2019-2020学年人教A版浙江省杭州市学军中学高二(上)期末数学试卷 含解析
2019-2020学年浙江省杭州市学军中学高二(上)期末数学试卷

2019-2020学年浙江省杭州市学军中学高二(上)期末数学试卷试题数:22.满分:1501.(单选题.4分)经过点A(1.3).斜率为2的直线方程是()A.2x-y-1=0B.2x+y+1=0C.2x+y-1=0D.2x-y+1=02.(单选题.4分)椭圆x25+y24=1的焦距是()A. 2√3B. √3C.1D.23.(单选题.4分)已知直线m.n和平面α.β.γ.下列条件中能推出α || β的是()A.m⊂α.n⊂β.m || nB.m⊥α.m⊥βC.m⊂α.n⊂α.m || β.n || βD.α⊥γ.β⊥γ4.(单选题.4分)圆x2+y2-2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切5.(单选题.4分)已知a、b是异面直线.P是a、b外的一点.则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行6.(单选题.4分)如图.△ABC中.AB=BC.∠ABC=120°.若以A.B为焦点的双曲线的渐近线经过点C.则该双曲线的离心率为()A.2√33B. √3C. √52 D. √727.(单选题.4分)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M.N 两点.若|MN|≥2 √3 .则k 的取值范围是( ) A.[- 34 .0]B.(-∞.- 34 ]∪[0.+∞)C.[- √33 . √33 ] D.[- 23 .0]8.(单选题.4分)正四面体ABCD.CD 在平面α内.点E 是线段AC 的中点.在该四面体绕CD 旋转的过程中.直线BE 与平面α所成角不可能是( )A.0B. π6 C. π3 D. π29.(单选题.4分)已知两点 A(1,6√3) . B(0,5√3) 到直线l 的距离均等于a.且这样的直线可作4条.则a 的取值范围是( ) A.a≥1 B.0<a <1 C.0<a≤1 D.0<a <210.(单选题.4分)如图.正四面体ABCD中.P、Q、R在棱AB、AD、AC上.且AQ=QD. APPB = CRRA= 12.分别记二面角A-PQ-R.A-PR-Q.A-QR-P的平面角为α、β、γ.则()A.β>γ>αB.γ>β>αC.α>γ>βD.α>β>γ11.(填空题.6分)若圆x2+y2+2ax+y-1=0的圆心在直线y=x上.则a的值是___ .半径为___ .12.(填空题.6分)若直线l1:x+my+6=0与l2:(m-2)x+3y+2m=0互相平行.则m的值为___ .它们之间的距离为___ .13.(填空题.6分)某几何体的三视图如图所示.则该几何体的体积为___ .外接球的表面积为___ .14.(填空题.6分)已知双曲线C:y2−x2m =1与椭圆y29+x25=1共焦点.则m的值为___ .设F为双曲线C的一个焦点.P是C上任意一点.则|PF|的取值范围是___ .15.(填空题.4分)异面直线a.b所成角为π3.过空间一点O的直线l与直线a.b所成角均为θ.若这样的直线l有且只有两条.则θ的取值范围为___ .16.(填空题.4分)在《九章算术》中.将四个面都为直角三角形的四面体称之为鳖臑.如图.在鳖臑P-ABC中.PA⊥平面ABC.AB⊥BC.且AP=AC=1.过点A分别作AE⊥PB于点E.AF⊥PC于点F.连结EF.当△AEF的面积最大时.tan∠BPC=___ .17.(填空题.4分)已知椭圆C:x24+y2=1上的三点A.B.C.斜率为负数的直线BC与y轴交于M.若原点O是△ABC的重心.且△BMA与△CMO的面积之比为32.则直线BC的斜率为___ .18.(问答题.14分)已知x>0.y>0.且2x+5y=20.(1)求xy的最大值;(2)求1x +1y的最小值.19.(问答题.15分)如图所示.在四棱锥P-ABCD中.底面ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形.其所在平面垂直于底面ABCD.若G为AD的中点.E为BC的中点.(1)求证:BG || 平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F.使平面DEF⊥平面ABCD.若存在.确定点F的位置;若不存在.说明理由.20.(问答题.15分)如图.已知位于y轴左侧的圆C与y轴相切于点(0.2)且被x轴分成的两段圆弧长之比为1:2.直线l与圆C相交于M.N两点.且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.21.(问答题.15分)如图.在四棱锥P-ABCD中.AB⊥PA.AB || CD.且PB=BC=BD=√6 .CD=2AB=2 √2 .∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)求直线PD与平面PBC所成的角的正弦值.22.(问答题.15分)在平面直角坐标系xOy 中.