用顺序表解决约瑟夫环问题
约瑟夫问题与循环链表解决环状数据结构的应用问题

约瑟夫问题与循环链表解决环状数据结构的应用问题约瑟夫问题是一个经典的数学问题,涉及到环状数据结构的应用。
在这个问题中,有n个人围成一圈,从第一个人开始依次报数,每报到第m个人就出列,直到剩下最后一个人。
本文将介绍约瑟夫问题的背景和解决方法,并探讨循环链表在解决环状数据结构问题中的应用。
一、约瑟夫问题的背景约瑟夫问题最早可追溯到两千多年前。
根据传说,犹太历史学家弗拉维奥·约瑟夫斯(Flavius Josephus)当时被罗马军队围困在一个洞穴中,他和其他39个犹太人决定宁愿自杀也不被俘。
他们决定站成一个圆圈,从第一个人开始,数到第三个人就将他杀死,直到最后一个人留下来。
通过解决这个例子中的问题,人们发现了一种递推模式,即每次被杀的人索引号是前一个被杀人索引号加上一个特定数(m)对人数(n)取余的结果。
二、求解约瑟夫问题1. 暴力法最简单的解法是通过一个数组,将每个人标记为存活或死亡。
然后从第一个人开始,按照指定的m值遍历循环,找到下一个存活的人,直到只剩下最后一个人。
这种方法的问题在于时间复杂度较高,特别是当人数和m值较大时,算法运行效率低下。
2. 循环链表循环链表是解决约瑟夫问题的一种有效数据结构。
在循环链表中,每个节点都包含一个指向下一个节点的指针,最后一个节点指向第一个节点,形成一个闭环。
通过使用循环链表,我们可以轻松地实现约瑟夫问题的求解。
首先,我们将n个人作为节点插入到循环链表中,并将最后一个节点指向第一个节点。
然后,我们从第一个人开始依次报数,每报到第m个人,就将该节点从链表中移除。
此时,链表的结构会自动调整,继续报数直到只剩下最后一个人。
这种方法只需要遍历一次链表,因此时间复杂度为O(n)。
相比暴力法,它的运行效率更高。
三、循环链表解决环状数据结构的应用问题除了约瑟夫问题,循环链表还可以应用于其他环状数据结构的解决方案中。
1. 环形队列环形队列是计算机科学中常用的一种数据结构,它可以实现缓冲区的循环利用。
实验报告 约瑟夫问题

pCur->next = pNew;
pCur = pNew;
printf("结点%d,密码%d\n",pCur->id, pCur->cipher);
}
}
printf("完成单向循环链表的创建!\n");
}
(3)运行"约瑟夫环"问题
static void StartJoseph(NodeType **, int)
exit(-1);
}
pNew->id = iId;
pNew->cipher = iCipher;
pNew->next = NULL;
return pNew;
}
(6)测试链表是否为空,空为TRUE,非空为FALSE
static unsigned EmptyList(const NodeType *pHead)
实验内容
利用循环链表实现约瑟夫环求解。
实验说明
1.问题描述
约瑟夫问题的:编号为1,2,....,N的N个人按顺时针方向围坐一圈,每人持有一个密码(正整数),一开始任选一个正整数作为报数上限值M,从第一个人开始按顺时针方向自1开始顺序报数,报到M时停止报数。报M的人出列,将他的密码作为新的M值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。试设计一个程序求出出列顺序。
{
if(!pHead)
{
return TRUE;
}
return FALSE;
}
实验中遇到的问题及解决方法
实验结果如下:
实验总结(结果和心得体会)
约瑟夫环问题

