ,则∁R M 为 ( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)【解析】选D 本题考查集合的概念和运算,涉及函数的定义域与不等式的求解.本题抓住集合元素是函数自变量,构建不等式并解一元二次不等式得到集合,然后利用补集的意义求解,使集合与函数有机结合,体现了转化化归思想的具体应用.从函数定义域切入,∵1-x 2≥0,∴-1≤x ≤1,依据补集的运算知所求集合为(-∞,-1)∪(1,+∞),选D.82.(2013·陕西高考理)设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选C 本题考查向量的数量积和向量共线的充要条件的判断,涉及向量的模及绝对值的概念.从数量积入手,设α为向量a ,b 的夹角,则|a·b |=|a ||b |·|cos α|=|a ||b |⇔|cos α|=1⇔cos α=±1⇔向量a ,b 共线.83.(2013·江西高考理)已知集合M {1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i【解析】选C 本题考查集合的交集运算及复数的四则运算,意在考查考生的运算能力.由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i.84.(2013·广东高考理)设集合M ={x |x 2+2x =0,x ∈R},N ={x |x 2-2x =0,x ∈R},则M ∪N = ( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}【解析】选D 本题考查集合的并集、一元二次方程,旨在考查考生对集合并集的了解.M ={x |x (x +2)=0,x ∈R}={0,-2},N ={x |x (x -2)=0,x ∈R}={0,2},所以M ∪N ={-2,0,2}.85.(2013·山东高考理)已知集合A ={0,1,2},则集合B ={x -y |x ∈A, y ∈A }中元素的个数是( )A .1B .3C .5D .9【解析】选C 本题考查集合的含义,考查分析问题、解决问题的能力.逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个86.(2013·山东高考理)给定两个命题p ,q .若非 p 是q 的必要而不充分条件,则p 是非 q的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 本题考查命题、逻辑联结词及充分、必要条件等基础知识,考查等价转化的数学思想,考查分析问题和解决问题的能力.q ⇒非p 等价于p ⇒非q ,非p ⇒/ q 等价于非q ⇒/ p ,故p 是非q 的充分而不必要条件.87.(2013·大纲卷高考理)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .6【解析】选B 本题考查集合中元素的性质.由集合中元素的互异性,可知集合M ={5,6,7,8},所以集合M 中共有4个元素.88.(2013·湖北卷高考理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x ⎝ ⎛⎭⎪⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}【解析】选C 本题主要考查集合的基本运算和不等式的求解,意在考查考生的运算求解能力.由题意可知,集合A={x|x≥0},B={x|2≤x≤4},所以∁R B={x|x<2或x>4},此时A∩∁R B={x|0≤x<2或x>4},故选C.89.(2013·湖北卷高考理)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( ) A.(非p)∨(非q) B.p∨(非q)C.(非p)∧(非q) D.p∨q【解析】选A 本题主要考查使用简单逻辑联结词来表示复合命题,意在考查考生对基础知识和基本概念的理解与掌握.由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(非p)∨(非q).90.(2013·四川卷高考理)设集合A={x|x+2=0},集合B={x|x2-4=0},则A∩B=( )A.{-2} B.{2} C.{-2,2} D.∅【解析】选A 本题考查集合的基本运算,意在考查考生对集合概念的掌握.由x2-4=0,解得x=±2,所以B={2,-2},又A={-2},所以A∩B={-2},故选A. 91.(2013·四川卷高考理)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x ∈A,2x∈B,则( )A.非p:∀x∈A,2x∉B B.非p:∀x∉A,2x∉BC.非p:∃x∉A,2x∈B D.非p:∃x∈A,2x∉B【解析】选D 本题考查常用逻辑用语中的∀,∃和非等概念,意在考查考生的逻辑判断能力.因为任意都满足的否定是存在不满足的,所以选D.92.(2013·天津卷高考理)已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③【解析】选C 本题考查命题真假的判断,意在考查考生的逻辑推理能力.若一个球的半径缩小到原来的12,则其体积缩小到原来的18,所以①是真命题;因为标准差除了与平均数有关,还与各数据有关,所以②是假命题;因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,所以③是真命题.故真命题的序号是①③.93.(2013·天津卷高考理)已知集合A ={x ∈R| |x |≤2}, B ={x ∈R| x ≤1}, 则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]【解析】选D 本题考查简单绝对值不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x |≤2,得-2≤x ≤2,所以A =[-2,2],所以A ∩B =[-2,1].94.(2013·北京高考文)已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( )A .{0}B .{-1,0}C .{0,1} D. {-1,0,1}【解析】选B 集合A 中共有三个元素-1,0,1,而其中符合集合B 的只有-1和0,故选B.95.(2013·重庆高考文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题主要考查集合的并集与补集运算.