已知椭圆C : x 2a 2 + y 2b 2 =1(a >b >0)的离心率为 √32 .且过点( √3 . 12 ).点P 在第四象限.A 为左顶点.B 为上顶点.PA 交y 轴于点C.PB 交x 轴于点D .(1)求椭圆C 的标准方程; (2)求△PCD 面积的最大值.2019-2020学年浙江省杭州市学军中学高二(上)期末数学试卷参考答案与试题解析试题数:22.满分:1501.(单选题.4分)经过点A(1.3).斜率为2的直线方程是()A.2x-y-1=0B.2x+y+1=0C.2x+y-1=0D.2x-y+1=0【正确答案】:D【解析】:直接代入点斜式方程即可.【解答】:解:由点斜式直接带入:y-3=2(x-1).即2x-y+1=0.故选:D.【点评】:考查直线的点斜式方程.属于基础题.2.(单选题.4分)椭圆x25+y24=1的焦距是()A. 2√3B. √3C.1D.2【正确答案】:D【解析】:根据题意.由椭圆的标准方程可得a、b的值.计算可得c的值.进而由焦距定义计算可得答案.【解答】:解:根据题意.椭圆的标准方程为:x 25+y24=1 .则a2=5.b2=4.则c= √a2−b2 =1. 则其焦距2c=2;故选:D.【点评】:本题考查椭圆的几何性质.关键是掌握椭圆的标准方程的形式.3.(单选题.4分)已知直线m.n和平面α.β.γ.下列条件中能推出α || β的是()A.m⊂α.n⊂β.m || nB.m⊥α.m⊥βC.m⊂α.n⊂α.m || β.n || βD.α⊥γ.β⊥γ【正确答案】:B【解析】:利用平面平行的判定定理.对四个选项分别进行判断.能够得到正确答案.【解答】:解:由直线m和n.若m⊂α.n⊂β.n || m.则α与β相交或平行.故A不正确;若m⊥α.m⊥β.则垂直于同一条直线的两个平面互相平行.即α || β.故B正确;若m⊂α.n⊂α.m || β.n || β.则α与β相交或平行.故C不正确;若α⊥γ.β⊥γ.则由平面与平面平行的判定知.故D不正确.故选:B.【点评】:本题考查了空间线面位置关系的判断.属于中档题.4.(单选题.4分)圆x2+y2-2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切【正确答案】:C【解析】:把两圆的方程化为标准方程.分别找出圆心坐标和半径.利用两点间的距离公式.求出两圆心的距离d.然后求出R-r和R+r的值.判断d与R-r及R+r的大小关系即可得到两圆的位置关系.【解答】:解:把圆x2+y2-2x=0与圆x2+y2+4y=0分别化为标准方程得:(x-1)2+y2=1.x2+(y+2)2=4.故圆心坐标分别为(1.0)和(0.-2).半径分别为R=2和r=1.∵圆心之间的距离d= √(1−0)2+(0+2)2=√5 .R+r=3.R-r=1.∴R-r<d<R+r.则两圆的位置关系是相交.故选:C.【点评】:圆与圆的位置关系有五种.分别是:当0≤d<R-r时.两圆内含;当d=R-r时.两圆内切;当R-r<d<R+r时.两圆相交;当d=R+r时.两圆外切;当d>R+r时.两圆外离(其中d表示两圆心间的距离.R.r分别表示两圆的半径).5.(单选题.4分)已知a、b是异面直线.P是a、b外的一点.则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行【正确答案】:A【解析】:对于A.取直线a上任意一点.作b的平行线c.则a.c确定平面.利用过一点作已知平面的垂线.有且只有一条.可得结论;对于B.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的直线不存在;对于C.根据a、b是异面直线.可得过P不存在平面与a、b都垂直;对于D.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的平面不存在.【解答】:解:对于A.取直线a上任意一点.作b的平行线c.则a.c确定平面.过P作平面的垂线有且只有一条.所以过P有且只有一条直线与a、b都垂直.故A正确;对于B.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的直线不存在.故B不正确;对于C.∵a、b是异面直线.∴过P不存在平面与a、b都垂直.故C不正确;对于D.若P与a或b确定的平面.与b或a平行.此时与a、b都平行的平面不存在.故D不正确;故选:A.【点评】:本题考查线线、线面的位置关系.考查学生的推理能力.属于中档题.6.(单选题.4分)如图.△ABC中.AB=BC.∠ABC=120°.若以A.B为焦点的双曲线的渐近线经过点C.则该双曲线的离心率为()A.2√33B. √3C. √52 D. √72【正确答案】:D【解析】:设AB=BC=2.取AB 的中点为O.由题意可得双曲线的一条渐近线为直线OC.由余弦定理可得OC.cos∠COB .求得tan∠COB .即为渐近线的斜率.由a.b.c 的关系和离心率公式.即可得到.【解答】:解:设AB=BC=2. 取AB 的中点为O.由题意可得双曲线的一条渐近线为直线OC. 在三角形OBC 中. cosB=- 12 .