高一数学必修五《等比数列》教案

合集下载

苏教版高中数学(必修5)2.3《等比数列》word教案5篇

苏教版高中数学(必修5)2.3《等比数列》word教案5篇

2.3.1等比数列的概念【教学思路】:一、创设情景,揭示课题引入:“一尺之棰,日取其半,万世不竭。

”;细胞分裂模型;计算机病毒的传播;印度国王奖赏国际象棋发明者的实例等都是等比数列的实例。

再看下面的例子: ①1,2,4,8,16, (1)12,14,18,116,… ③1,20,220,320,420,…④10000 1.0198⨯,210000 1.0198⨯,310000 1.0198⨯,410000 1.0198⨯,510000 1.0198⨯,……观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:(1)“从第二项起”,“每一项”与其“前一项”之比为常数)(q(2)隐含:任一项00≠≠q a n 且 (3)1≠q 时,}{n a 为常数 二、研探新知 1.等比数列定义:一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,(注意:等比数列的公比和项都不为零). 注意:(1)“从第二项起”与“前一项”之比为常数)(q ,}{n a 成等比数列⇔nn a a 1+=q (+∈N n ,0≠q )(2)隐含:任一项00≠≠q a n 且,“n a ≠0”是数列}{n a 成等比数列的必要非充分条件. (3)1=q 时,}{n a 为常数。

三、质疑答辩,排难解惑,发展思维例1 (教材45P 例1)判断下列数列是否为等比数列:(1)1,1,1,1;(2)0,1,2,4,8;(3)1618141211,,,,--解:(1)所给的数列是首项为1,公比为1的等比数列. (2)因为0不能作除数,所以这个数列不是等比数列.例2 (教材46P 例2)求出下列等比数列中的未知项:(1)2,,8a ; (2)14,,,2b c -. 解:(1)由题得82a a=,∴4a =或4a =-. (2)由题得 412b c b c c b⎧=⎪-⎪⎨⎪=⎪⎩,∴2b =或1c =-.四、巩固深化,反馈矫正 1. 教材49P 练习第1,2题 2. 教材49P 习题第1,2题五、归纳整理,整体认识本节课主要学习了等比数列的定义,即:)0(1≠=-q q a a n n;等比数列的通项公式:11-⋅=n n q a a 及推导过程。

北师大版高中高三数学必修5《等比数列》教案及教学反思

北师大版高中高三数学必修5《等比数列》教案及教学反思

北师大版高中高三数学必修5《等比数列》教案及教学反思一、教学目标1.知识目标•掌握等比数列的概念、性质以及用通项公式求解等比数列问题的方法。

•看出等比数列的规律,理解等比数列的递推公式和通项公式,并能够熟练地应用它们解决等比数列中的各种问题。

2.能力目标•培养学生的逻辑思维和数学分析能力,提高学生的数学运用能力。

•培养学生的解决问题的能力,使学生能够灵活应用所学知识解决实际问题。

3.情感目标•培养学生对数学的兴趣和爱好,增强学生学习数学的意愿和信心。

•培养学生良好的学习习惯和态度,使学生能够积极参与课堂学习,自主学习,提高自己的学习水平。

二、教学过程1.引入老师通过提问,让学生回忆起他们在初中学习的等比数列的相关知识,例如等比数列的定义,等比数列的通项公式等,并向学生阐明本课的主要内容,即如何理解与运用等比数列的概念和公式解决实际问题。

2.讲授老师依次介绍等比数列的概念、特点和性质,重点讲解了等比数列的通项公式、求和公式以及等比数列与几何图形之间的关系等知识点。

并通过例题向学生解释和学习。

3.引导老师通过一系列的实际问题引导学生运用所学知识解决等比数列的各种问题。

通过练习,让学生更好地理解和掌握等比数列的性质和运算技巧。

4.练习老师通过不同难度的练习题,巩固学生对等比数列的基础知识和解题方法的掌握,逐步提高学生的解决问题的能力。

5.测试老师通过考试测试学生的学习成果,以评估学生的学习水平和掌握情况,进一步发现学生的问题和不足,及时进行针对性的指导和帮助。

三、教学反思1.教学特点等比数列作为高中数学中的一大重要内容,需要考虑到学生的具体实际情况,通过运用丰富的教学资源和对学生的实际情况进行分析,制定针对性的教学方案,注意符合学生的学习特点,进而达到促进学生的学习效果和提高教学质量的目的。