因为A ∪B ={1,2,3},所以∁U (A ∪B )={4},故选D.96.(2013·重庆高考文)命题“对任意x ∈R ,都有x 2≥0”的否定为 ( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x 0∈R ,使得x 2<0【解析】选A 本题主要考查全称命题的否定.根据定义可知命题的否定为存在x 0∈R ,使得x 20<0,故选A.97.(2013·安徽高考文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B = ( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}【解析】选A 本题主要考查集合的基本运算,意在考查考生的运算能力和对基本概念的理解能力.集合A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.98.(2013·安徽高考文) “(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题主要考查充分必要条件的基础知识和基本概念,意在考查考生对方程的求解以及概念的识别.由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件. 99.(2013·山东高考文)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B={1,2},则A∩∁U B= ( ) A.{3} B.{4} C.{3,4} D.∅【解析】选A 本题主要考查集合的交集、并集和补集运算,考查推理判断能力.由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B ={3}.100.(2013·山东高考文)给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【解析】选A 本题主要考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了对转化思想的考查.由q⇒非p且非p⇒/ q可得p⇒非q且非q⇒/ p,所以p是非q 的充分而不必要条件.101.(2013·大纲卷高考文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=( )A.{1,2} B.{3,4,5} C.{1,2,3,4,5} D.∅【解析】选B 本题主要考查集合的补集运算.根据补集的定义可知∁U A={3,4,5}.102.(2013·福建高考文)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y -1=0上”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题主要考查以点与直线的位置关系为背景的充分必要条件,意在考查考生的数形结合能力、逻辑推理能力和运算求解能力.“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推得“点P在直线l:x+y-1=0上”;但方程x+y-1=0有无数多个解,故“点P在直线l:x+y-1=0上”不能推得“x=2且y=-1”,故“x =2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.103.(2013·福建高考文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( )A.2 B.3 C.4 D.16【解析】选C 本题主要考查集合的交集及子集的个数等基础知识,意在考查考生对集合概念的准确理解及集合运算的熟练掌握.A∩B={1,3},故A∩B的子集有4个.104.(2013·新课标Ⅱ高考文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【解析】选C 本题主要考查集合的基本运算,意在考查考生对基本概念的理解.由交集的意义可知M∩N={-2,-1,0}.105.(2013·湖南高考文) “1<x<2”是“x<2”成立的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题主要考查不等式的基本性质和充分必要条件的判断,意在考查考生对充分性和必要性概念的掌握与判断.“1<x<2”可以推得“x<2”,即满足充分性,但“x<2”得不出“1<x<2”,所以为充分不必要条件.106.(2013·浙江高考文)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=( )A.[-4,+∞)B.(-2, +∞)C.[-4,1] D.(-2,1]【解析】选D 本题主要考查集合、区间的意义和交集运算等基础知识,属于简单题目,意在考查考生对基础知识的掌握程度.由已知得S ∩T ={x |x >-2}∩{x |-4≤x ≤1}= {x |-2<x ≤1}=(-2,1].107.(2013·浙江高考文)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题主要考查充要条件的判断、三角函数值等基础知识,意在考查考生的推理论证能力.当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,….108.(2013·新课标Ⅰ高考文)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【解析】选A 本题主要考查集合的基本知识,要求认识集合,能进行简单的运算.n =1,2,3,4时,x =1,4,9,16,∴集合B ={1,4,9,16},∴A ∩B ={1,4}.109.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的 是( )A .p ∧qB .非p ∧qC .p ∧非qD .非p ∧非q【解析】选B 本题主要考查常用逻辑用语等基本知识,对分析问题的能力有一定要求.容易判断当x ≤0时2x >3x ,命题p 为假命题,分别作出函数y =x 3,y =1-x 2的图像,易知命题q 为真命题.根据真值表易判断非p ∧q 为真命题.110.(2013·天津高考文)已知集合A={x∈R| |x|≤2}, B= {x∈R| x≤1},则A∩B=( )A.(-∞,2] B.[1,2] C.[-2,2] D.