初中数学各章节知识点总结(人教版)
人教版初中数学知识点总结(精华)

初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
初中数学知识点总结人教版(精选7篇)

初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
初中数学知识点总结人教版

初中数学知识点总结人教版初中数学知识点总结(人教版)一、数与代数1. 有理数- 整数和小数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值- 有理数的运算律2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 整式的加减乘除- 因式分解- 分式的基本性质- 分式的乘除法- 分式的加减法3. 代数方程- 一元一次方程- 二元一次方程组- 解方程的基本方法- 列方程解应用题4. 函数- 函数的概念- 线性函数- 反比例函数- 函数的图像和性质- 解析式的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质- 相似图形- 平行线与平行线的性质2. 几何变换- 平移- 旋转- 轴对称(镜像对称)3. 几何计算- 线段、角的计算- 三角形、四边形的面积计算- 圆的周长和面积计算- 体积和表面积的计算(棱柱、棱锥、圆柱、圆锥、球)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的计算四、应用题1. 列方程解应用题- 行程问题- 工作问题- 利润问题- 比例问题2. 几何应用题- 面积问题- 体积问题- 角度计算问题3. 统计与概率应用题- 调查与统计分析- 可能性与预测请注意,以上内容是根据人教版初中数学教材的一般结构和知识点进行的总结,具体的教学内容可能会根据不同年份的教材版本和教学大纲有所变化。
教师和学生应参考最新的教材和教学指南来确定具体的教学内容和要求。
(完整版)人教版初中数学知识点总结 公式

(完整版)人教版初中数学知识点总结公式一、整数和小数1. 整数:正整数、负整数、零2. 小数:有限小数、无限小数、循环小数3. 小数的四舍五入:小数的第一位是被保留的数,第二位如果大于或等于5,则第一位加1;如果小于5,则舍去第二位。
4. 小数的转化:将小数的分数形式求出,可以分为有限小数和循环小数。
5. 数轴:数轴上原点是0,数轴上的正数向右,负数向左。
6. 绝对值:一个数a的绝对值是它到0的距离,记作|a|。
7. 加减法:同号相加减,异号相减;先把减数取反再加。
8. 乘除法:同号得正,异号得负;除数不为0。
9. 分数的四则运算:加减法要通分,乘法直接相乘,除法变成乘以倒数。
10. 百分数:用分数表示的百分数,分母是100。
11. 百分数的转化:百分数可以转化成小数或分数。
二、代数式和方程式1. 代数式:含有未知数的式子,可以是数字、字母和运算符号的组合。
2. 方程式:含有未知数的代数式,表示等式的形式。
3. 解方程的步骤:运用逆运算、移项和通分的方法,将未知数的系数系数化为1,得到方程的解。
4. 一元一次方程:未知数的最高次数是1,形如ax+b=0。
5. 实际问题的解法:将实际问题转化为代数式和方程式,再运用解方程的方法求解。
6. 不等式:含有不等号的式子,可以是数字、字母和运算符号的组合。
7. 不等式的解法:将不等式中的未知数的系数系数化为1,再将不等式的符号确定方向,从而求得不等式的解。
三、比例和分数1. 比例关系:表示可比较的两个数之间的量的关系,通常表示成a:b或a/b。
2. 相等比例:两个比例中对应的两个数之间的比是相等的。
3. 比例的性质:比例中的四个数成正比例或反比例,比例中的两个比相等,化简比例后仍然是比例。
4. 分数:表示整体中的一部分,通常表示成a/b。
5. 分数的化简:将分子分母同时除以它们的最大公约数。
6. 分数的大小比较:通分后比较分子大小。
7. 分数的加减法:通分后分子相加减,分母不变。
初中数学知识点汇总(人教版)

初中数学知识点汇总(人教版)
一、数与代数
- 自然数
- 整数
- 分数
- 小数
- 负数的概念与加减法
- 整数的乘除法
- 百分数与百分数的应用
- 抽象代数的初步认识
- 无理数的概念及意义
- 实数的概念
二、代数式与简单方程
- 代数式的概念与运算
- 简单方程的概念与解方程
三、图形的认识
- 平面图形的认识
- 圆的认识与应用
- 长方形和正方形
- 应用题
四、相似与全等
- 二维图形的比例
- 相似图形的概念及性质
- 三角形的边与角的关系与性质- 全等三角形的性质与应用
五、比与利息
- 比的概念及比的性质
- 比例与应用
- 利息与应用
六、数系与方程
- 实数的概念及其性质
- 一元二次方程
- 反比例函数的性质与应用
七、三角比与解直角三角形
- 任意角的概念与性质
- 三角比的概念与性质
- 解直角三角形的应用
八、一次函数与方程
- 直线方程的推广
- 平移与函数图象
- 平移与函数关系式
- 一次函数图象的性质与应用
以上是初中数学常见知识点的汇总,其中包括数与代数、代数
式与简单方程、图形的认识、相似与全等、比与利息、数系与方程、三角比与解直角三角形、一次函数与方程等主要内容。
通过研究这
些知识,能够帮助学生打下扎实的数学基础,为高中数学的研究奠
定坚实的基础。
(800字以上)。
人教版初中数学知识点汇总

