神经网络pid控制matlab程序

合集下载

神经网络PID控制

神经网络PID控制
一十
NNI


x₁(k)=e(k)x₂(k)=△e(k)=e(k)-e(k-1)x₃(k)=△²e(k)=e(k)-2e (k-1)+e(k-2)e(k)=r(k)-y(k)NNC 的输出为:△u(k)=k₁x₁(k)+k₂x₂(k)+k₃x₃(k)式中,}i=1,2,3 为权系数,△u(k) 为输入信号的加权和。由此可见,NNC 具有增量D 控制的结构
i=1,2,…,Q-1
BP网络的输入层节点的输为
网络的隐含层输入、输为
·神经网络PID控制 20
o(k)=1
(13)
(14)
式中o 为输出层权系数 阈值,
网络的输出层的输入输出为
·神经网络PID控制 21
图二 神经网络PID控制系统结构图
·神经网络PID控制 17
二、方案二
被控对象
u

经典PID控制算式为u(k)=u(k-1)+Kp[e(k)-e(k-1)]+K,e(k)+K,[e(k)-2e(k-1) + e(k-2)1
7.由(20)式,计算修正输出层敝系数。(k);8.由(21)式,计算修正隐含层敝系数。)(k);9.置k=k+1, 返回到“3”,直到性能指标J 满足要求。
·神经网络PID控制 26
系数a(k)是慢时变的,a(k)=1.2(1-0.8e -01k),神经网络结构为4—5—3,输入层的个神经元分别为模型翰入r(k)、 输 出(k)、误 差(k)和常量。学习速率=0.25,动量系数=0.05,加权系数初始值取随[=0.50.5]上的随机数。当输入信号为幅值是的正弦信号(t)sin(2πt)时,取采样时间为.001s,仿真结果如图所示。·神经网络PID控制 27

学生--PID控制MATLAB仿真实验

学生--PID控制MATLAB仿真实验

计算机控制技术实验指导书(MATLAB版)机电学院杨蜀秦编2012-11-19实验一 连续系统的模拟PID 仿真一、基本的PID 控制 在模拟控制系统中,控制器最常用的控制规律是PID 控制。

模拟PID 控制系统原理框图如图1-1所示。

图1-1 模拟PID 控制系统原理框图PID 控制规律为:⎪⎪⎭⎫⎝⎛++=⎰dt t de T dt t e T t e k t u DtI p )()(1)()(0或写成传递函数的形式⎪⎪⎭⎫ ⎝⎛++==s T s T k s E s U s G D I p 11)()()( Ex1 以二阶线性传递函数ss 251332+为被控对象,进行模拟PID 控制。

输入信号)2.0*2sin()(t t r π=,仿真时取3,1,60===d i p k k k ,采用ODE45迭代方法,仿真时间10s 。

仿真方法一:在Simulink 下进行仿真,PID 控制由Simulink Extras 节点中的PID Controller 提供。

仿真程序:ex1_1.mdl ,如图1-2所示。

图1-2 连续系统PID 的Simulink 仿真程序连续系统的模拟PID 控制正弦响应结果如图1-3所示。

图1-3 连续系统的模拟PID 控制正弦响应仿真方法二:在仿真一的基础上,将仿真结果输出到工作空间中,并利用m 文件作图。

仿真程序:ex1_2.mdl ,程序中同时采用了传递函数的另一种表达方式,即状态方程的形式,其中[]0,01,1330,25010==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=D C B A ,如图1-4所示。

m 文件作图程序:ex1_2plot.mclose all ;plot(t,rin,'k',t,yout,'k'); xlabel('time(s)'); ylabel('r,y');二、线性时变系统的PID 控制 Ex2 设被控对象为Jss Ks G +=2)(,其中)2sin(300400),6sin(1020t K t J ππ+=+=,输入信号为)2sin(5.0t π。

PID控制和其MATLAB仿真

PID控制和其MATLAB仿真

序号,k=1,2,……,e (k-1)和e (k)分别为第(k-
1)和第k时刻所得旳偏差信号。
1.3.1 位置式PID控制算法
• 位置式PID控制系统
1.3.1 位置式PID控制算法
根据位置式PID控制算法得 到其程序框图。
在仿真过程中,可根据实 际情况,对控制器旳输出 进行限幅:[-10,10]。
• 变速积分旳基本思想是,设法变化积分项旳累加 速度,使其与偏差大小相相应:偏差越大,积分 越慢;反之则越快,有利于提升系统品质。
• 设置系数f(e(k)),它是e(k)旳函数。当 ∣e(k)∣增大时,f减小,反之增大。变速积分 旳PID积分项体现式为:
ui (k )
ki
k
1
e(i)
f
e(k )e(k )T
i0
1.3.8 变速积分算法及仿真
• 系数f与偏差目前值∣e(k)∣旳关系能够是线性 旳或是非线性旳,例如,可设为
1
f
e(k
)
A
e(k A
)
B
0
e(k) B B e(k) A B e(k) A B
1.3.8 变速积分算法及仿真
• 变速积分PID算法为:
u(k)
k
p e(k )
ki
1.3.4 增量式PID控制算法及仿真
• 增量式PID阶跃跟踪成果
1.3.5 积分分离PID控制算法及仿真
• 在一般PID控制中,引入积分环节旳目旳主要是为了 消除静差,提升控制精度。但在过程旳开启、结束或 大幅度增减设定时,短时间内系统输出有很大旳偏差 ,会造成PID运算旳积分积累,致使控制量超出执行机 构可能允许旳最大动作范围相应旳极限控制量,引起 系统较大旳振荡,这在生产中是绝对不允许旳。