∴OC 2=OB 2+BC 2-2OB•BC•cosB=1+4-2×1×2×(- 12)=7. ∴OC= √7 . 则cos∠COB=2√7 = √7. 可得sin∠COB= √1−47 = √3√7 . tan∠COB= sin∠COBcos∠COB = √32 .可得双曲线的渐近线的斜率为 √32 .不妨设双曲线的方程为 x 2a2 - y 2b2 =1(a.b >0). 渐近线方程为y=± b ax. 可得 ba = √32 . 可得e= c a = √a 2+b 2a 2 = √1+(b a )2 = √1+34 = √72 .故选:D .【点评】:本题考查双曲线的方程和性质.主要是渐近线和离心率.考查学生的计算能力.属于中档题.7.(单选题.4分)直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M.N 两点.若|MN|≥2 √3 .则k 的取值范围是( ) A.[- 34.0]B.(-∞.- 34 ]∪[0.+∞)C.[- √33 . √33 ] D.[- 23 .0]【正确答案】:A【解析】:由弦长公式得.当圆心到直线的距离等于1时.弦长等于2 √3 .故当弦长大于或等于2 √3 时.圆心到直线的距离小于或等于1.解此不等式求出k 的取值范围.【解答】:解:设圆心(3.2)到直线y=kx+3的距离为d. 由弦长公式得.MN=2 √4−d 2 ≥2 √3 . 故d≤1. 即√k 2+1 ≤1.化简得 8k (k+ 34 )≤0.∴- 34 ≤k≤0.故k 的取值范围是[- 34.0]. 故选:A .【点评】:本题主要考查点到直线的距离公式.以及弦长公式的应用.属于中档题.8.(单选题.4分)正四面体ABCD.CD 在平面α内.点E 是线段AC 的中点.在该四面体绕CD 旋转的过程中.直线BE 与平面α所成角不可能是( )A.0B. π6C. π3D. π2【正确答案】:D【解析】:由正四面体ABCD.可得所有棱长都相等.① 点E是线段AC的中点.BE⊥AC.在该四面体绕CD旋转的过程中.直线BE与平面α所成角不可能是π2.利用反证法可以证明.② 在该四面体绕CD旋转的过程中.当BE || α时.可得直线BE与平面α所成角为0.③ 如图所示的正四面体B-ABC.作BO⊥平面ACD.垂足为O.设直线BE与平面ACD所成的角为θ.可得cosθ= 13<12.于是可得在该四面体绕CD旋转的过程中.可得直线BE与平面α所成角为π6. π3.【解答】:解:由正四面体ABCD.可得所有棱长都相等.① ∵点E是线段AC的中点.∴BE⊥AC.在该四面体绕CD旋转的过程中.直线BE与平面α所成角不可能是π2.反证法:若直线BE与平面α所成角是π2.则BE⊥平面α.则在某一过程必有BE⊥CD.事实上.在该四面体绕CD旋转的过程中.BE与CD是不可能垂直的.因此假设错位.于是直线BE 与平面α所成角不可能是90°.② 在该四面体绕CD旋转的过程中.当BE || α时.可得直线BE与平面α所成角为0.③ 如图所示的正四面体B-ABC.作BO⊥平面ACD.垂足为O.则E.O.D三点在同一条直线上.设直线BE与平面ACD所成的角为θ.可得cosθ= 13<12.∴θ>π3.于是可得在该四面体绕CD旋转的过程中.可得直线BE与平面α所成角为π6. π3.综上可得:直线BE与平面α所成角不可能是π2.故选:D.【点评】:本题考查了正四面体的性质、线面垂直性质定理、正三角形的性质、线面角.考查了数形结合方法、推理能力与计算能力.属于难题.9.(单选题.4分)已知两点A(1,6√3) . B(0,5√3)到直线l的距离均等于a.且这样的直线可作4条.则a的取值范围是()A.a≥1B.0<a<1C.0<a≤1D.0<a<2【正确答案】:B【解析】:(1)由题意做出简图.分别讨论A.B在同一侧和两侧两种情况.只需a小于A.B两点距离的一半.再由两点间的距离公式即可求出a的取值范围.【解答】:解:由题意如图所示:因为若A.B在直线的同一侧.可做两条直线.所以若有这样的直线有4条.则当A.B两点分别在直线的两侧时.还应该有两条.所以2a小于A.B的距离.因为|AB|= √(1−0)2+(6√3−5√3)2 =2.所以0<2a<2.所以:0<a<1.故选:B.【点评】:考查点到直线的距离公式.属于中档题.10.(单选题.4分)如图.正四面体ABCD中.P、Q、R在棱AB、AD、AC上.且AQ=QD. APPB = CRRA= 12.分别记二面角A-PQ-R.A-PR-Q.A-QR-P的平面角为α、β、γ.则()A.β>γ>αB.γ>β>αC.α>γ>βD.α>β>γ【正确答案】:D【解析】:由四面体为正四面体.结合AQ=QD. APPB = CRRA= 12.通过图形直观分析得答案.【解答】:解:观察可知.α>β>γ.α为钝角.β.γ均为锐角.β平缓一点.γ陡急一点. ∴ π2>β>γ .则α>β>γ.故选:D.【点评】:本题考查二面角的平面角及其求法.考查学生通过读图进行直观分析问题与解决问题的能力.是中档题.11.(填空题.6分)若圆x2+y2+2ax+y-1=0的圆心在直线y=x上.则a的值是___ .半径为___ .【正确答案】:[1] 12 ; [2] √62【解析】:根据题意.将圆的方程变形为标准方程的形式.