2.教学方法在等比数列的教学过程中,应注重引导学生自主学习,发展学生的综合运用能力,加强对学生的引导和帮助,使学生能够在实践中体验到知识的实用价值,并在思考和操作的过程中产生对数学的兴趣和热情。

最新人教版高中数学必修5第二章《等比数列》教案(1)

最新人教版高中数学必修5第二章《等比数列》教案(1)

《等比数列》教案(1)
一、教学目标
1.理解等比数列的概念;掌握等比数列的通项公式;理解这种数列的模型应用.
2.通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系.
3.通过教证明、教猜想,学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.
二、教学重点难点
重点:等比数列的定义和通项公式.
难点:灵活应用定义式及通项公式解决相关问题.
三、教法与学法
1.教学方法:启发引导、类比推理,自主探究、合作讨论、归纳总结.
2.学习方法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式.
四、教学过程
(一)创设情境导入新课
师:等比数列的定义还可以用怎样的数学
四、归纳小结,课堂延展
教学设计说明
1.教材地位分析
本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位.
2.学生现实状况分析
学习本节课这前,学生已经学习了等差数列的相关知识,其学习模式知识结构,为学习等比数列提供了基础,同时受到高一学生学习心理和认知结构影响,学习中难免会有一些困难,比如抽象思维有待提高,类比归纳中会出现障碍等.。

高中数学必修5《等比数列》教案

高中数学必修5《等比数列》教案

高中数学必修5《等比数列》教案答案:1458或128。

例2、正项等比数列{an}中,a6 a15+a9 a12=30,则log15a1a2a3 a20 =_ 10 ____.例3、已知一个等差数列:2,4,6,8,10,12,14,16,,2n,,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,,2n,,则ck=2k=2 2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。

关键是对通项公式的理解)1、小结:今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比猜想证明的科学思维的过程。

2、作业:P129:1,2,3思考题:在等差数列:2,4,6,8,10,12,14,16,,2n,,中取出一些项:6,12,24,48,,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?教学设计说明:1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比猜想证明的科学研究方法是有利的。

这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:1) 通过复习等差数列的定义,类比得出等比数列的定义;2) 等比数列的通项公式的推导;3) 等比数列的性质;有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

人教A版数学必修五 §2.4《等比数列》教案【精品教案】.doc

人教A版数学必修五 §2.4《等比数列》教案【精品教案】.doc
..a”+「b”+]一39;
它是一个与n无关的常数,所以{a”也}是一个以q心为公比的等比数列 拓展探究:
对于例4中的等比数列{a”}与{b”},数列{他}也一定是等比数列吗?
b”
探究:设数列{ a” }与lbn}的公比分别为厲和0 ,令c”二他,则 一b”
c_a“+i

II•讲授新课
1.等比中项:如果在a与“中间插入一个数
G,使a, G,b
成等比数列,那么称这个数G为a与〃的等比中项.
即G=± Jab
(&,b同号)
如果在a与b中间插入一个数G,使a, G,"成等比数列,则
G
=—=>G2=ab
a G=±\[ab ,
a
G
河北武中•宏达教育集团教师课时教案
教 学 过 程 及 方 法
结论:2.等比数列的性质:若m+n=p+k,则aman=apak在等比数列中,m+n=p+q,am,an,ap,ak有什么关系呢? 山定义得:勺”=%/"7an=axqn~{ap=a{qp~xak= a, •qk~'
am 'an =ai Q,ap'ak =ai Q则aman =aPak
学生分析回 答
c”+i--—
b”+i
.启=/分=(如L)(如1)=鱼,所以,数列{5l}也一定是等
C”an/anbnq2bn
/Un
比数列。
课本P59的练习4
已知数列{a”}是等比数列,
(1)tzf=(z,a7是否成立?a;=叩9成立吗?为什么?
(2)a:=〉1)是否成立?你据此能得到什么结论?
a;=an_kan+k(n>k>0)是否成立?你又能得到什么结论?