[-2,1]【解析】选D 本题主要考查简单不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x|≤2得,-2≤x≤2,所以A=[-2,2],又B=(-∞,1],所以A∩B =[-2,1].111.(2013·天津高考文)设a,b∈R则“(a-b)·a2<0”是“a<b”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【解析】选A 本题主要考查充分条件、必要条件的判断,意在考查考生的逻辑推理能力.若(a-b)·a2<0,则a≠0,且a<b,所以充分性成立;若a<b,则a-b<0,当a=0时,(a-b)·a2=0,所以必要性不成立.故“(a-b)·a2<0”是“a<b”的充分而不必要条件.112.(2013·湖北高考文)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A=( )A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5}【解析】选B 本题主要考查集合的补集和交集运算.由题得,∁U A={3,4,5},则B∩∁U A ={3,4}.113. (2013·湖北高考文)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(非p)∨(非q) B.(p)∨(非q)C.(非p)∧(非q) D.p∨q【解析】选A 本题主要考查逻辑联结词和复合命题.非p:甲没有降落在指定范围;非q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即非p或非q发生.114.(2013·陕西高考文)设全集为R,函数f(x)=1-x的定义域为M, 则∁R M为( )A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【解析】选B 本题主要考查集合的概念和运算,函数的定义域与不等式的求解方法.从函数定义域切入,1-x≥0,∴x≤1,依据补集的运算知识得所求集合为(1,+∞).115.(2013·江西高考文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4 B.2 C.0 D.0或4【解析】选A 本题主要考查集合的表示方法(描述法)及其含义,考查化归与转化、分类讨论思想.由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).116.(2013·四川高考文)设集合A={1,2,3},集合B={-2,2},则A∩B=( )A.∅B.{2} C.{-2,2} D.{-2,1,2,3}【解析】选B 本题主要考查集合的运算,意在考查考生对基础知识的掌握.A,B两集合中只有一个公共元素2,∴A∩B={2},选B.117.(2013·四川高考文)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x ∈A,2x∈B,则( )A.非p:∃x∈A,2x∈BB.非p:∃x∉A,2x∈BC.非p:∃x∈A,2x∉BD.非p:∀x∉A,2x∉B【解析】选C 本题主要考查含有一个量词的命题的否定,意在考查考生基础知识的掌握.由命题的否定易知选C,注意要把全称量词改为存在量词.118.(2013·广东高考文)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=( )A.{0} B.{0,2} C.{-2,0} D.{-2,0,2} 【解析】选A 本题主要考查集合的运算知识,意在考查考生的运算求解能力.因为S={-2,0},T={0,2},所以S∩T={0}.119.(2013·辽宁高考文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0} B.{0,1} C.{0,2} D.{0,1,2}【解析】选B 本题主要考查集合的概念和运算,同时考查了绝对值不等式的解法,意在考查考生对集合运算的掌握情况,属于容易题.由已知,得B={x|-2<x<2},所以A∩B ={0,1},选B.120.(2012·重庆高考理)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的( )A.既不充分也不必要的条件 B.充分而不必要的条件C.必要而不充分的条件 D.充要条件【解析】由题意可知函数在[0,1]上是增函数,在[-1,0]上是减函数,在[3,4]上也是减函数;反之也成立.121.(2012·广东高考理)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=( )A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}【解析】选C 由于U={1,2,3,4,5,6},M={1,2,4},从而∁U M={3,5,6}.122.(2012·山东高考理)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁。
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)

②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B ,则 P A
P B ;④若 A B ,则 P A P B ;
n B 1 ,则 n P A 2 n P B 其中正确的命题个数为(
A. 4 B. 3 C. 2
) D. 1
5.已知集合 M={ ( x, y )| y f ( x ) },若对于任意 ( x1 , y1 ) M ,存在 ( x2 , y2 ) M ,使得
2 知函数 f (x) x (x R), g(x) (x 0), h(x) 2e ln x .有下列命题:
1 x
1 ① F (x) f (x) g(x) 在 x ( 3 ,0) 内单调递增; 2
② f ( x ) 和 g( x ) 之间存在“隔离直线”, 且 b 的最小值为-4; ③ f ( x ) 和 g( x ) 之间存在“隔离直线”, 且 k 的取值范围是 (4,0] ; ④ f ( x ) 和 h(x) 之间存在唯一的“隔离直线” y 2 ex e . 其中真命题的个数有( )
a1 b1 c1 是 P Q 的充分必要条件,其中 a2 b2 c2
D.①③
3 .若存在实常数 k 和 b ,使得函数 F (x) 和 G(x) 对其公共定义域上的任意实数 x 都满足:
F (x) kx b 和 G(x) kx b 恒成立, 则称此直线 y kx b 为 F (x) 和 G(x) 的“隔离直线”. 已
.
