中南大学2015高等数学下期末题及答案

合集下载

高等数学复习题及答案

高等数学复习题及答案

中南大学现代远程教育课程考试复习题及参考答案高等数学一、填空题1.设2)(xx a a x f -+=,则函数的图形关于 对称。

2.若⎩⎨⎧<≤+<<-=20102sin 2x x x x y ,则=)2(πy .3. 极限limsinsin x x x x→=021。

4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。

5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yz u x=,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。

8.设ϕϕ,),()(1f y x y xy f xz ++=具有二阶连续导数,则=∂∂∂y x z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则_____________)0,1('=y f . 11.=⎰xdx x 2sin 2.12.之间所围图形的面积为上曲线在区间x y x y sin ,cos ],0[==π .13.若21d e 0=⎰∞+-x kx ,则_________=k 。

14.设D:122≤+y x ,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x )14(2215.设D 由22,2,1,2y x y x y y ====围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为_______________和_______________. 16.设D 为01,01y x x ≤≤-≤≤,则Df dxdy ⎰⎰的极坐标形式的二次积分为____. 17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 .18.=+-+-⎰10 642)!3!2!11(dx x x x x . 19. 方程01122=-+-ydy xdx 的通解为20.微分方程025204=+'-''y y 的通解为 .21.当n=_________时,方程ny x q y x p y )()('=+ 为一阶线性微分方程。

中南大学高等数学答案

中南大学高等数学答案

中南大学网络教育课程考试复习题及参考答案高等数学(专科)一、填空题: 1.函数1142-+-=x x y 的定义域是。

解:),2[]2,(∞+--∞ 。

2.假设函数52)1(2-+=+x x x f ,那么=)(x f 。

解:62-x3.sin limx x xx→∞-= 。

答案:1 正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.22lim 222=--++→x x bax x x ,那么=a _____,=b _____。

由所给极限存在知,024=++b a ,得42--=a b ,又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.∞=---→)1)((lim0x a x be x x ,那么=a _____,=b _____。

∞=---→)1)((lim 0x a x b e x x , 即01)1)((lim 0=-=---→b abe x a x x x ,∴0,1a b =≠ 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的连续点是x =。

解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。

因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是连续的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的连续点是0=x 。

7.设()()()n x x x x y -⋅⋅--= 21, 那么()=+1n y(1)!n +8.2)(x x f =,那么__________)1)((=+'x f f 。

答案:2)12(+x 或1442++x x 9.函数22ln(1)x y z--=的定义域为。

2015-2016学年高一下学期期末考试数学试题(解析版) (8)

2015-2016学年高一下学期期末考试数学试题(解析版) (8)

高一下学期期末考试数学试题一、选择题1.ABC 的内角,,A B C 的对边分别为,,a b c ,若c = 120b B == ,则边a 等于( )A.B. C. D. 2【答案】C【解析】试题分析:根据题意中给定了两边以及一边的对角可知那么结合余弦定理可知222212cos 622b a c ac B a a ⎛⎫=+-∴=+-⨯-∴= ⎪⎝⎭故答案为C.【考点】解三角形点评:主要是考查了余弦定理的运用,求解边,属于基础题。