求出圆的圆心以及半径.又由圆的圆心在直线y=x上.即可得a的值.据此可得答案.【解答】:解:根据题意.圆的一般方程为x2+y2+2ax+y-1=0.则其标准方程为(x+a)2+(y+1 2)2=a2+ 54:其圆心为(-a.- 12).半径r= √a2+54.若其圆心在直线y=x上.则有-a=- 12 .即a= 12.其半径r= √14+54= √62;故答案为:12 . √62【点评】:本题考查圆的一般方程.关键是掌握圆的一般方程的形式.属于基础题.12.(填空题.6分)若直线l1:x+my+6=0与l2:(m-2)x+3y+2m=0互相平行.则m的值为___ .它们之间的距离为___ .【正确答案】:[1]-1; [2] 8√23【解析】:由m(m-2)-3=0.解得m.经过验证可得m.利用平行线之间的距离公式即可得出它们之间的距离.【解答】:解:由m (m-2)-3=0.解得m=3或-1. 经过验证:m=3时两条直线平行舍去. ∴m=-1.直线l 1:x+my+6=0与l 2:(m-2)x+3y+2m=0分别化为:x-y+6=0.x-y+ 23 =0. ∴它们之间的距离= |6−23|√2=8√23. 故答案为:-1. 8√23.【点评】:本题考查了平行线与斜率之间的关系、平行线之间的距离公式.考查了推理能力与计算能力.属于基础题.13.(填空题.6分)某几何体的三视图如图所示.则该几何体的体积为___ .外接球的表面积为___ .【正确答案】:[1]24; [2]41π【解析】:画出几何体的直观图.利用三视图的数据.求解几何体的体积.求出外接球的半径.即可求解外接球的表面积.【解答】:解:由题意可知几何体是三棱柱.如图:是长方体的一半. 所以几何体的体积为: 12×4×3×4 =24;几何体的外接球.就是长方体的外接球.外接球的半径为: 12×√42+32+42 = √412. 外接球的表面积为: 4π×(√412)2=41π. 故答案为:24;41π.【点评】:本题考查三视图求解几何体的体积.外接球的表面积的求法.考查空间想象能力以及计算能力.是中档题.14.(填空题.6分)已知双曲线C:y2−x2m =1与椭圆y29+x25=1共焦点.则m的值为___ .设F为双曲线C的一个焦点.P是C上任意一点.则|PF|的取值范围是___ .【正确答案】:[1]3; [2][1.+∞)【解析】:由椭圆方程求得焦点坐标.再由双曲线中的隐含条件列式求得m值;求出|PF|的最小值.可得|PF|的取值范围.【解答】:解:由椭圆y 29+x25=1 .得c= √9−5=2 .则其焦点坐标为(0.±2).∴双曲线C:y2−x2m=1的焦点坐标为(0.±2).∴1+m=4.得m=3;不妨设F为双曲线的上焦点F(0.2).则当P为双曲线的上顶点时.|PF|最小为1.∴|PF|的取值范围是[1.+∞).故答案为:3;[1.+∞).【点评】:本题考查椭圆与双曲线的简单性质.是基础题.15.(填空题.4分)异面直线a.b所成角为π3.过空间一点O的直线l与直线a.b所成角均为θ.若这样的直线l有且只有两条.则θ的取值范围为___ .【正确答案】:[1](π6 . π3)【解析】:由最小角定理可得:θ的取值范围为π6<θ<π3.得解.【解答】:解:由最小角定理可得:异面直线a.b所成角为π3.过空间一点O的直线l与直线a.b所成角均为θ.若这样的直线l有且只有两条.则θ的取值范围为:π6<θ <π3.故答案为:( π6 . π3 ).【点评】:本题考查了最小角定理.属简单题.16.(填空题.4分)在《九章算术》中.将四个面都为直角三角形的四面体称之为鳖臑.如图.在鳖臑P-ABC 中.PA⊥平面ABC.AB⊥BC .且AP=AC=1.过点A 分别作AE⊥PB 于点E.AF⊥PC 于点F.连结EF.当△AEF 的面积最大时.tan∠BPC=___ .【正确答案】:[1] √22【解析】:由已知可证AE⊥平面PBC.PC⊥平面AEF.可得△AEF 、△PEF 均为直角三角形.由已知得AF= √22 .从而S △AEF = 12 AE•EF≤ 14 (AE 2+EF 2)= 14 (AF )2= 18 .当且仅当AE=EF 时.取“=”.解得当AE=EF= 12 时.△AEF 的面积最大.即可求得tan∠BPC 的值【解答】:解:显然BC⊥平面PAB.则BC⊥AE . 又PB⊥AE .则AE⊥平面PBC.于是AE⊥EF .且AE⊥PC .结合条件AF⊥PC 得PC⊥平面AEF. 所以△AEF 、△PEF 均为直角三角形.由已知得AF= √22 .而S △AEF = 12 AE•EF≤ 14 (AE 2+EF 2)= 14 (AF )2= 18 .当且仅当AE=EF 时.取“=”. 所以.当AE=EF= 12 时.△AEF 的面积最大.此时tan∠BPC= EF PF = 12√22= √22 .【点评】:本题主要考查了直线与平面垂直的判定.不等式的解法及应用.同时考查了空间想象能力、计算能力和逻辑推理能力.属于中档题 17.(填空题.4分)已知椭圆 C :x 24+y 2=1 上的三点A.B.C.斜率为负数的直线BC 与y 轴交于M.若原点O 是△ABC 的重心.且△BMA 与△CMO 的面积之比为 32 .