增量式PID控制算法的MATLAB仿真
PID控制及其MATLAB仿真详细课件

1.3.5 积分分离PID控制算法及仿真
具体实现的步骤是: 1、根据实际情况,人为设定阈值ε>0; 2、当∣e (k)∣>ε时,采用PD控制,可避免产生 过大的超调,又使系统有较快的响应; 3、当∣e (k)∣≤ε时,采用PID控制,以保证系统 的控制精度。
G(s)
U (s) E(s)
k p 1
1 T1s
TD s
1.1 PID控制原理
PID控制器各校正环节的作用如下:
比例环节:成比例地反映控制系统的偏差信号e(t),偏差 一旦产生,控制器立即产生控制作用,以减小偏差。 积分环节:主要用于消除静差,提高系统的无差度。积 分作用的强弱取决于积分时间常数T,T越大,积分作用 越弱,反之则越强。 微分环节:反映偏差信号的变化趋势,并能在偏差信号 变得太大之前,在系统中引入一个有效的早期修正信号, 从而加快系统的动作速度,减少调节时间。
1)T )
e(k) e(k
1)
dt
T
T
1.3.1 位置式PID控制算法
可得离散表达式:
u(k
)
k
p
(e(k
)
T T1
k e( j) TD
j0
T
(e(k) e(k
1)))
k p e(k )
ki
k
e(
j0
j)T
kd
e(k )
e(k T
1)
式中,Ki=Kp/Ti,Kd=KpTd,T为采样周期,K为 采样序号,k=1,2,……,e (k-1)和e (k)分别为 第(k-1)和第k时刻所得的偏差信号。
学生--PID控制MATLAB仿真实验

计算机控制技术实验指导书(MATLAB版)机电学院杨蜀秦编2012-11-19实验一 连续系统的模拟PID 仿真一、基本的PID 控制 在模拟控制系统中,控制器最常用的控制规律是PID 控制。
模拟PID 控制系统原理框图如图1-1所示。
图1-1 模拟PID 控制系统原理框图PID 控制规律为:⎪⎪⎭⎫⎝⎛++=⎰dt t de T dt t e T t e k t u DtI p )()(1)()(0或写成传递函数的形式⎪⎪⎭⎫ ⎝⎛++==s T s T k s E s U s G D I p 11)()()( Ex1 以二阶线性传递函数ss 251332+为被控对象,进行模拟PID 控制。
输入信号)2.0*2sin()(t t r π=,仿真时取3,1,60===d i p k k k ,采用ODE45迭代方法,仿真时间10s 。
仿真方法一:在Simulink 下进行仿真,PID 控制由Simulink Extras 节点中的PID Controller 提供。
仿真程序:ex1_1.mdl ,如图1-2所示。
图1-2 连续系统PID 的Simulink 仿真程序连续系统的模拟PID 控制正弦响应结果如图1-3所示。
图1-3 连续系统的模拟PID 控制正弦响应仿真方法二:在仿真一的基础上,将仿真结果输出到工作空间中,并利用m 文件作图。
仿真程序:ex1_2.mdl ,程序中同时采用了传递函数的另一种表达方式,即状态方程的形式,其中[]0,01,1330,25010==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=D C B A ,如图1-4所示。
m 文件作图程序:ex1_2plot.mclose all ;plot(t,rin,'k',t,yout,'k'); xlabel('time(s)'); ylabel('r,y');二、线性时变系统的PID 控制 Ex2 设被控对象为Jss Ks G +=2)(,其中)2sin(300400),6sin(1020t K t J ππ+=+=,输入信号为)2sin(5.0t π。
控制系统pid参数整定方法的matlab仿真

控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。
其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。
PID参数的合理选择对控制系统的性能至关重要。
本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。
2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。
具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。
2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。
3.逐步增加微分时间常数,观察系统的响应速度和稳定性。
4.增加积分时间常数,以减小系统的稳态误差。
手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。
2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。
具体步骤如下:1.将I和D参数设为零,仅保留P参数。