2.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若2c a =,1sin sin sin 2b B a A a C -=,则sin B 为( )A.B. 34C.D. 13【答案】A【解析】试题分析: 1sin sin sin 2b B a A a C -=,则由正弦定理可得2212b a ac -=,又2c a = , 222222132224a cb b a ac a cosB ac +-∴=+=∴==.故选B.【考点】正弦定理,余弦定理3.各项均为正数的等比数列{}n a ,其前n 项和为n S .若25378,13a a S -=-=,则数列{}n a 的通项公式为n a =( ) A. 2n B. 12n - C. 3n D. 13n -【答案】D【解析】各项均为正数,公比为q 的等比数列{a n },a 2−a 5=−78,S 3=13, 可得421111178,13a q a q a a q a q -=-++=, 解得113a q ==,,则11*13n n n a a q n N --==∈,, 本题选择D 选项.4.已知数列{}n a 的通项为()()143nn a n =--,则数列{}n a 的前50项和50T =( )A. 98B. 99C. 100D. 101 【答案】C【解析】数列{a n }的通项为()()143nn a n =--, 前50项和()()()()5015913171971591317211931974444425100.T =-+-+-+⋯+=-++-++-++⋯+-+=+++⋯+=⨯=本题选择C 选项.点睛:(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解. (2)奇数项和偶数项分别构成等差数列或者等比数列的,可以分项数为奇数和偶数时使用等差数列或等比数列的求和公式.5.设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( ) A. 6 B. 7 C. 10 D. 9 【答案】B【解析】试题分析:由题意可得9567890S S a a a a -=+++=,∴()7820a a +=,∴780a a +=,又10a >,∴该等差数列的前7项为正数,从第8项开始为负数,∴当S n 最大时,n=7,故选:B.【考点】等差数列的前n 项和.6.某空间组合体的三视图如图所示,则该组合体的体积为( )A. 48B. 56C. 64D. 72 【答案】C【解析】由三视图可知该几何体是由两个长方体组成的组合体,上面的长方体长宽高分别为4,2,5,线面的长方体长宽高分别为4,6,1,据此可得该几何体的体积为42546164⨯⨯+⨯⨯=. 本题选择C 选项. 点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.设0,0a b >>,若2是4a 和2b 的等比中项,则21a b+的最小值为( )A. B. 4 C. 92D. 5【答案】C【解析】∵2是4a和2b 的等比中项, ()22424,22,22,1,2a b a b b a b a +∴⋅=∴=∴+=∴+=又∵0,0a b >>,21215592222b b a a a b a b a b ⎛⎫⎛⎫∴+=++=++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当b a a b =,即23a b ==时等号成立. 本题选择C 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和.是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0248121824324050......、、、、、、、、、,则此数列第20项为( )A. 180B. 200C. 128D. 162 【答案】B【解析】由0、2、4、8、12、18、24、32、40、50…, 可得偶数项的通项公式:a 2n =2n 2. 则此数列第20项=2×102=200. 本题选择B 选项. 9.已知等差数列{}n a 的前n 项和为n S ,若M N P 、、三点共线, O 为坐标原点,且156ON a OM a OP =+(直线MP 不过点O ),则20S 等于( ) A. 20 B. 10 C. 40 D. 15 【答案】B【解析】∵M 、N 、P 三点共线,O 为坐标原点,且156ON a OM a OP =+(直线MP 不过点O ),∴a 6+a 15=1,∴a 1+a 20=1, ∴()1202020102a a S +==.本题选择B 选项.10.已知a b >,一元二次不等式220ax x b ++≥对于一切实数x 恒成立,由又0x R ∃∈,使20020ax x b ++=,则222a b +的最小值为( )A. 1B. C. 2D. 【答案】D【解析】∵已知a >b ,二次不等式220ax x b ++…对于一切实数x 恒成立, ∴a >0,且△=4−4ab ⩽0,∴ab ⩾1.再由∃x 0∈R ,使20020ax x b ++=成立,可得△=0,∴ab =1,222a b ∴+=…当且仅当222a b =即b =时等号成立, 本题选择D 选项.11.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、的大小关系是( ) A. a b > B. a b < C. a b ≤ D. a b ≥ 【答案】B【解析】∵a 、b ∈(0,1),且满足()114a b ->,()112211.22a b a b b a -+>-+∴>∴>,又, 本题选择B 选项.12.()()3,1,1,3,(0,0)OA OB OC mOA nOB m n ==-=->>若[]1,2m n +∈则OC的取值范围是()A.B.C.D.【答案】A【解析】根据题意,向量()()()3,1,1,33,3OA OB OC mOA nOB m n m n ==-=-=+-,,则OC =令t =,则OC =,而m +n ∈[1,2],即1⩽m +n ⩽2,在直角坐标系表示如图,t =表示区域中任意一点与原点(0,0)的距离, 分析可得:22t ,又由OC =,OC剟本题选择A 选项.二、填空题13.已知向量,a b满足()5a a b ⋅+= ,且2,1a b == ,则向量a 与b 夹角余弦值为__________.【答案】12【解析】()22,1,5,42,51,2a b a a b a a b cos a b cos a b cos a b ==⋅+=∴+⋅=+=∴=,,即向量a与b 夹角余弦值为12.14.在ABC ∆中,角,,A B C 的对边分别是,,a b c 且2cos 2c B a b =+,若ABC ∆的面积S =,则ab 的值为__________. 【答案】13【解析】在△ABC 中,由条件用正弦定理可得2sinCcosB =2sinA +sinB =2sin (B +C )+sinB ,即2sinCcosB =2sinBcosC +2sinCcosB +sinB ,∴2sinBcosC +sinB =0,12,.23cosC C π∴=-=由于△ABC 的面积为11sin .23S ab C ab =⋅==∴= 156、4的长方体的体积相等,则长方体的表面积为_____. 【答案】88.【解析】试题分析:设该长方体的高为x,则因为半径为,所以,即,所以长方体的表面积为,故应填88.【考点】1、简单几何体的体积的求法.16.设等比数列{}n a满足公比*q N∈,*na N∈,且{}n a中的任意两项之积也是该数列中的一项,若8112a=,则q的所有可能取值的集合为.