约瑟夫环问题问题描述:有n个⼈,编号分别从0到n-1排列,这n个⼈围成⼀圈,现在从编号为0的⼈开始报数,当报到数字m的⼈,离开圈⼦,然后接着下⼀个⼈从0开始报数,依次类推,问最后只剩下⼀个⼈时,编号是多少?分析:这就是著名的约瑟夫环问题,关于来历不再说明,这⾥直接分析解法。
解法⼀:蛮⼒法。
我曾将在⼤⼀学c语⾔的时候,⽤蛮⼒法实现过,就是采⽤标记变量的⽅法即可。
解法⼀:循环链表法。
从问题的本质⼊⼿,既然是围成⼀个圈,并且要删除节点,显然符合循环链表的数据结构,因此可以采⽤循环链表实现。
解法三:递推法。
这是⼀种创新的解法,采⽤数学建模的⽅法去做。
具体如下:⾸先定义⼀个关于n和m的⽅程f(n,m),表⽰每次在n个编号0,1,...,n-1中每次删除的报数为m后剩下的数字,在这n个数字中,第⼀个被删除的数字是(m-1)%n,为了简单,把(m-1)%n记作k,那么删除k之后剩下的数字为0,1,2,...,k-1,k+1,...,n-1并且下⼀次删除的数字从k+1开始计数,这就相当于剩下的序列中k+1排在最前⾯,进⽽形成k+1,..,n-1,0,1,2,...,k-1这样的序列,这个序列最后剩下的数字应该和原序列相同,由于我们改变了次序,不能简单的记作f(n-1,m),我们可以记作g(n-1,m),那么就会有f(n,m)=g(n-1,m).下⼀步,我们把这n-2个数字的序列k+1,..,n-1,0,1,2,...,k-1做⼀个映射,映射的结果是形成⼀个从0到n-2的序列。
k+1对0,k+2对1,......,n-1对n-k-2,0对n-k-1,1对n-k,....,k-1对n-2这样我们可以把这个映射定义为p,则p(x)=(x-k-1)%n,它表⽰如果映射前的数字是x,映射后为(x-k-1)%n,从⽽这个映射的反映射问为p-1(x)=(x+k+1)%n由于映射之后的序列和原始序列具有相同的形式,都是从0开始的序列,所以可以⽤函数f来表⽰,即为f(n-1,m),根据映射规则有:g(n-1,m)=p-1[f(n-n,m)]=[f(n-1,m)+k+1]%n,最后把之前的k=(m-1)%n带⼊式⼦就会有f(n,m)=g(n-1,m)=[f(n-1,m)+m]%n.这样我们就可以得出⼀个递推公式,当n=1时,f(n,m)=0;当n>1时,f(n,m)=[f(n-1,m)+m]%n;有了这个公式,问题就变得多了。
约瑟夫环问题源代码(C语言)

约瑟夫环问题如下:已知n个人(n>=1)围桌一园桌周围,从1开始顺序编号。
从序号为1的人开始报数,顺时针数到m的那个人出列。
他的下一个人又从1开始报数,数到m的那个人又出列。
依此规则重复下去,直到所有人全部出列。
求解最后一个出列的人的编号。
本次实验是以顺序表求解约瑟夫环问题,程序流程图及程序运行结果如下:输入人数、所报数、第一个报数人编号存储并建立一个约瑟夫环通过循环结构依次查找每次出列的人的编号并输出输出最后一个出列的人的编号程序代码如下:#include<iostream>#include<process.h>#include<stdlib.h>using namespace std;struct Node //循环节点的定义{int number; //编号Node *next;};Node *CreateList(Node *L,int &n,int &m); //建立约瑟夫环函数void Joseph(Node *L,int n,int m); //输出每次出列号数函数Node *DeleteList(Node **L,int i,Node *q); //寻找每次出列人的号数int LengthList(Node *L); //计算环上所有人数函数void main() //主函数{system("color 75"); //设置颜色以美观Node *L;L=NULL; //初始化尾指针int n, m;cout<<"请输入人数N:";cin>>n; //环的长度if(n<1){cout<<"请输入正整数!";} //人数异常处理else{cout<<"请输入所报数M:";cin>>m;if(m<1){cout<<"请输入正整数!";} //号数异常处理else{L=CreateList(L,n,m); //重新给尾指针赋值Joseph(L,n,m);}}system("pause");}Node *CreateList(Node *L,int &n,int &m) //建立一个约瑟夫环(尾插法){Node *q;for(int i=1;i<=n;i++){Node *p;p=new Node;p->number=i;p->next=NULL;if(i==1) L=q=p; //工作指针的初始化 else{q->next=p;q=q->next;}}q->next=L;if(L!=NULL){return(L);} //返回尾指针else cout<<"尾指针异常!"<<endl; //尾指针异常处理}void Joseph(Node *L,int n,int m) //输出每次出列的人{int k;cout<<"请输入第一个报数人:";cin>>k;if(k<1||k>n){cout<<"请输入1-"<<n<<"之间的数"<<endl;}else{cout<<"\n出列顺序:\n";for(int i=1;i<n;i++){Node *q = new Node;if(i==1) q=DeleteList(&L,k+m-1,q); //第一个出列人的号数else q=DeleteList(&L,m,q);cout<<"号数:"<<q->number<<endl;delete q; //释放出列人的存储空间}cout<<"最后一个出列号数是:"<<L->number<<endl; //输出最后出列人的号数}}Node *DeleteList(Node **L,int i,Node *q) //寻找每次出列的人{if(i==1) i+=LengthList(*L); //顺序依次出列情况的处理方式Node *p;p=*L;int j=0;while(j<i-2) {p=p->next;j++;}q = p->next;p->next=p->next->next;*L = p->next;return(q);}int LengthList(Node *L) //计算环上的人数{if(L){cout<<"尾指针错误!"<<endl;} //异常处理else{int i=1;Node *p=L->next;while(p!=L){i++;p=p->next;}return(i);}}实验体会:通过对本问题的分析,我进一步熟悉了对各种逻辑表达式的判断和指针的使用。
约瑟夫环问题(顺序结构)