2.逐步增大P参数,直到系统的输出出现大幅度的振荡。
3.记录下此时的P参数值,记为Ku。
4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。
5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。
数字PID控制算法及Matlab仿真

数字PID 控制算法及Matlab 仿真一.实验目的:1.学习数字PID 算法的基本原理。
2.学习数字PID 调节器参数调节方法。
二.实验属性及设备:验证性实验,使用电脑及相关专业软件。
三.实验原理:1.概述首先建立数字PID 直流电机控制模型,然后用Matlab 的LTI 状态分析工具箱进行仿真,并绘制转速及控制电压变化图形。
图:kk k y r e -=2.位置式数字PID 算法公式010j )(u e e K e K e K u k k D kk I k P k +-⨯+⨯+⨯=-=∑3.增量式数字PID 算法公式)2()(211---+-⨯+⨯+-⨯=∆k k k D k I k k P k e e e K e K e e K u kk k u u u ∆+=-14.Matlab LTI 工具箱函数(作为了解内容)例:一台150kW 直流电动机,额定电压220V ,额定转速1000r/min ,额定电流700A ,R a =0.05Ω,L d =2mH ,假设负载及电动机转动总惯量GD 2=125kg ·m 2,则:)min/185.0100005.0*700220r V n R I U C N a N N e ⋅=-=-=Am N C C e T /767.155.9⋅==s R L T a a a 04.005.01023=⨯==-s C C R GD T T e a m 051.0767.1185.037505.01253752=⨯⨯⨯==mA kg C C e M ⋅==18.003.1传递函数为4902526521051.000204.041.51/1)()(222++=++=++=s s s s s T s T T C s u s y m m a e利用Matlab 建立传递函数方法为:sys=tf(270.5,[1,40,50])当采样间隔为ts=0.01s 时,则其z 变换(离散)传递函数为:dsys=c2d(sys,ts,'z')Matlab 输出为(Transfer function):0.1217z +0.112-----------------------------z^2-1.736z +0.7788Sampling time:0.01获得分子和分母的函数为:[num,den]=tfdata(dsys,'v')如果电机输入电压状态为u k ,输出转速状态为y k 。
基于-Simulink的位置式和增量式PID仿真

基于Simulink的位置式和增量式PID仿真一、实验目的:1、用Matlab的仿真工具Simulink分别做出数字PID控制器的两种算法(位置式和增量式)进行仿真;2、被控对象为一阶惯性环节 D(s) = 1 / (5s+1);3、采样周期 T = 1 s;4、仿真结果:确定PID相关参数,使得系统的输出能够很快的跟随给定值的变化,给出例证,输入输出波形,程序清单及必要的分析。
二、实验学时:4三、实验原理:(1)列出算法表达式:位置式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
2、增量式PID:(1)列出算法表达式:增量式PID控制算法表达式为:(2)列出算法传递函数:(3)建立simulink模型:(4)准备工作:双击step,将sample time设置为1以符合采样周期 T = 1 s 的要求;选定仿真时间为500。
第一步是先获取开环系统的单位阶跃响应,在Simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’Kp’的值置为1,调试之后获取响应值。
再连上反馈线,再分别接上微分器、积分器,仿真,调试仿真值。
四、实验内容:1、位置式:(1)P控制整定仿真运行完毕,双击“scope”得到下图将Kp的值置为0.5,并连上反馈连线。
仿真运行完毕,双击“scope”得到下图效果不理想,再将Kp的值置为0.2,并连上反馈连线。
P控制时系统的单位阶跃响应图如下:(2)PI控制整定(比例放大系数仍为Kp=0.2)经多次输入Ki的值,发现Ki=1时,系统的输出最理想,选定仿真时间,仿真运行,运行元毕后. 双击" Scope " 得到以下结果(3)PID控制整定经多次输入调试,Kd的值置为0.5时,系统能最快地趋向稳定。
增量式PID控制算法地MATLAB仿真

增量式PID控制算法的MATLAB仿真PID控制的原理在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD 控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