八年级上册
第十一章 三角形(与三角形有关的线段;与三角形有关的角;多边形及其内角和)
第十二章 全等三角形(全等三角形;三角形全等的判定;角的平分线的性质)
第十三章 轴对称(轴对称;画轴对称图形;等腰三角形;最短路径问题)
第十四章 整式的乘法与分解因式(整式的乘法;乘法公式;因式分解)
第二十五章 概率初步(随机事件与概率;用列举法求比例函数;实际问题与反比例函数)
第二十七章 相似(图形的相似;相似三角形;位似)
第二十八章 锐角三角函数(锐角三角函数;解直角三角形及其应用)
第二十九章 投影与视图(投影;三视图;立体模型)
九年级上册
第二十一章 一元二次方程(一元二次方程;解一元二次方程;实际问题与一元二次方程)
第二十二章 二次函数(二次函数的图像和性质;二次函数与一元二次方程;实际问题与二次函数)
第二十三章 旋转(图形的旋转;中心对称;图案设计)
第二十四章 圆(圆的有关性质;点和圆、直线和圆的位置关系;正多边形和圆;弧长和扇形面积)
七年级下册
第五章 相交线与平行线(相交线;平行线及其判定;平行线的性质;平移)
第六章 实数(平方根;立方根;实数)
第七章 平面直角坐标系(平面直角坐标系;坐标方法的简单应用)
第八章 二元一次方程组(二元一次方程组;消元-解二元一次方程组;实际问题与二元一次方程组;三元一次方程组的解法)
第九章 不等式与不等式组(不等式;一元一次不等式;一元一次不等式组)
第十五章 分式(分式;分式的运算;分式的方程)
八年级下册
第十六章 二次根式(二次根式;二次根式的乘除;二次根式的加减)
第十七章 勾股定理(勾股定理;勾股定理的逆定理)
初中数学人教版知识点总结

初中数学人教版知识点总结学校数学学问点总结1一、函数及其相关概念1、变量与常量在某一改变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一改变过程中有两个变量x与y,假如对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:根据自变量由小到大的挨次,把所描各点用平滑的曲线连接起来。
二、相交线与平行线1、学问网络结构2、学问要点〔1〕在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特别状况。
〔2〕在同一平面内,不相交的两条直线叫平行线。
假如两条直线只有一个公共点,称这两条直线相交;假如两条直线没有公共点,称这两条直线平行。
〔3〕两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+=180°;+=180°;+=180°;+=180°。
3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
=; =。
4、两条直线相交所成的角中,假如有一个是直角或90°时,称这两条直线相互垂直,其中一条叫做另一条的垂线。
人教版初中数学知识点(全)

人教版初中数学知识点(全)一、整数与有理数1. 整数的概念与表示方法2. 整数的加减法3. 整数的乘法4. 整数的除法5. 整数的混合运算6. 有理数的概念与表示方法7. 有理数的加减法8. 有理数的乘法9. 有理数的除法10. 有理数的混合运算二、代数与方程1. 代数式的基本概念2. 代数式的运算3. 初等代数式4. 一元一次方程5. 一元一次方程的解6. 一元一次方程的应用三、平面图形1. 点、线、面的基本概念2. 直线的性质3. 角的概念与性质4. 线段的概念与性质5. 三角形的基本概念与性质6. 三角形的分类与判定7. 直角三角形与勾股定理8. 平行线与平行四边形9. 四边形的分类及其性质10. 梯形和平行四边形的面积四、图形的位置与方位1. 坐标系2. 图形的部分、全及简单运动3. 图形的位置关系4. 图形的投影和视图五、数据的处理与统计1. 统计调查与数据收集2. 单图形的统计3. 标线图4. 等距统计图与频数分布直方图5. 旋转、平移、翻折、镜面变换6. 几何图形的位置关系六、函数的初步认识1. 函数的概念与表示2. 函数的自变量、因变量与函数图象3. 线性函数及其图象的特征4. 恒等函数和常数函数5. 一元一次方程与一元一次函数七、空间与立体图形1. 立体图形的基本概念2. 正交投影3. 立体图形的展开图4. 空间中的位置关系与方向八、相似与全等1. 点、线、平面的基本性质2. 同位角和同旁内角3. 两个线的夹角与两个平面的夹角4. 直线与平面的位置关系5. 立体图形的拆分九、变量与变化1. 变量与量的关系2. 变量的代数表示3. 变量之间的关系及其图象4. 变量间比例关系及其图象十、数系的扩充1. 自然数、整数、有理数的关系2. 实数的概念与性质3. 几何图形的相似比与相似定理4. 实际问题与解整数方程5. 锐角三角函数、直角三角函数十一、平面直角坐标系1. 平面直角坐标系的建立2. 点与平面直角坐标系3. 点在平面直角坐标系中的坐标4. 平面直角坐标系与方程十二、几何图形的变换1. 图形的变换2. 平移和旋转3. 对称与中心对称4. 拓展与概括(图形自相似、放缩)以上是人教版初中数学知识点的概述,其中包括整数与有理数、代数与方程、平面图形、图形的位置与方位、数据的处理与统计、函数的初步认识、空间与立体图形、相似与全等、变量与变化、数系的扩充、平面直角坐标系以及几何图形的变换等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章、有理数知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章、整式的加减知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章、一元一次方程知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.5.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=;(2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a , S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h. 本章内容是代数学的核心,也是所有代数方程的基础。
丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
第四章、图形的认识初步本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 本章书涉及的数学思想:1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
七年级数学(下)知识点人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章、相交线与平行线知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠3与∠5像这样的一对角叫做内错角。
同旁内角:∠4与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。