约瑟夫环问题(顺序结构)约瑟夫环问题(顺序结构)#define N 6int yuesefu1(int data[],int sum,int k){int i=0,j=0,count=0;while(count<sum-1)< p="">{if(data[i]!=0)/*当前人在圈子里*/j++;if(j==k)/*若该人应该退出圈子*/{ printf("\n%d",data[i]);data[i]=0;/*0表示不在圈子里*/count++;/*退出的人数加1*/j=0;/*重新数数*/}i++;/*判断下一个人*/if(i==sum)/*围成一圈*/i=0;}for(i=0;i<sum;i++)< p="">if(data[i]!=0)return data[i];/*返回最后一个人的编号*/}void main(){int data[N];int i,j,total,k;printf("\nPlease input the number of every people.\n");for(i=0;i<="" p="">{int input;scanf("%d",&input);if(input==0)break;/*0表示输入结束*/for(j=0;j<="" p="">if(data[j]==input)break;if(j>=i&&input>0)/*无重复,记录编号,继续输入*/{data[i]=input;i++;}elseprintf("\nData error.Re-input:");}total=i;printf("\nYou have input:\n");for(i=0;i<total;i++)< p="">{if(i%10==0)printf("\n");printf("%4d",data[i]);}printf("\nPlease input a number to count:");scanf("%d",&k);printf("\nThe last one''''s number is %d",yuesefu1(data,total,k)); }</total;i++)<></sum;i++)<> </sum-1)<>。
约瑟夫环(顺序表)

test:下标值。本次报数完之后,下一个 值为本单元中存放的值,即下一个 test =
P[test]
#include <stdio.h>// main(){
int i, p[17],test, head; // 设置循环控制变量、数组及两个数组下标指针 for(i=0;i<16;i++
p[i]=i+1; //存放下一个单元的下标值(位置号) p[16]=0; test=0; //起始位置(从哪开始报数) while(test!=p[test]){ // 位置号和该位置的下一位置相同时退出
(位置号) i + 1,即 P[ i ] = i + 1;到最后一个人的时候就循 环到第一个人,设置P[16] =0。
3
P[i] 1 2 3 4 5 6 7 8
0
i
01 2 34 5 6 7
16
head:下标值。由于报到3的倍数的 人要退出,为了保持循环顺序表的形 式,要改变退出的人的前一个的值, 例如:要改变P[1]的值使之变为3。 head用来标识报数的前一个人的下标 值,当报到3的倍数的人退出时,改 变前一个人的单元值为报到3的倍数 的人的单元值,使之保持循环顺序表 的形式。如此下去,当只有一个人的 时候test=p[test]。
指针指向的下一位置
test=p[head]; //记住出列位置
} printf(″\n%5d″,test); // 最后一个出列位置
}
❖ 例:设计一个程序求约瑟夫环的出列顺序。约瑟夫 (Joseph)问题:有17个人按顺时针方向围坐一周 (编号为0~16),从第0号的人开始从1报数,凡报到 3的倍数的人离开圈子,一直数下去,直到最后只剩下 一个人为止,问此人原来的位置是多少号?
约 瑟 夫 环 问 题 的 三 种 解 法