则直线BC 的斜率为___ .【正确答案】:[1] −√36【解析】:设B (x 1.y 1).C (x 2.y 2)A (x 3.y 3).M (0.m ).直线BC 的方程为y=kx+m .由原点O 是△ABC 的重心.得△BMA 与△CMO 的高之比为3.结合△BMA 与△CMO 的面积之比为 32 .得2BM=MC .可得2x 1+x 2=0.联立直线与椭圆方程.利用根与系数的关系得到36k 2m 2=1-m 2+4k 2.利用重心坐标公式求得A 的坐标.代入椭圆方程即可求解直线BC 的斜率.【解答】:解:设B (x 1.y 1).C (x 2.y 2)A (x 3.y 3).M (0.m ).直线BC 的方程为y=kx+m . ∵原点O 是△ABC 的重心.∴△BMA 与△CMO 的高之比为3. 又△BMA 与△CMO 的面积之比为 32 .则2BM=MC . 即2 BM ⃗⃗⃗⃗⃗⃗ = MC ⃗⃗⃗⃗⃗⃗ .得2x 1+x 2=0.… ①联立 {y =kx +m x 2+4y 2=4 .得(4k 2+1)x 2+8mkx+4m 2-4=0. 则x 1+x 2= −8km 1+4k 2 .x 1x 2= 4m 2−41+4k 2 .… ②由 ① ② 整理可得:36k 2m 2=1-m 2+4k 2.… ③ ∵原点O 是△ABC 的重心.∴ x 3=−(x 1+x 2)=8km1+4k 2 . y 3=-(y 2+y 1)=-[k (x 1+x 2)+2m]=- 2m1+4k 2 .∵ x 32+4y 32=4 .∴( 8km1+4k 2 )2+4( −2m 1+4k 2 )2=4.即1+4k 2=4m 2.… ④ . 由 ③ ④ 可得k 2= 112 . ∵k <0.∴k=- √36. 故答案为: −√36 .【点评】:本题考查了椭圆的性质.考查了计算能力、转化思想.属于中档题.18.(问答题.14分)已知x>0.y>0.且2x+5y=20.(1)求xy的最大值;(2)求1x +1y的最小值.【正确答案】:【解析】:(1)由x>0.y>0.且2x+5y=20.利用基本不等式的性质即可得出xy的最大值;(2)由x>0.y>0.且2x+5y=20.可得1x +1y= 120(2x+5y)•(1x+1y)= 120(7+ 5yx+ 2xy).利用基本不等式的性质即可得出.【解答】:解:(1)∵x>0.y>0.且2x+5y=20.∴20≥2 √2x•5y .化为:xy≤10.当且仅当2x=5y=10时取等号.∴xy的最大值为10.(2)∵x>0.y>0.且2x+5y=20.∴ 1 x +1y= 120(2x+5y)•(1x+1y)= 120(7+ 5yx+ 2xy)≥ 120(7+2 √5yx•2xy)= 120(7+2√10).当且仅当√5 y= √2 x.2x+5y=20取等号.∴ 1 x +1y的最小值为:120(7+2 √10).【点评】:本题考查了基本不等式的性质、方程的解法、转化法.考查了推理能力与计算能力.属于基础题.19.(问答题.15分)如图所示.在四棱锥P-ABCD中.底面ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形.其所在平面垂直于底面ABCD.若G为AD的中点.E为BC的中点.(1)求证:BG || 平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F.使平面DEF⊥平面ABCD.若存在.确定点F的位置;若不存在.说明理由.【正确答案】:【解析】:(1)连接DE、PE.证明四边形BEDG是平行四边形.得出BG || ED.即可证明BG || 平面PDE;(2)连接PG.证明PG⊥AD.再证BG⊥AD.得出AD⊥平面PGB.即可证明AD⊥PB;(3)F为PC边的中点时.平面DEF⊥平面ABCD.再证明即可.【解答】:(1)证明:连接DE、PE.则DG || BE.且DG=BE.所以四边形BEDG是平行四边形. 所以BG || ED.又BG⊄平面PDE.DE⊂平面PDE.所以BG || 平面PDE;(2)证明:连接PG.因为△PAD为正三角形.G为AD边的中点.所以PG⊥AD;又AG= 12 AB.∠BAD=60°.所以BG= √32AB.所以∠BGA=90°.即BG⊥AD;又PG⊂平面PGB.BG⊂平面PGB.PG∩BG=G.所以AD⊥平面PGB.又PB⊂平面PGB.所以AD⊥PB;(3)解:当F为PC边的中点时.满足平面DEF⊥平面ABCD.证明如下:取PC 的中点F.连接DE、EF、DF.在△PBC中.FE || PB.在菱形ABCD中.EF∩DE=E.所以平面DEF || 平面PGB.因为BG⊥平面PAD.所以BG⊥PG.又因为PG⊥AD.AD∩BG=G.所以PG⊥平面ABCD.而PG⊂平面PGB.所以平面PGB⊥平面ABCD.所以平面DEF⊥平面ABCD.【点评】:本题考查了空间中的直线与直线、直线与平面、以及平面与平面的平行和垂直判断问题.也考查了空间想象能力与逻辑推理能力.20.(问答题.15分)如图.已知位于y轴左侧的圆C与y轴相切于点(0.2)且被x轴分成的两段圆弧长之比为1:2.直线l与圆C相交于M.N两点.