【答案】{}8127932,2,2,2,2【解析】试题分析:由题意,8112nna q-=,设该数列中任意两项为,m la a,它们的积为pa,则811811811222m l pq q q---=,即8112p m lq--+=,故1p m l--+必须是81的正约数,即1p m l--+的可能取值为1,3,9,27,81,所以q的所有可能取值的集合为{}8127932,2,2,2,2【考点】等比数列三、解答题17.请推导等比数列的前n项和公式.【答案】见解析【解析】试题分析:由等比数列的特点分类讨论,然后结合错位相减的方法即可求得等比数列前n项和公式.试题解析:若数列{}n a为公比为q的等比数列,则其前n项和公式()()11,11nna qS qq-=≠-,当1q=时,1nS na=.下面证明:21123111......nn nS a a a a a a q a q aq-=++++=++++,①23111...nnqS a q a q a q aq∴=++++,②①-②可得()11nnq S a aq-=-,当1q ≠时,上式两边同除以1q -可得()111nn a q S q-=-,当1q =时,数列各项均为1a ,故1n S na =.点睛:一是在运用等比数列的前n 项和公式时,必须注意对q =1或q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误. 二是运用等比数列的性质时,注意条件的限制.18.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,(1)若方程()60f x a +=有两个相等的实根,求()f x 的解析式; (2)若()f x 的最大值为正数,求a 的取值范围.【答案】(1)()2163555f x x x =---;(2)((),22-∞-⋃-【解析】试题分析:(1)抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,(2)结合二次函数的图象来解决是当不等式对应的方程的根个数不确定时,讨论判别式与0的关系,(3)当a>0时,配方法最大值,也可用顶点坐标,或在对称轴处取得最大值 试题解析:由题意可设()()()213f x x a x x +=--,且0a <, 即()()()132f x a x x x =---, 2分(1)()()()613260f x a a x x x a +=---+=, 即()24290ax a x a -++=有两个相等的实根,得()2242360a a ⎡⎤∆=-+-=⎣⎦,即25410a a --=, 而0a <,得15a =-,即()()()11325f x x x x =----,整理得()2163555f x x x =---. 6分(2)()()22max 124204a a f x a-+=>,即2410a a a--->,而0a <,得2410a a ---<,即2410a a ++>, 9分2a >-2a <-0a <,得a 的取值范围为((),22-∞-⋃-. 12分【考点】二次函数和一元二次不等式解的关系及二次函数的最值19.已知函数f (x )=226xx +.(1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围.【答案】(1)-25(2)⎫+∞⎪⎪⎣⎭【解析】(1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2.由根与系数的关系可知(-2)+(-3)=2k ,即k =-25(2)∵x >0,f (x )=226xx +=26x x+,当且仅当x已知f (x )≤t 对任意x >0恒成立,故t t 的取值范围是⎫+∞⎪⎪⎣⎭. 20.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac .(Ⅰ)求B ;(Ⅱ)若sinAsinC C . 【答案】(Ⅰ)0120B =(Ⅱ)015C =或045C =【解析】试题分析:(1)由()()a b c a b c ac ++-+=得222a c b ac +-=-,结合余弦定理可求出B ;(2)由三角形内角和定理可知060A C +=,由()()cos cos 2sin sin A C A C A C -=++=可求出030A C -=或030A C -=-,解之即可.试题解析: (1)因为()()a b c a b c ac ++-+=,所以222a c b ac +-=-,由余弦定理得2221cos 22a cb B ac +-==-因此0120B =(2)由(1)知060A C +=,所以()cos cos cos sin sin A C A C A C -=+ cos cos sin sin 2sin sin A C A C A C =-+()cos 2sin sin A C A C =++112242=+⨯= 故030A C -=或030A C -=-,因此015C =或045C = 【考点】1.余弦定理;2.三角恒等变换.21.已知一四面体的三组对边分别相等,且长度依次为 (1)求该四面体的体积;(2)求该四面体外接球的表面积. 【答案】(1)20(2)50π 【解析】试题分析:(1)将四面体放入一个长方体,列出方程求得长宽高,据此可得该四面体的体积是20;(2)结合(1)的结论可得外接球半径为r =,则外接球的表面积为2450S r ππ==.试题解析:(1) 四面体的三组对边分别相等,∴四面体为某一长方体的六条面对角线组成的三棱锥,设长方体的棱长为,,a b c,则5===,解得4{3 5a b c ===,∴四面体的体积1142063V abc abc abc =-⨯==.(2)由(1)可知四面体的外接球为长方体的外接球,外接球直径为长方体=∴外接球的半径为2r =, ∴外接球的表面积为2450S r ππ==.22.设数列{}n a 的前n 项和为n S ,已知()*22n nn S a n N =-∈. (1)求1a 的值,若2n n n a c =,证明数列{}n c 是等差数列;(2)设()22log log 1n n b a n =-+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n B ,若存在整数m ,使对任意*n N ∈且2n ≥,都有320n n mB B ->成立,求m 的最大值. 【答案】(1)见解析(2)18. 【解析】试题分析:(1)由题意可得112,1n n c c c -=-=,则数列{}n c 是首项为2,公差为1的等差数列.(2)由题意可得3111123n n B B n n n-=+++++ ,结合恒成立的条件可得m 得最大值为18.试题解析:(1)由22n n n Sa =-,则122n n n S a +=-,则21122S a =-可得14a =,又()11222n n n S a n --=-≥两式相减,得1222n n n n a a a -=--,即()1222n n n a a n --=≥, 于是11122n n n n a a ---=即112,1n n c c c -=-=, 所以数列{}n c 是112,1n n c c c -=-=以首项为2,公差为1的等差数列. (2)()12,n n n a n b n =+⋅=12311111112111123n n n n B b b b nB B n n n∴=+++=+++∴-=+++++令()111123f n n n n=+++++ 则()1111111233313233f n n n n n n n +=+++++++++++ 所以()()111113132331f n f n n n n n +-=++-++++ 1111120313233333333n n n n n n =++>+-=++++++. 所以当2n ≥时, ()f n 的最小值为()1111192345620f =+++=.据题意, 192020m <,即19m <,又m 为整数,故m 得最大值为18.。