高中数学必修5等比数列教学教案设计

高中数学必修5等比数列教学教案设计

Your choice is to do or not, but if you do not, you will never have a chance.悉心整理助您一臂(页眉可删)高中数学必修5等比数列教学教案设计
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2)掌握等比数列的定义理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是________于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的.
三、教学对象及学习需要分析
1、教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。

并掌握了函数及个别特殊函数的性质及图像,如指数函数。

之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入。

等比数列教学案

等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。

授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。

教学难点:等比数列通项公式的探求。

教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。

高一数学《等比数列的性质及应用》教案设计(优秀3篇)

高一数学《等比数列的性质及应用》教案设计(优秀3篇)

高一数学《等比数列的性质及应用》教案设计(优秀3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学《等比数列的性质及应用》教案设计(优秀3篇)上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修五《等比数列》教案【篇一】教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列 ?如何确定一个等差数列 ?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的 ?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么 ?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)若设等比数列的公比为q和首项为a1,则有:方法一:(累乘法)3)等比数列的性质:下面我们一起来研究一下等比数列的性质通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质 ?(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:3、例题巩固:例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

*答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项 ?(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。

关键是对通项公式的理解)1、小结:今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:P129:1,2,3思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项 ?教学设计说明:1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。

这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:1)通过复习等差数列的定义,类比得出等比数列的定义;2)等比数列的通项公式的推导;3)等比数列的性质;有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。

培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。

这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的*,通过类比关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

【篇二】教学准备教学目标知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。

能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。

德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。

教学重难点本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。

本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。

教学过程二、教法与学法分析为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。

在这个过程中,力求把握好以下几点:*①通过实例,让学生发现规律。

让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。

②营造*的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。

③力求反馈的全面性、及时性。

通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。

④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。

⑤以启迪思维为核心,启发有度,留有余地,导而弗牵,牵而弗达。

这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的方法,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。

三、教学程序设计(4)等差中项:如果a、A、b成等差数列,那么A叫做a与b的等差中项。

说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

2.导入新课本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:1,2,4,8,…,263再来看两个数列:5,25,125,625,...···说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。

-1,-2,-4,-8…-1,2,-4,8…-1,-1,-1,-1…1,0,1,0…提出问题:(1)公比q能否为零 ?为什么 ?首项a1呢 ?(2)公比q=1时是什么数列 ?(3)q>0是递增数列吗 ?q<0递减吗 ?说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。

另外通过趣味性的问题,来提高学生的学习兴趣。

激发学生发现等比数列的定义及其通项公式的强烈*。

3.尝试推导通项公式让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。

推导方法:叠乘法。

说明:学生从方法一中学会从特殊到一般的方法,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。

方法二是让学生掌握“叠乘”的思路。

4.探索等比数列的图像等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果 ?它的图像如何 ?变式2.等比数列{an}中,a2=2,a9=32,求q.(学生自己动手解答。

)说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1,q,n,an四个量中,知道任意三个即可求另一个。

并从这些题中掌握等比数列运算中常规的消元方法。

6.探索等比数列的性质类比等差数列的性质,猜测等比数列的性质,然后引导推证。

7.性质应用例3.在等比数列{an}中,a5=2,a10=10,求a15(让学生自己动手,寻求多种解题方法。

)方法一:由题意列方程组解得方法二:利用性质2方法三:利用性质3例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证: {an·bn}是等比数列。

8.小结为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。

1、等比数列的定义,怎样判断一个数列是否是等比数列2、等比数列的通项公式,每个字母代表的含义。

3、等比数列应注意那些问题(a1≠0,q≠0)4、等比数列的图像5、通项公式的应用(知三求一)6、等比数列的性质7、等比数列的概念(注意两点①同号两数才有等比中项②等比中项有两个,他们互为相反数)8、本节课采用的主要思想——类比思想9.布置作业习题3.41②、④3.8.9.10.板书设计。

相关文档
最新文档