且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.【正确答案】:【解析】:(1)依题意.容易求得半径r=4.圆心坐标为(-4.2).由此得到方程;(2)依题意.只需求出点N(或M)在劣弧PQ上运动时的直线ON(或OM)斜率.结合图象得解.【解答】:解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0.2).所以圆心在直线y=2上.设圆C 与x 轴交于P.Q 点.又因为被x 轴分成的两段圆弧长之比为1:2.所以可得∠PCQ= 2π3 .所以r=4.圆心C 的坐标:(-4.2).所以圆C 的方程:(x+4)2+(y-2)2=16;(2)依题意.只需求出点N (或M )在劣弧PQ 上运动时的直线ON (或OM )斜率.设其直线方程为y=tx (t >0).此时有 2<|−4t−2|√t 2+1≤4 .解得 0<t ≤34 ;若点M 在劣弧PQ 上.则直线OM 的斜率k=t.于是 0<k ≤34 ;若点N 在劣弧上.则直线OM 的斜率 k =−1t .于是 k ≤−43 ;又当k=0时.点N 为(0.2)也满足条件;综上所述.所求直线OM 的斜率k 的取值范围为 (−∞,−43]∪[0,34] . 【点评】:本题考查圆的标准方程的求法及直线与圆的关系.考查逻辑推理能力.属于中档题.21.(问答题.15分)如图.在四棱锥P-ABCD 中.AB⊥PA .AB || CD.且PB=BC=BD=√6 .CD=2AB=2 √2 .∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD ;(Ⅱ)求直线PD 与平面PBC 所成的角的正弦值.【正确答案】:【解析】:(I )取CD 的中点E.连接BE .可证四边形ABED 是矩形.故而AB⊥AD .结合AB⊥PD 得出AB⊥平面PAD.又AB || CD 得出CD⊥平面PAD.于是平面PAD⊥平面PCD ;(II )以A 为原点建立坐标系.求出 PD ⃗⃗⃗⃗⃗ 和平面PBC 的法向量 n ⃗ .则直线PD 与平面PBC 所成的角的正弦值为|cos < n ⃗ . PD⃗⃗⃗⃗⃗ >|.【解答】:证明:(I )取CD 的中点E.连接BE .∵BC=BD .E 为CD 中点.∴BE⊥CD .又∵AB || CD .AB= 12 CD=DE.∴四边形ABED 是矩形.∴AB⊥AD .又AB⊥PA .PA⊂平面PAD.AD⊂平面PAD.PA∩AD=A.∴AB⊥平面PAD .∵AB || CD .∴CD⊥平面BEF.又CD⊂平面PCD.∴平面BEF⊥平面PCD .∴平面PAD⊥平面PCD .(II )以A 为原点.AB 为x 轴.AD 为y 轴.以平面ABCD 过点A 的垂线为z 轴建立空间直角坐标角系A-xyz.如图所示:∵PB=BD= √6 .AB= √2 .AB⊥PA .AB⊥AD .∴PA=AD=2.∴P (0.-1. √3 ).D (0.2.0).B ( √2 .0.0).C (2 √2 .2.0).∴ PD ⃗⃗⃗⃗⃗ =(0.3.- √3 ). BP ⃗⃗⃗⃗⃗ =(- √2 .-1. √3 ). BC ⃗⃗⃗⃗⃗ =( √2 .2.0).设平面PBC 的法向量 n ⃗ =(x.y.z ).则 {n ⃗ •BC ⃗⃗⃗⃗⃗ =0n ⃗ •BP ⃗⃗⃗⃗⃗ =0. ∴ {√2x +2y =0−√2x −y +√3z =0 .取x= √2 .得 n ⃗ =( √2 .-1. √33 ). ∴cos < n ⃗ . PD ⃗⃗⃗⃗⃗ >= n ⃗ •PD ⃗⃗⃗⃗⃗⃗ |n ⃗ ||PD ⃗⃗⃗⃗⃗⃗ | = −4√103•2√3 =- √105. ∴直线PD 与平面PBC 所成的角的正弦值为√105 .【点评】:本题考查了面面垂直的性质.空间向量的应用与空间角的计算.属于中档题.22.(问答题.15分)在平面直角坐标系xOy 中.已知椭圆C : x 2a 2 + y 2b 2 =1(a >b >0)的离心率为 √32 .且过点( √3 . 12 ).点P 在第四象限.A 为左顶点.B 为上顶点.PA 交y 轴于点C.PB 交x 轴于点D .(1)求椭圆C 的标准方程;(2)求△PCD 面积的最大值.【正确答案】:【解析】:(1)利用椭圆的离心率求得 b a =12 .将( √3 . 12 )代入椭圆方程.即可求得a 和b 的值.(2)设P (m.n ).m >0.n >0.且. m 24+n 2=1 可得 S △PCD =12•m (2n−m−2)(n−1)(m+2)•(−n ) =nm 2+2mn−2mn 22(n−1)(m+2) = n(4−4n 2)+2mn (1−n )2(n−1)(m+2) =- n (2n+m+2)m+2 = 12(m −2n −2) . 设P 处的切线为:x-2y+t=0.t <0.由 {x =2y −t x 2+4y 2−4=0⇒8y 2-4ty+t 2-4=0.△=-16t 2+128=0⇒t=-2 √2 时.S △PCD 取得最大值.【解答】:解:(1)由已知得 c a =√32 .⇒ b a =12 . 点( √3 . 