中南大学高等数学下期末题及答案

中南大学高等数学下期末题及答案

--○○○○………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………一、填空题(每小题分,总计分)、点(3,1,1)A -到平面:2340x y z π-+-=的距离为( )、曲面42222-+=y x z 在点()1,1,0-处的法线方程为( )、设Ω是由曲面22z x y =+及平面1z =围成的闭区域,则(),,d d d f x y z x y z Ω⎰⎰⎰化为顺序为z y x →→的三次积分为( )、设∑是xoz 面的一个闭区域xz D , 则曲面积分(),,d f x y z S ∑⎰⎰可化为二重积分为( )、微分方程212y x y'=-满足初始条件()10y =的解为( )--=1绕z 轴旋转而成的曲面为( )152=z ; ()154222=+-z y x ; 152=z ; ()()15422=+-z y x D 内具有二阶偏导数222222,,,f f f fx y x y y x∂∂∂∂∂∂∂∂∂∂,则( ) 2fy x∂∂∂; ()则(,)f x y 在区域D 内必连续; D 内必可微; () 以上都不对 D 由2y x =及2y x =-所围成,则化为二次积分后的结果为I = ; ()⎰⎰-+2122y yxydx dy ;⎰⎰-+412xx xydy dx ()⎰⎰-+2122y yxydy dx2=介于点(0,2)到点(2,0)的一段,则=⎰( )(); ; ()2. ()()()y p x y q x y f x '''++=的解, 则().()12y y -也是方程的解()122y y -也是方程的解三、(分)设平面∏:2450x y z---=,且直线0 :30x y blx ay z++=⎧⎨+--=⎩在平面∏上,求,a b的值.------…………评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………四、(分)已知函数(,)f x y x y xy =++,曲线22:3C x y xy ++=,C 上的最大方向导数.----五、(分)计算由旋转抛物面226z x y =--及锥面z =所围成的立体的体积.六、求解下列各题(每题分,共分){},1d d xy x y ,其中{}(,)02,02D x y x y =≤≤≤≤.sin )()y y dx x e dy +++,其中L 是从(1,0)A 沿y =到(1,0)B -的--七、(分)计算I xydydz yzdzdx xzdxdy ∑=++⎰⎰,其中∑是平面0,0,0,2x y z x y z ===++=所围空间区域整个边界曲面的外侧.--…………评卷密封线…………密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理…………评卷密封线…………具有二阶连续导数,(cos )xz f e y =满足2cos )x xy e ,若(0)0,(0)0f f '==, ()f u 的表达式.(),()3y x b z x a x b =-+=-+-,代入平面∏方5,2a b =-=-.--解法二:过直线l 的平面束方程设为3()0x ay z x y b λ+--+++= (或(3)0x y b x ay z λ++++--=),即(1)()30x a y z b λλλ+++--+= (或(1)(1)30x a y z b λλλλ+++-+-=), 由题意知11241a λλ++-==--(或11241a λλλ++-==--), 解得5,1a λ=-=,将5,1a λ=-=及平面∏上的点(1,2,5)-代入平面束方程,求得2b =-.四.解:最大方向导数即为梯度的模,(,)(1,1),(,)gradf x y y x gradf x y =++=令2222(,,)(1)(1)(3)F x y x y x y xy λλ=++++++-,由222(1)(2)02(1)(2)030x y F x x y F y y x x y xy λλ=+++=⎧⎪=+++=⎨⎪++-=⎩,解得1211,,,1112x x x x y y y y ===-=-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,比较:(1,1)gradf =(2,1)(1,2)3gradf gradf -=-=,(1,1)0gradf --=,所以(,)f x y 在曲线C 上的最大方向导数为.五.解法一: 26222032(6)3xyr rD V dv rdrd dz d r r rdr πθθπ-Ω===--=⎰⎰⎰⎰⎰⎰⎰⎰. 解法二:1226262120202832(6)833z zD D V V V dz dxdy dz dxdy z dz z dz πππππ=+=+=+-=+=⎰⎰⎰⎰⎰⎰⎰⎰.六.解: .123D D D I dxdy dxdy xydxdy =++⎰⎰⎰⎰⎰⎰--12221110221x xdx dy dx xydy =++⎰⎰⎰⎰19ln 24=+ .因为1P Q y x∂∂==∂∂,所以该曲线积分与路径无关, 选择积分路径从(1,0)A 沿x 轴到(1,0)B -,易得11(10)2I dx -=+=-⎰七.解法一:利用高斯公式,3222200()333 2.6xx yI xydydz yzdzdx xzdxdy y z x dvx zdv dx dy zdz dx ∑Ω---Ω=++=++-====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)解法二:在平面0,0,0x y z ===上,积分值为,只需计算:2x y z '∑++=(取上侧)上的积分.因cos cos cos αβγ===(()dS I xydydz yzdzdx xzdxdy xy yz xz xy yz xz dxdy '''∑∑∑=++=++++⎰⎰⎰⎰⎰⎰[]22220(2)(2)()2xyxD xy y x y x x y dxdy dx x y xy x y dy -=+--+--=---++=⎰⎰⎰⎰.解法三:在平面0,0,0x y z ===上,积分值为,只需计算:2x y z '∑++=(取上侧)上的积分.2202(2)(2)3xyxD xzdxdy x x y dxdy xdx x y dy -'∑=--=--=⎰⎰⎰⎰⎰⎰.由被积函数和积分曲面关于积分变量的对称性,可得23xydydz yzdzdx xzdxdy '''∑∑∑===⎰⎰⎰⎰⎰⎰,所以,2323I =⋅=.--八.解:()因为2222(cos )cos ,(cos )cos (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y x x∂∂''''==+∂∂ 2222(cos )sin ,(cos )sin (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y yy∂∂''''=-=-∂∂ 所以,已知条件22222(4cos )x x z zz e y e x y∂∂+=+∂∂化为22(cos )4(cos )cos x x x x xf e y e f e y e y e ''⎡⎤=+⎣⎦,所以函数()f u 满足方程()4()f u f u u ''=+.()方程()4()f u f u u ''=+的特征方程为240r -=,得特征根1,22r =± 所以,其对应齐次方程的通解为2212()uu f u C eC e -=+,设非齐方程的特解为*y Au B =+,代入原方程,得1,04A B =-=得非齐方程的一个特解为*4uy =-,故方程的通解为 2212()u u f u C e C e -=+4u-,由(0)0,(0)0f f '==得1212012204C C C C +=⎧⎪⎨--=⎪⎩,得1211,1616C C ==-, 故221()(4)16u uf u e e u -=--.。