T ,则 S 2T 2014 的最小正整数 n 为
Go the distance
1.B 【 解 析 】 因 为 C ( A) 2 ,A *B , 1 所 以 C ( B ) 1或 C ( B) 3 . 由 x 2 ax 0 得 : 满足题设.对 x 2 ax 2 0 , 当 0 时, x1 0, x2 a .当 a 0 时,B {0}, C ( B) 1 ,
Go the distance
A.1 个
B.2 个
C.3 个
D.4 个
4.定义一个集合 A 的所有子集组成的集合叫做集合 A 的幂集,记为 P A , 用 n A 表示 有限集 A 的元素个数, 给出下列命题: ①对于任意集合 A , 都有 A P A ; ②存在集合 A , 使得 n P A 3; ③用 表示空集, 若A ⑤若 n A
(2) f ( x ) 和 g( x ) 之间存在“隔离直线”,设“隔离直线”为 y kx b ,当“隔离直线”与
f ( x) x 2 , g ( x)
1 ( x 0), 同时相切时,截距最小,令切点坐标为 x1 , y1 , x2 , y2 ,则 x
Go the distance
2 已 知 a1 , b1 , c1 , a2 , b2 , c2 都 是 不 等 于 零 的 实 数 , 关 于 x 的 不 等 式 a1 x b1 x c1 0 和
a2 x 2 b2 x c2 0 的解集分别为 P,Q,则
正确的命题是( A.①④ B.①②③ ) C.②③④
1 2 x 1 x2 2 1 2 1 2 切线方程为 y 2 x1 x x1 或y 2 x , 所以 ,故 x1 2, x2 ,所 x2 x2 2 x 2 2 1 x2
11. 用 | S | 表示集合 S 中的元素的个数, 设 A、B、C 为集合, 称 ( A, B, C ) 为有序三元组. 如 果集合 A、B、C 满足 A
B
B C
C
A 1 ,且 A B C ,则称有序三元组
( A, B, C ) 为最小相交.由集合 1, 2,3, 4 的子集构成的所有有序三元组中,最小相交的有序
1 1 5 ,故 不 满 足 必 要 性 ,故 ④ 是 假 命 题 . 1 1 2
1 1 1 , 则 F x 0, 解得 x ( 3 ,0) , F x 2x 2 , x x 2
1 所以 F (x) f (x) g(x) 在 x ( 3 ,0) 内单调递增;故①正确. 2
Go the distance
的. 若 T , V 是 Z 的两个不相交的非空子集,T V Z 且 a, b, c T , 有 abc T ; x, y, z V , 有 xyz V ,有四个命题:① T ,V 中至少有一个关于乘法是封闭的;② T ,V 中至多 有一个 关于乘法是封闭的; ③ T ,V 中有且只有一个关于乘法是封闭的;④ T ,V 中每一个关于乘法 都是封闭的.其中所有正确命题的序号是 .
三元组的个数为 .