一、题目:用增量式PID控制传递函数为G(s)的被控对象G(s)=5/(s^2+2s+10),用增量式PID控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。
程序如下二、增量式PID 原理{ U(k)= ∆u(k)+ U(k-1)或{ U(k)= ∆u(k)+ U(k-1)注:U(k)才是PID 控制器的输出 三、分析过程1、对G(s)进行离散化即进行Z 变换得到Z 传递函数G(Z);2、分子分母除以z 的最高次数即除以z 的最高次得到;3、由z 的位移定理Z[e(t-kt)]=z^k*E(z)逆变换得到差分方程;4、PID 编程实现P :△y = Kp* △ε I:D:⎰⋅=∆dt T y I ε1dtd T y Dε=∆)]}2()1(2)([)()]1()({[)(-+--++--=∆n n n TT n T Tn n K n U D I P O εεεεεε)]2()1(2)([)(i )]1()([)(-+--++--=∆n n n Kd n K n n K n U P O εεεεεε由于是仿真采样此处为增量式PID控制故按照以下程序实现PID控制:x(1)=error-error_1; %Calculating Px(2)=error-2*error_1+error_2; %Calculating Dx(3)=error; %Calculating I四、程序清单clear all;close all;ts=0.001;sys=tf(5,[1,2,1 0]);dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;y_1=0.0;y_2=0.0;x=[0,0,0]';error_1=0;error_2=0;for k=1:1:10000time(k)=k*ts;S=2;if S==1kp=6;ki=45;kd=5;rin(k)=1; %Step Signalelseif S==2kp=10;ki=0.1;kd=15; %Sine Signalrin(k)=0.5*sin(2*pi*k*ts);enddu(k)=kp*x(1)+kd*x(2)+ki*x(3); %PID Controlleru(k)=u_1+du(k);%Restricting the output of controllerif u(k)>=5u(k)=5;endif u(k)<=-5u(k)=-5;end%Linear modelyout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; error(k)=rin(k)-yout(k);%Return of parametersu_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);x(1)=error(k)-error_1; %Calculating Px(2)=error(k)-2*error_1+error_2; %Calculating Dx(3)=error(k); %Calculating Ierror_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)'),ylabel('rin,yout');figure(2);plot(time,error,'r')xlabel('time(s)');ylabel('error');调节过程如下:1.首先调节ki=kd=0,调节比例环节kp,从小到大直至临界稳定。
PID控制算法的MATLAB仿真应用

PID控制算法的MATLAB仿真应用首先,我们需要了解PID控制算法的原理。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制是根据误差信号的大小与输出信号的差异来调节控制器输出信号的增益。
积分控制是根据误差信号的累积值来调节控制器输出信号的增益。
微分控制是根据误差信号的变化率来调节控制器输出信号的增益。
PID控制算法的输出信号可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t) dt + Kd * de(t)/dt其中,e(t)是系统输入与目标值之间的误差信号,u(t)是控制器的输出信号,Kp、Ki和Kd分别是比例增益、积分增益和微分增益。
在MATLAB中使用PID控制算法进行仿真应用,可以按照以下步骤进行:1. 创建一个Simulink模型,可以通过在命令窗口中输入simulink打开Simulink库,然后从库中选择合适的模块进行建模。
在模型中,需要包括被控对象、PID控制器和反馈信号。
2. 配置PID控制器的参数。
在Simulink模型中,可以使用PID Controller模块配置PID控制器的参数,包括比例增益、积分增益和微分增益。
3. 配置被控对象的模型。