12 )代入 x 2a 2 + y 2b 2 =1可得 3a 2+14b 2=1 . 代入点( √3 . 12 )解得b 2=1.∴椭圆C 的标准方程: x 24+y 2=1 .(2)可得A (-2.0).B (0.1).设P (m.n ).m >0.n >0.且. m 24+n 2=1 PA : y =n m+2(x +2) .PB :n−1m x +1 . 可得C (0. 2n m+2 ).D ( m 1−n ,0 ).由 {y =n−1m x +1y =2n m+2可得x= m (2n−m−2)(n−1)(m+2) . S △PCD =12•m (2n−m−2)(n−1)(m+2)•(−n ) =nm 2+2mn−2mn 22(n−1)(m+2) = n(4−4n 2)+2mn (1−n )2(n−1)(m+2) =- n (2n+m+2)m+2 = 12(m −2n −2) .设P 处的切线为:x-2y+t=0.t <0.{x =2y −t x 2+4y 2−4=0⇒8y 2-4ty+t 2-4=0.△=-16t 2+128=0⇒t=-2 √2 . 此时.方程组的解 {x =√2y =−√22即点P ( √2 .- √22 )时.S △PCD 取得最大值.最大值为 √2 -1.【点评】:本题考查了椭圆的标准方程及其性质、三角形面积计算公式.考查了推理能力与计算能力.属于难题.。
【20套试卷合集】杭州学军中学2019-2020学年数学高二上期中模拟试卷含答案

2019-2020学年高二上数学期中模拟试卷含答案 一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线的倾斜角的大小是( ) A .B .C .D .2. 圆的圆心坐标和半径分别是( )A .(0,2)2B .(2,0)4C .(-2,0)2D .(2,0)23.点(2,3,4)关于x 轴的对称点的坐标为( )A.(-2,3,4)B.(2,-3,-4)C.(-2,-3,4)D.(-2,-3,-4)4. 有下列四个命题:①“若0=+y x ,则y x ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则022=++q x x 有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题;其中真命题为( ) A. ①② B. ②③ C. ①③ D. ③④5.圆x 2+y 2+2x=0和x 2+y 2﹣4y=0的公共弦所在直线方程为( )A .x ﹣2y=0B .x+2y=0C .2x ﹣y=0D .2x+y=06.圆与圆的位置关系为( ) A .内切 B .相交 C .外切 D .相离7.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则是的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.对任意的实数,直线与圆的位置关系一定是( )A .相切B .相交且直线过圆心C .相交且直线不过圆心D .相离9.圆上的点到直线的距离最大值是( )A .2B .1+C .D .1+ 10.已知直线,圆,则直线和圆在同一坐标系中的图形可能是( )二填空题:(本题共6小题,每小题4分,共24分.把答案填在答题纸的相应位置.)11. 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ,体积是12. 在空间直角坐标系中,若点A (1,2,﹣1),B (﹣3,﹣1,4).则|AB|=13.已知命题,使成立,则: .14.经过点(3,-2),且在两坐标轴上的截距互为相反数的直线方程是15.直线130kx y k -+-=,当k 变化时,所有直线恒过定点16.如图,在正方体111ABCD A B C D -中,①异面直线1A D 与1D C 所成的角为60度;②直线1A D 与平面11AB C D 所成的角为30度;③1D C ⊥平面11AB C D ④平面1ADB 与平面11BB C C 所成角为60度⑤平面11//A D 平面1ADB 以上命题正确的是答题纸 二、填空题:(本题共6小题,每小题4分,共24分.把答案填在答题纸的相应位置.)11、 , ;12、 ;13、14、 ;15、 ;16、三解答题:(本题共4小题,共36分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.)17.(7分)求经过点M(2,-2),且与圆2260x y x+-=与224x y+=交点的圆的方程18.(9分)已知直线:,:,求当为何值时,与:(1)平行;(2)相交;(3)垂直19. (10分)已知圆及直线. 当直线被圆截得的弦长为时,求(1)的值;(2)求过点并与圆相切的切线方程.20.(10分)过原点O作圆x2+y2-8x=0的弦OA。
浙江省学军中学2020届高三数学上学期期末模拟试卷 数学