12 . 已 知 等 比 数 列 {an } 的 首 项 为
4 1 ,公比为 ,其前 n 项和记为 S ,又设 3 3
1 3 5 Bn , , , 2 4 8
,
n 2 n 2
1 n N , n 2 , Bn 的所有非空子集中 的最小元素的和为
点.例如 y=| x |是 [2 ,2] 上的“平均值函数” ,0 就是它的均值点.给出以下命题:
2 ] 上的“平均值函数” ①函数 f ( x) cos x 1 是 [2 , .
ab [ a , b ] y f ( x ) ②若 是 上的“平均值函数” ,则它的均值点 x0≥ 2 .
x1 x2 y1 y2 0 成立,则称集合 M 是 “垂直对点集”.给出下列四个集合:
①M={ ( x, y )| y
1 }; x
ห้องสมุดไป่ตู้
②M={ ( x, y )| y sin x 1}; ④M={ ( x, y )| y e 2 }.
x
③M={ ( x, y )| y log 2 x }; 其中是“垂直对点集”的序号是( A.①② B.②④ C.①④
a 2 2 ,此时 C ( B) 3 符合题意.
当 0 时 , a 2 2 或 a 2 2 , 此 时 必 有 C ( B ) 4, 不 符 合 题 意 . 所 以 B. S { 0 , 2 2 , 2 .选 2} 2.D 【 解 析 】 对 于 ① : 显 然 必 要 性 成 立 , 反 之 若 a 2 b 2 c 2 ab ac bc , 则
2 1] 上 的 “ 平 均 值 函 数 ” ③ 若 函 数 f ( x) x mx 1 是 [ 1 , ,则实数 m 的取 值范围是
Go the distance
m (0 ,2) .
④若 f ( x) ln x 是区间[a,b] (b>a≥1)上的“平均值函数” , x0 是它的一个均值点,则
) D.②③
二、填空题。 6 . 定 义 : 如 果函 数 y f ( x) 在 定 义 域 内 给 定 区间 [ a,b] 上 存 在 x0 (a x0 b) , 满 足
f ( x0 )
f (b) f (a) ba ,则称函数 y f ( x) 是 [ a,b] 上的“平均值函数” , x0 是它的一个均值
2 .下列命题:①△ ABC 的三边分别为 a, b, c 则该三角形是等边三角形的充要条件为
a 2 b 2 c 2 ab ac bc ;②数列 an 的前 n 项和为 Sn ,则 Sn An 2 Bn 是数列 an
为等差数列的必要不充分条件;③在△ABC 中,A=B 是 sin A=sin B 的充分必要条件;④
8.给定有限单调递增数列 {xn }( n N * ,数列 {xn } 至少有两项)且
xi 0(1 xi n) ,定义集合 A {( xi , x j ) |1 i, j n, 且i, j N *} .若对任意点 A1 ,
存在点 2 使得 OA1 OA2 (O 为坐标原点),则称数列 {xn } 具有性质 P . (1)给出下列四个命题,其中正确的是 ①数列 {xn }: -2,2 具有性质 P ; ②数列 { yn } :-2,-1,1,3 具有性质 P ; ③若数列 {xn } 具有性质 P ,则 {xn } 中一定存在两项 xi , x j ,使得 xi x j 0 ; ④若数列 {xn } 具有性质 P , x1 1, x2 0 且 xn 1(n 3) ,则 x2 1 . (2)若数列 {xn } 只有 2014 项且具有性质 P, x1 1, x3 2 ,则 {xn } 的所有项和 S2014 . .(填上所有正确命题的序号)
a1 A B ;当 n 2 时 , an sn sn1 2 An A B ,显 然 n 1 时 适 合 该 式 ,因 此
数 列 an 是 等 差 数 列 , 故 满 足 充 分 性 , 故 ② 是 假 命 题 ; 对 于 ③ : 在 三 角 形 中
A B a b,又由正弦定理得
9. 若自然数 n 使得作加法 n+(n+1)+(n+2)运算均不产生进位现象, 则称 n 为“给力数”, 例如: 32 是“给力数”, 因 32+33+34 不产生进位现象; 23 不是“给力数”, 因 23+24 + 25 产生进位现象.设小于 1 000 的所有“给力数”的各个数位上的数字组成集合 A,则集合 A 中的数字和为________. 10.设 S 是整数集 Z 的非空子集,如果 a, b S , 有 ab S ,则称 S 关于数的乘法是封闭
2 a 2 b 2 c 2 2ab ac bc , 整 理 得 a b2 b c 2 a c 2 0 , 当 且 仅 当
a b c 时 成 立 故 充 分 性 成 立 , 故 ① 是 真 命 题 ; 对 于 ② : 由 Sn An 2 Bn 得