在Simulink模型中,可以使用Transfer Fcn模块来建立被控对象的传递函数模型,包括系统的输入和输出端口,以及系统的传递函数。
4. 配置反馈信号。
在Simulink模型中,可以使用Sum模块将被控对象的输出信号和控制器的输出信号相加,作为反馈信号传递给PID控制器。
5. 运行Simulink模型进行仿真。
在Simulink中,可以选择仿真的时间范围和时间步长,然后点击运行按钮开始仿真。
仿真结果可以在模型中的Scope或To Workspace模块中查看和分析。
6.通过调整PID控制器的参数来优化系统的稳定性和响应速度。
根据仿真结果,可以逐步调整PID控制器的比例增益、积分增益和微分增益,以达到期望的控制效果。
大作业 基于matlab的PID控制算法仿真 深圳大学

大作业基于matlab的PID控制算法仿真深圳大学大作业-基于matlab的pid控制算法仿真-深圳大学基于MATLAB的PID控制算法仿真要求:(1)利用MATLAB仿真工具Simulink制作了两种数字PID控制器算法(位置式和增量式)进行仿真(2)受控对象为一阶惯性连杆D(s)=1/(5S+1)(3)采样周期T=1s(4)仿真结果:确定pid相关参数,使得系统的输出能够很快的跟随给定数值变化,给出示例,输入和输出波形,程序列表和必要的分析。
首先,d(s)=1/(5s+1)Simulink模型建立如下:准备工作:(1)双击步骤并将sampletime设置为1,以满足采样周期T=1s的要求(2)选择的模拟时间为500图中\为积分器,\为微分器,\为比例系数。
\为积分时间常数,\为积分时间常数。
当P控制器的参数调整时,微分器和积分器的输出与系统断开。
在smulink中,断开微分器和积分器之间的输出连接。
同样,在设置PI控制器的参数时,断开微分器的输出连接。
第一步是先获取开环系统的单位阶跃响应,在simulink中,把反馈连线、微分器、积分器的输出连线都断开,并将’kp’的值置为1,连线如下图(下载)后,图片可调节变大)模拟完成后,双击“范围”得到下图将kp的值置为2,并连上反馈连线,得下图:上图显示了P控制下系统的单步响应。
接下来对pi控制整定,比例放大系数仍为kp=2,经多次输入ti的值,发现ti=2,即1/ti=0.5时,系统的输出最理想,如下图(下载后,图片可以调整和放大)选定仿真时间,仿真运行,运行元毕后.双击\得到以下结果当响应曲线有一定的超调量,系统响应因积分时间过长而不能稳定时,应缩短积分时间。
相反,如果过冲过大,则应增加积分时间,最后Ti=2最后,连上微分器,经多次输入调试,td的值置为2时,系统能最快地趋向稳定。
如下图双击范围以获取:(下载后,图片可调节变大)从以上三幅图可以看出,PI和PID控制的响应速度基本相同,系统的稳定输出值也相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增量式PID 控制算法的MATLAB 仿真
PID 控制的原理
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。
PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID 控制技术。
PID 控制,实际中也有PI 和PD 控制。
PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
一、 题目:用增量式PID 控制传递函数为G(s)的被控对象
G (s )=5/(s^2+2s+10),
用增量式PID 控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms ,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。
程序如下 二、 增量式PID 原理
{
U(k)= ∆u(k)+ U(k-1)
或
{
U(k)= ∆u(k)+ U(k-1)
注:U(k)才是PID 控制器的输出 三、 分析过程
1、对G(s)进行离散化即进行Z 变换得到Z 传递函数G(Z);
2、分子分母除以z 的最高次数即除以z 的最高次得到;
)]}2()1(2)([)()]1()({[)(-+--++
--=∆n n n T
T n T T
n n K n U D I P O εεεεεε)]
2()1(2)([)(i )]1()([)(-+--++--=∆n n n Kd n K n n K n U P O εεεεεε
3、由z 的位移定理Z[e(t-kt)]=z^k*E(z)逆变换得到差分方程;
4、PID 编程实现
P :△y = Kp* △ε I: D:
由于是仿真采样此处为增量式PID 控制故按照以下程序实现PID 控制:
x(1)=error-error_1; %Calculating P x(2)=error-2*error_1+error_2; %Calculating D x(3)=error; %Calculating I
四、程序清单