控制系统pid参数整定方法的matlab仿真

控制系统pid参数整定方法的matlab仿真

控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。

其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。

PID参数的合理选择对控制系统的性能至关重要。

本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。

2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。

具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。

2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。

3.逐步增加微分时间常数,观察系统的响应速度和稳定性。

4.增加积分时间常数,以减小系统的稳态误差。

手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。

2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。

具体步骤如下:1.将I和D参数设为零,仅保留P参数。

2.逐步增大P参数,直到系统的输出出现大幅度的振荡。

3.记录下此时的P参数值,记为Ku。

4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。

5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。

matlab自整定pid算法

matlab自整定pid算法

Matlab自整定PID算法一、介绍PID算法PID控制算法是一种经典的反馈控制算法,PID分别代表比例(proportional)、积分(integral)和微分(derivative)。

它是一种线性控制算法,最早应用于工业控制领域,后来被广泛应用于自动化、机器人、航空航天等领域。

PID算法的基本原理是通过对系统的误差进行比例、积分和微分处理,来调节系统的控制量,使系统的输出值逐步趋近目标值。

二、Matlab中的PID控制Matlab作为一种功能强大的科学计算软件,提供了丰富的控制算法工具箱。

在Matlab中,可以通过内置的PID控制器对象来实现PID算法。

可以使用MATLAB提供的PID类对象,也可以自行实现PID算法的代码。

三、Matlab自整定PID算法对于控制系统中的PID参数(Kp、Ki、Kd),通常需要通过试错法来调节,这样既费时又费力。

Matlab提供了自整定PID控制器工具箱,可以根据系统的性能指标自动生成PID参数。

与传统的手动调节相比,自整定PID算法具有以下优势:1. 时间效率:自整定PID算法可以快速生成合适的PID参数,节省了调试时间,提高了工作效率。

2. 精度:自整定PID算法可以根据系统的性能指标精确地生成最优的PID参数,使系统的控制性能得到优化。

3. 应用广泛:自整定PID算法适用于不同类型的系统,包括传统的工业控制系统、机器人系统、航空航天系统等。

四、Matlab自整定PID算法的原理Matlab自整定PID算法的原理主要是基于系统的数学模型和系统的性能指标。

在实际应用中,通常需要对系统进行数学建模,提取系统的参数,并根据系统的性能要求来自动生成PID参数。

MATLAB的自整定PID算法主要包括以下步骤:1. 系统建模:将控制系统的数学模型转化为MATLAB的控制系统模型,提取系统的参数,如传递函数、状态空间模型等。

2. 设定性能指标:根据控制系统的性能要求,设定性能指标,如超调量、调节时间、稳定性等。

单神经元自适应PID控制器的研究及MATLAB仿真

单神经元自适应PID控制器的研究及MATLAB仿真

《自动化技术与应用》2007年第26卷第09期52 | T echniques of Automation & Applications工业控制与应用Industry Control and Applications单神经元自适应PID 控制器的研究及MATLAB 仿真张学燕,张建峡(贵州大学电气工程学院 贵州 贵阳 550003)摘 要:在分析传统的PID控制器的基础上,提出了一种单神经元自适应PID控制器,这种控制器,不仅结构简单,且具有较好的适应性和鲁棒性。

本文主要讨论了单神经元自适应PID控制器的结构,控制算法,并用MATLAB仿真软件给出了实例仿真,证明了单神经元自适应PID控制器控制效果优于传统的PID控制器。