中南大学高等数学复习题及答案

中南大学高等数学复习题及答案

中南大学复习题及参考答案《高等数学》一、填空题1.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞Y 。

2.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x 3.________________sin lim =-∞→xxx x答案:1正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。

由所给极限存在知, 024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→)1)((lim 0x a x b e x x ,则=a _____, =b _____。

∞=---→)1)((lim 0x a x b e x x Θ, 即01)1)((lim0=-=---→b abe x a x x x , 1,0≠=∴b a 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的间断点是x = 。

解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。

因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。

7. 设()()()n x x x x y -⋅⋅--=Λ21, 则()=+1n y (1)!n + 8.2)(x x f =,则__________)1)((=+'x f f 。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分òò£++1||||22)ln(y x dxdy y x的符号为的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(b a y j ££îíì==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++òòåds y x )122( 。

6、微分方程xyx ydx dytan+=的通解为的通解为 。

7、方程04)4(=-y y的通解为的通解为。

8、级数å¥=+1)1(1n n n 的和为的和为 。

二、选择题(每小题2分,共计16分)分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是(处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;处连续;(B )),(y x f x¢,),(y x f y¢在),(00y x 的某邻域内存在;的某邻域内存在;(C ) yy x f x y x f z yxD ¢-D ¢-D ),(),(0当0)()(22®D +D y x 时,是无穷小;时,是无穷小;(D )0)()(),(),(lim22000000=D +D D¢-D ¢-D ®D ®D y x yy x f x y x f z y x y x 。

2、设),()(x y xf y xyf u +=其中f 具有二阶连续导数,则2222yu y x u x ¶¶+¶¶等于(等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。

平差试卷及答案

平差试卷及答案

中南大学考试试卷一-- 学年 学期期末考试试题时间110分钟误差理论与测量平差基础 课程 学时学分 考试形式:卷专业年级: 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、设有一五边形导线环,等精度观测了各内角,共观测了八组结果,而计算出该导线 环的八组闭合差(即真误差)为-16″、+18″、+22″、-13″、-14″、+16″、 -10″、-12″,试求该导线环之中误差及各角观测中误差。