Java 约瑟夫环问题的两种解法(循环数组,单向环形链表)Josephu 问题为:设编号为1,2,… n的n个人围坐一圈,约定编号为k(1=k=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
2.解决方法一:循环数组提示:每次报数,如果满足出圈的条件就将数组元素设置为-1,当下次报数时跳过-1。
直至数组最后一个元素变为-1,循环结束,数组的循环使用取模来完成。
--解决方法二:数组+取模public static void JosephuByArr(int total,int startNum,int m){ int []Arr=new int[total];int leave=total; --剩下的数量int count=0; --报数(0-1-2-3-4-5····)int index=startNum; --第一个元素--初始化数组(为了方便取模,最后一个元素放在数组的第0个,也可以先加一再取模)Arr[0]=total;for(int i=1;iArr.length;i++){Arr[i]=i;while(leave0){count++; --报数--找到报数为count的数组元素if(Arr[index%total]==-1){while(Arr[index%total]==-1){index++;--如果满足条件,输出(元素设置为-1)if(count%m==0){System.out.print(Arr[index%total]+"t");Arr[index%total]=-1;leave--;--下一个元素开始index++;3.解决方法二:单向环形链表提示:用一个不带头结点的循环链表来处理Josephu 问题:先构成一个有n个结点的单循环链表,然后由k结点起从1开始计数,计到m时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从1开始计数,直到最后一个结点从链表中删除算法结束。
约瑟夫问题详解(CC++)

约瑟夫问题详解(CC++)Josephus 约瑟夫问题假设n个竞赛者排成一个环形,依次顺序编号1,2,…,n。
从某个指定的第1号开始,沿环计数,每数到第m个人就让其出列,且从下一个人开始重新计数,继续进行下去。
这个过程一直进行到所有的人都出列为止。
最后出列者为优胜者。
无论是用链表实现还是用数组实现来解约瑟夫问题都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较麻烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。
注意到原问题仅仅是要求出最后的胜利者的序号,而不是要模拟整个过程。
因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。
求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始): k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:k --> 0k+1 --> 1k+2 --> 2......k-2 --> n-2变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x 是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?变回去的公式很简单:x'=(x+k)%n如何知道(n-1)个人报数的问题的解?显然,只要知道(n-2)个人的解就行了。
(n-2)个人的解呢?当然是先求(n-3)的情况---- 这显然就是一个倒推问题!递推公式:令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]递推公式f[1]=0;f[i]=(f[i-1]+m)%i; (i>1)有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与工程学院
《算法与数据结构》试验报告[一]
专业班级
试验地点 学生学号 指导教师 学生姓名
试验时间
试验项目 算法与数据结构
试验类别
基础性() 设计性() 综合性(√) 其它( ) 试验目的及要求
(1)掌握用VC++上机调试线性表的基本方法; (2)掌握顺序表的存储结构以及基本运算的实现。
成 绩 评 定 表
类 别 评 分 标 准 分值 得分 合 计
上机表现
积极出勤、遵守纪律 主动完成设计任务 30分
程序与报告
程序代码规范、功能正确 报告详实完整、体现收获
70分
printf("您想出列的序号为:");
scanf("%d",&tt);
josephus(L,tt);
}
四、测试用例(尽量覆盖所有分支)
1.当n>m且n%m!=0时,即当n不是m的倍数时:
n=12,m=5时约瑟夫环的实验结果为
2.当n>m且n%m=0时,即当n是m的倍数时:
n=15,m=5时约瑟夫环的实验结果为
3. 当n<m且n%m=0时,即当n是m的约数时:
n=4,m=12时约瑟夫环的实验结果为
4.当n<m且n%m!=0时,即当n不是m的约数时:
n=3,m=7时约瑟夫环的实验结果为
5.当n或m任一个足够大时
n=150,m=7时约瑟夫环的实验结果为
五、实验总结。