关键词:单神经元;PID控制器;仿真中图分类号:TP183 文献标识码:B 文章编号:1003-7241(2007)09-0052-02The Design of a Single Neuron Adaptive PID Controllerand The Simulation of MatlabZHANG Xue-yan, ZHANG Jian-xia(Electronic Engineering College of Guizhou University Guiyang 550003 China)Abstract: A single neuron adaptive PID controller is designed based the traditional PID controller, this controller not only have asimple structure but also has a better adaptability and good robustness. This paper presents the structure of the controller and the results of simulation are also given.Key words: single neural element; PID controller; simulation收稿日期:2007-02-011 引言PID控制是最早发展起来的控制策略之一,由于其算法简单,鲁棒性好,结构简单,易于实现,因此广泛的应用于工业控制过程中。

matlab pid算例

matlab pid算例

matlab pid算例在MATLAB中,你可以使用Control System Toolbox来设计和分析PID控制器。

以下是一个简单的PID控制器设计示例:首先,我们需要定义一个目标系统。

假设我们正在控制一个简单的系统,如直流电机,其传递函数为:```matlabs = tf('s');P_motor = 1/(0.05*s + 1);```在这个例子中,`s`是Laplace变换的变量,`P_motor`是电机的传递函数。

接下来,我们可以设计PID控制器。

PID控制器的传递函数为:```matlabKp = 1; % 比例增益Ki = 1; % 积分增益Kd = 1; % 微分增益C_pid = tf([Kp Kd], [1 Ki]);```在这里,`Kp`、`Ki`和`Kd`是PID控制器的比例、积分和微分增益。

然后,我们可以创建一个系统模型,该模型包含我们的目标系统(电机)和PID控制器。

这个系统的传递函数为:```matlabsys = feedback(C_pid*P_motor, 1);```在这里,`feedback`函数创建了一个包含PID控制器和电机的反馈系统。

最后,我们可以使用`step`函数来模拟系统的响应。

例如,我们可以模拟系统对单位阶跃函数的响应:```matlabstep(sys);```这将生成一个图形,显示系统在单位阶跃输入下的响应。

需要注意的是,上述代码中的`Kp`、`Ki`和`Kd`值是随意选择的。

在实际应用中,你可能需要通过实验或优化算法来确定这些值,以便得到最佳的系统性能。

以上就是在MATLAB中设计PID控制器的一个基本示例。

如果你对控制系统有更深入的理解,你可以根据需要对PID控制器进行更复杂的设计和分析。

基于matlab的智能PID控制器设计和仿真毕业设计论文

基于matlab的智能PID控制器设计和仿真毕业设计论文

基于MATLAB的智能PID控制器设计与仿真摘要在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。

传统的PID控制器原理十分简单,即按比例、积分、微分分别控制的控制器,但是他的核心也是他的难点就是三个参数(比例系数Kp、积分系数Ki、微分系数Kd)的整定。

参数整定的合适,那么该控制器将凭借结构简单、鲁棒性好的优点出色的完成控制任务,反之则达不到人们所期望的控制效果。

人工神经网络模拟人脑的结构和功能而形成的信息处理系统,是一门十分前沿高度综合的交叉学科,并广泛应用于工程领域。

神经网络控制是把自动控制理论同他模仿人脑工作机制的数学模型结合起来,并拥有自学习能力,能够从输入—输出数据中总结规律,智能的处理数据。

该技术目前被广泛应用于处理时变、非线性复杂的系统,并卓有成效。

关键词自适应PID控制算法,PID控制器,神经网络Design and simulation of Intelligent PID Controllerbased on MATLABAbstractPID controller ,the control method which is developed on the basis of classical control theory, is widely used in industrial production.The Principle of traditional PID controller is very simple, which contains of the proportion, integral, differential three component, but its core task and difficulties is three parameter tuning(proportional coefficient Kp, integral coefficient Ki and differential coefficient KD).If the parameter setting is suitable, the controller can accomplish the control task with the advantages of simple structure and good robustness;but on the contrary, it can not reach the desired control effect which we what.Artificial neural network , the formation of the information processing system which simulate the structure and function of the human brain , is a very high degree of integration of the intersection of disciplines, and widely used in the field of engineering. Neural network control ,combining automatic control theory and the imitate mathematical model of the working mechanism of human brain , has self-learning ability, and can summarize the law of the input-output data , dealing with data intelligently .This technique has been widely used in the process of time-varying, nonlinear and complex system, and it is very effective.Key W ord:Adaptive PID control algorithm,PID controller,Neural network目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题研究背景及意义 (1)第二章 PID控制器 (2)2.1 PID控制原理 (2)2.2常规PID控制器的算法理论 (3)2.2.1 模拟PI D控制器 (3)2.2.2 数字P I D控制算法 (3)2.2.3常规PID控制的局限 (5)2.2.4 改进型PID控制器 (5)第三章人工神经网络 (8)3.1 人工神经网络的原理 (8)3.2神经网络PID控制器 (8)3.2.1神经元PID控制器 (8)3.2.2 单神经元自适PID应控制器 (9)3.3 BP神经网络参数自学习的PID控制器 (12)第四章MATAB仿真 (16)4.1 仿真过程 (16)第五章结论与展望 (24)致谢 (25)参考文献 (25)华东交通大学毕业设计(论文)第一章绪论1.1 课题研究背景及意义在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档