(本题10分)二、(1)有了误差椭圆为何还要讨论误差曲线?两者有什么关系?(2)已知某平面控制网中有一待定点P ,以其坐标为参数,经间接平差得法方程为:1.2870.4110.53400.411 1.7620.3940x y x y δδδδ++=+-=单位权中误差0ˆ 1.0σ''=,,x y δδ以dm 为单位,试求: 1) 该点误差椭圆参数;2) 该点坐标中误差ˆˆ,x y σσ以及点位中误差ˆp σ; 3) 060ϕ=的位差值。

(本题共20分)三、试证明间接平差中平差值ˆL 与改正数V 的相关性。

(本题10分)四、下图水准网中,P1、P2为待定点,A 、B 、C 、为已知水准点,已测得水准网 中各段高差见下表:且12.000,12.500,14.000A B C H m H m H m ===。

试任选一种平差方法,求:(1)P1、P2点高程平差值;(2)平差后P1、P2点间高差协因数。

(本题共25分)五、下图一平面控制网,试按四种平差方法分别说明: (1)参数的个数?函数模型的个数?(2)函数模型的类型?各种类型的个数?并对不同类型的形式举例说明。

(3)各种平差方法精度评定时有何异同?(本题共25分)六、产生秩亏的原因是什么?水准网、测角网、边角网以及GPS 网的秩亏数各是多少?简述秩亏自由网平差的过程。

(本题10分)试卷一参考答案一、解:导线环中误差为:ˆσ=ˆ43.92σ=;测角中误差为:19.64σ==二、解:由法方程可以得到参数的协因数阵为:1ˆˆ0.83950.19580.19580.6132BBXX Q N --⎛⎫== ⎪-⎝⎭从而得:0.452291()0.95249521()0.5002052ˆ0.97596ˆ0.70725EE XX YY FF XX YY K Q Q Q K Q Q Q K E F σσ===++==+-=====由tan EE XXE XYQ Q Q ϕ-=得: 001500221406E ϕ''=或tan FF XXF XYQ Q Q ϕ-=得:0F 24001ϕ'=或06001'则:ˆ0ˆ0ˆ0ˆ0.91624ˆ0.78307ˆ 1.20518x y p σσσσσσ======将060ϕ=代入 22220(cos sin sin 2)XX yyXY Q Q Q ϕσσϕϕϕ=++中得: 0.71dm ϕσ= 三、证明:基本关系式为:1ˆˆˆT BB L l L x N B Plv Bx l LL V -=+==-=+由协因数传播律得:111ˆˆ11ˆˆ11ˆˆˆˆ1ˆ1111ˆˆˆˆ0T xx BB BB BB T T T xL BB BB Lx vx xx Lx BB BB T T VL xL BBLVT T T T T TVV xx xL Lx BB BB BB BB Q N B PQPBN N Q N B PQ N B Q Q BQ Q BN BN Q BQ Q BNB Q Q Q BQ B BQ Q B Q BN B BN B BN B Q Q BN B------------======-=-==-=-==--+=--+=-所以 ˆ0LV VV LV Q Q Q =+= 即:平差值与各改正数是不相关的。

2014—2015学年度第二学期期末考试高二数学(文)参考答案与评分标准

2014—2015学年度第二学期期末考试高二数学(文)参考答案与评分标准

2014-------2015学年度第二学期期末考试参考答案及评分标准高二数学(文)一、选择题1、C2、B3、B4、 D5、 C6、 A7、 A8、C9、 C10、C11、 C12、 C二、填空题(13)2(14)2(15) 4836(16) ①②③三、解答题17.(本小题满分10 分)已知A x x24x0 ,B x x 22(a1)x a 210,其中 a R ,如果【解析】化简得A A∩ B=B ,求实数a的取值范围。

0, 4 ,∵集合 B 的元素都是集合 A 的元素,∴B A 。

⋯⋯⋯⋯⋯⋯⋯ 2 分⑴当 B时,4(a 1)24(a 21) 0 ,解得a 1 ;⋯⋯⋯⋯⋯⋯⋯ 4 分⑵当B0或 4时,4(a 1)24(a2 1) 0 ,解得a 1 ,此时 B0,满足B A ;⋯⋯⋯⋯⋯⋯⋯ 6 分4(a1)24(a21)0⑶当B 0, 4 时,2(a1)4,解得 a 1。