clear all; close all; ts=0.001; sys=tf(5,[1,2,1 0]); dsys=c2d(sys,ts,'z'); [num,den]=tfdata(dsys,'v'); u_1=0.0;u_2=0.0; y_1=0.0;y_2=0.0; x=[0,0,0]'; error_1=0; error_2=0; for k=1:1:10000 time(k)=k*ts; S=2; if S==1
kp=6;ki=45;kd=5;
rin(k)=1; %Step Signal elseif S==2
⎰
⋅=∆dt T y I ε1
dt
d T y D
ε=∆
kp=10;ki=0.1;kd=15; %Sine Signal
rin(k)=0.5*sin(2*pi*k*ts);
end
du(k)=kp*x(1)+kd*x(2)+ki*x(3); %PID Controller
u(k)=u_1+du(k);
%Restricting the output of controller
if u(k)>=5
u(k)=5;
end
if u(k)<=-5
u(k)=-5;
end
%Linear model
yout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; error(k)=rin(k)-yout(k);
%Return of parameters
u_2=u_1;u_1=u(k);
y_2=y_1;y_1=yout(k);
x(1)=error(k)-error_1; %Calculating P
x(2)=error(k)-2*error_1+error_2; %Calculating D
x(3)=error(k); %Calculating I
error_2=error_1;
error_1=error(k);
end
figure(1);
plot(time,rin,'b',time,yout,'r');
xlabel('time(s)'),ylabel('rin,yout');
figure(2);
plot(time,error,'r')
xlabel('time(s)');ylabel('error');
调节过程如下:
1. 首先调节ki=kd=0,调节比例环节kp,从小到大直至临界稳定。
2. 调节ki,依次增大直到等幅振荡为止。
3. 调节kd,逐渐增大直至临界振荡。
4. 再把各个环节都加入系统进行微调各环节增益。
Kp=1,ki=0,kd=0;
1
2
3
4
56
7
8
9
10
00.10.20.30.40.50.6
0.70.80.9
1time(s)
r i n ,y o u t
Kp=3,ki=0,kd=0
Kp=6,ki=0,kd=0
1
2
3
4
56
7
8
9
10
00.10.20.30.40.50.6
0.70.80.9
1time(s)
r i n ,y o u t
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
kp=9,ki=0,kd=0
kp=7,ki=0,kd=0
1
2
3
4
56
7
8
9
10
00.10.20.30.40.50.6
0.70.80.9
1time(s)
r i n ,y o u t
1
2
3
4
56
7
8
9
10
00.10.20.30.40.50.6
0.70.80.9
1time(s)
r i n ,y o u t
Kp=6,ki=15,ki=0
Kp=6,ki=30,ki=0
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
Kp=6,ki=45,ki=0
Kp=6,ki=50,kd=0
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
Kp=6,ki=45,kd=1
Kp=6,ki=45,kd=3
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
Kp=6,ki=45,kd=5
按照顺序调节后的波形如上图,没有达到理想的波形,不知道为什么,去掉限幅和if 的选择条件改参数后得到下图:
此时kp=150;ki=0.132.;kd=2400
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
time(s)
r i n ,y o u t
01234
5678910
0.20.40.60.81
1.21.4
1.6time(s)
r i n ,y o u t
用simulink仿真如下,此时kp=6,ki=45,kd=5,这种效果比较好,但不知道怎么用程序来实现这种比较好的效果。
结论:通过这次作业,学习了一些PID的知识,但是还是有很多疑问没有解决,
不是很会调参数,而且用相同参数程序仿真出来的图形和simulink仿出来的图形
不一样,这一个还没有得到解决,还需要后面更多的学习。