⋯⋯⋯⋯⋯⋯⋯ 8 分a2 10综上所述,实数 a 的取值范围是 a 1或者 a 1 。

⋯⋯⋯⋯⋯⋯⋯10 分18.(本小题满分 12 分 , 每个小题 6 分)60 ;(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于(2)已知n 0,试用分析法证明:n2n 1n 1n .【解析】(1)假设在一个三角形中,没有一个内角大于或等于60 ,即均小于 602分则三内角和小于180,4分这与三角形中三个内角和等于180矛盾,故假设不成立,原命题成立;6分(2)要证上式成立,需证n 2n2n 1需证 ( n 2n )2(2 n 1)28 分97.5%需证 n1n22n需证 (n1) 2n22n需证 n22n1n 22n10 分只需证 10因为 10 显然成立,所以原命题成立.12分考点:( 1)反证法;(2)分析法 .19.(本小题满分12 分)对某校小学生进行心理障碍测试得到如下的列联表:有心理障碍没有心理障碍总计女生1030男生7080总计20110将表格填写完整,试说明心理障碍与性别是否有关?K 2n( ad bc)2附:(a b)(c d )( a c)(b d )P(K2 ≥ k)0.150.100.050.0250.0100.0050.001K 2.072 2.076 3.841 5.024 6.6357.87910.828【解析】将列联表补充完整有:有心理障碍没有心理障碍 ]总计女生102030男生107080总计2090110K 2n( ad bc)2,故选择k0 5.024 较由(a b)(c d )(a c)(b d ) ,计算可得K2 6.366 5.024为合适 .10分因此,在犯错的概率不超过0.025 的前提下认为心理障碍与性别有关,所以有97.5%的把握认为心理障碍与性别有关.12 分考点:独立性检测 .20.(本小题满分12 分)某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在 4 月份的 30 天中随机挑选了 5 天进行研究,且分别记录了每天昼夜温差与每天每100 颗种子浸泡后的发芽数,得到如下资料:日期4月1日4月 7日4月15日4月 21日4月30日温差 x / C101113128发芽数 y / 颗2325302616(1)从这 5 天中任选 2 天,若选取的是 4 月 1日与 4 月 30 日的两组数据,请根据这 5 天中??的另三天的数据,求出y 关于的线性回归方程y b xx;?(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过 2 颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:n? bx i y i nx y? i1,a y bx )n2?2x i nxi1【解析】 (1)由数据得 x12, y27 ,3x y972 ,3977 ,322 x i y i x i434 , 3x432 i 1i 1由公式,得?9779725?5b27123 43443222所以 y 关于 x 的线性回归方程为?53⋯⋯⋯⋯⋯⋯⋯ 6 分x2( 2)当x 10时, ?, |22-23|2,当x 8时, ?|17-16|2,所以得到的线y 22y 17,性回归方程是可靠的 .⋯⋯⋯⋯⋯⋯⋯ 12 分21.(本小题满分 12 分)已知定义在 R 上的函数 f ( x) 对任意实数 x, y 恒有 f ( x) f ( y) f ( x y) ,且当x>0时,f ( x) <0,又 f (1)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1---○---○------○---○---………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………评卷密封线…………一、填空题(每小题3分,总计15分)1、点(3,1,1)A -到平面:2340x y z π-+-=的距离为( )2、曲面42222-+=y x z 在点()1,1,0-处的法线方程为( )3、设Ω是由曲面22z x y =+及平面1z =围成的闭区域,则(),,d d d f x y z x y z Ω⎰⎰⎰化为顺序为z y x →→的三次积分为( )4、设∑是xoz 面的一个闭区域xz D , 则曲面积分(),,d f x y z S ∑⎰⎰可化为二重积分为( )5、微分方程212y x y'=-满足初始条件()10y =的解为( )23分,总计15分)=1绕z 轴旋转而成的曲面为( )152=z ; (B )154222=+-z y x ; 152=z ; (D )()15422=+-z y x D 内具有二阶偏导数222222,,,f f f fx y x y y x∂∂∂∂∂∂∂∂∂∂,则( ) 2fy x∂∂∂; (B )则(,)f x y 在区域D 内必连续; D 内必可微; (D) 以上都不对 其中D 由2y x =及2y x =-所围成,则化为二次积分后的结果为I = xydy ; (B )⎰⎰-+2122y yxydx dy ;⎰⎰-+412xx xydy dx (D )⎰⎰-+2122y yxydy dx2=介于点(0,2)到点(2,0)的一段,则=⎰( )(B ); (C ; (D )2. ()()()y p x y q x y f x '''++=的解, 则( ).(B )12y y -也是方程的解(D )122y y -也是方程的解3三、(10分) 设平面∏:2450x y z ---=,且直线:30x y b l x ay z ++=⎧⎨+--=⎩在平面∏上,求,a b 的值.4…………评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………评卷密封线…………四、(10分)已知函数(,)f x y x y xy =++,曲线22:3C x y xy ++=,C 上的最大方向导数.5五、(10分)计算由旋转抛物面226z x y =--及锥面z =所围成的立体的体积.六、求解下列各题(每题9分,共18分){},1d d xy x y ,其中{}(,)02,02D x y x y =≤≤≤≤.sin )()y y dx x e dy +++,其中L 是从(1,0)A 沿y =到(1,0)B -的6七、(10分)计算I xydydz yzdzdx xzdxdy ∑=++⎰⎰,其中∑是平面0,0,0,2x y z x y z ===++=所围空间区域整个边界曲面的外侧.7…………评卷密封线…………密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………评卷密封线…………有二阶连续导数,(cos )xz f e y =满足2cos )xy e ,若(0)0,(0)0f f '==, ()f u 的表达式.D.(),()3y x b z x a x b =-+=-+-,代入平面∏方5,2a b =-=-.8解法二:过直线l 的平面束方程设为3()0x ay z x y b λ+--+++= (或(3)0x y b x ay z λ++++--=),即(1)()30x a y z b λλλ+++--+= (或(1)(1)30x a y z b λλλλ+++-+-=), 由题意知11241a λλ++-==--(或11241a λλλ++-==--), 解得5,1a λ=-=,将5,1a λ=-=及平面∏上的点(1,2,5)-代入平面束方程,求得2b =-.四.解:最大方向导数即为梯度的模,(,)(1,1),(,)gradf x y y x gradf x y =++=令2222(,,)(1)(1)(3)F x y x y x y xy λλ=++++++-,由222(1)(2)02(1)(2)030x y F x x y F y y x x y xy λλ=+++=⎧⎪=+++=⎨⎪++-=⎩,解得1211,,,1112x x x x y y y y ===-=-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,比较:(1,1)gradf =(2,1)(1,2)3gradf gradf -=-=,(1,1)0gradf --=,所以(,)f x y 在曲线C 上的最大方向导数为3.五.解法一: 26222032(6)3xyr rD V dv rdrd dz d r r rdr πθθπ-Ω===--=⎰⎰⎰⎰⎰⎰⎰⎰. 解法二:1226262120202832(6)833z zD D V V V dz dxdy dz dxdy z dz z dz πππππ=+=+=+-=+=⎰⎰⎰⎰⎰⎰⎰⎰.六.解: 1.123D D D I dxdy dxdy xydxdy =++⎰⎰⎰⎰⎰⎰912221110221x xdx dy dx xydy =++⎰⎰⎰⎰19ln 24=+ 2.因为1P Q y x∂∂==∂∂,所以该曲线积分与路径无关, 选择积分路径从(1,0)A 沿x 轴到(1,0)B -,易得11(10)2I dx -=+=-⎰七.解法一:利用高斯公式,3222200()333 2.6xx yI xydydz yzdzdx xzdxdy y z x dvx zdv dx dy zdz dx ∑Ω---Ω=++=++-====⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)解法二:在平面0,0,0x y z ===上,积分值为0,只需计算:2x y z '∑++=(取上侧)上的积分.因cos cos cos αβγ===(()dS I xydydz yzdzdx xzdxdy xy yz xz xy yz xz dxdy '''∑∑∑=++=++++⎰⎰⎰⎰⎰⎰[]22220(2)(2)()2xyxD xy y x y x x y dxdy dx x y xy x y dy -=+--+--=---++=⎰⎰⎰⎰.解法三:在平面0,0,0x y z ===上,积分值为0,只需计算:2x y z '∑++=(取上侧)上的积分.2202(2)(2)3xyxD xzdxdy x x y dxdy xdx x y dy -'∑=--=--=⎰⎰⎰⎰⎰⎰.由被积函数和积分曲面关于积分变量的对称性,可得23xydydz yzdzdx xzdxdy '''∑∑∑===⎰⎰⎰⎰⎰⎰,所以,2323I =⋅=.八.解:(1)因为102222(cos )cos ,(cos )cos (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y x x∂∂''''==+∂∂ 2222(cos )sin ,(cos )sin (cos )cos ,x x x x x x zzf e y e y f e y e y f e y e y yy∂∂''''=-=-∂∂ 所以,已知条件22222(4cos )x x z zz e y e x y∂∂+=+∂∂化为22(cos )4(cos )cos x x x x xf e y e f e y e y e ''⎡⎤=+⎣⎦,所以函数()f u 满足方程()4()f u f u u ''=+.(2)方程()4()f u f u u ''=+的特征方程为240r -=,得特征根1,22r =± 所以,其对应齐次方程的通解为2212()uu f u C eC e -=+,设非齐方程的特解为*y Au B =+,代入原方程,得1,04A B =-=得非齐方程的一个特解为*4uy =-,故方程的通解为 2212()u u f u C e C e -=+4u-,由(0)0,(0)0f f '==得1212012204C C C C +=⎧⎪⎨--=⎪⎩,得1211,1616C C ==-, 故221()(4)16u uf u e e u -=--.。

相关文档
最新文档