学军中学2019-2020学年第一学期期末模拟考试高三数学试卷一、选择题(本大题共10小题)1. 设全集U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A.B. C. D.2. 设纯虚数z 满足=1+ai (其中i 为虚数单位),则实数a 等于( )A. 1B.C. 2D.3. 若x 、y 满足约束条件,则 的取值范围是A. B. C. D.4. 已知a ,b ∈R ,下列四个条件中,使a >b 成立的充分不必要的条件是( )A.B. C. D.5. 函数y =的图象大致是( )A.B.C.D.6. 已知函数1()0x D x x ⎧=⎨⎩为有理数为无理数,则( )A. ,0是 的一个周期B. ,1是 的一个周期C. ,1是 的一个周期D. , 的最小正周期不存在7.若关于x的不等式|x+t2-2|+|x+t2+2t-1|<3t无解,则实数t的取值范围是()A. B. C. D.8.若O是△ABC垂心,且,则m=()A. B. C. D.9.已知二次函数f(x)=ax2+bx(|b|≤2|a|),定义f1(x)=max{f(t)|-1≤t≤x≤1},f2(x)=min{f(t)|-1≤t≤x≤1},其中max{a,b}表示a,b中的较大者,min{a,b}表示a,b中的较小者,下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则10.已知数列{a n}满足,,若,设数列{b n}的前项和为S n,则使得|S2019-k|最小的整数k的值为()A. 0B. 1C. 2D. 3二、填空题(本大题共7小题)11.(1-2x)5展开式中x3的系数为______;所有项的系数和为______.12.等比数列{a n}中,,,则=______,a1a2a3a4=______.13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知,则C=______;若,△ABC的面积为,则a+b=______.14.已知函数,则=______,若函数g(x)=f(x)-k有无穷多个零点,则k的取值范围是______.15.已知x,y∈R且x2+y2+xy=1,则x+y+xy的最小值为______.16.已知平面向量,,满足,,,则的最大值为______.17.当x∈[1,4]时,不等式0≤ax3+bx2+4a≤4x2恒成立,则7a+b的取值范围是______.三、解答题(本大题共5小题)18.已知函数f(x)=2sin x cos(x+)+.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)求函数f(x)在区间[0,]上的最大值及最小值.19.已知在△ABC中,|AB|=1,|AC|=2.(Ⅰ)若BAC的平分线与边BC交于点D,求;(Ⅱ)若点E为BC的中点,求的最小值.20.已知正项等差数列{a n}满足:,其中S n是数列{a n}的前n项和.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令,证明:.21.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:<.已知函数f(x)=ln x-ax2-bx-2,a∈R.(Ⅰ)当b=2时,试讨论f(x)的单调性;(Ⅱ)若对任意的∈,,方程f(x)=0恒有2个不等的实根,求a的取值范围.答案和解析1.【答案】C解:∵全集U=R,集合M={x|x>1},P={x|x2>1}={x|x>1或x<-1},∴M P=P,M∩P=M.故选:C.先分别求出集合M,P,利用交集和并集的定义直接求解.本题考查交集、并集的求法,考查交集、并集定义等基础知识,考查运算求解能力,是基础题.2.【答案】A解:由=1+ai,得z=,由z为纯虚数,得,即a=1.故选:A.3.【答案】D解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.4.【答案】B【解答】解:a>b+1是a>b的充分不必要的条件;a>b-1是a>b的必要不充分条件;|a|>|b|是a>b的既不充分也不必要条件;2a>2b是a>b的充要条件.故选:B.5.【答案】D解:当x>0时,y=x lnx,y′=1+ln x,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D.6.【答案】B解:若x为有理数,D(D(x))=D(1)=1,若x为无理数,D(D(x))=D(0)=1,综上D(D(x))=1,排除C,D.根据函数的周期性的定义,周期不可能是0,故A错误,若x为有理数,D(x+1))=1,D(x)=1,则D(x+1)=D(x),若x为无理数,D(x+1))=0,D(x)=0,则D(x+1)=D(x),综上D(x+1)=D(x),即1是函数D(x)的一个周期,故选:B.7.【答案】C解:∵|x+t2-2|+|x+t2+2t-1|≥|(x+t2-2)-(x+t2+2t-1)|=|-2t-1|=|2t+1|,∴关于x的不等式|x+t2-2|+|x+t2+2t-1|<3t无解等价于|2t+1|≥3t,∴ 或,t<0,解得t≤1..故选:C.先求f(x)的最小值,然后把关于x的不等式|x+t2-2|+|x+t2+2t-1|<3t无解转化为|2t+1|≥3t,解不等式可得.8.【答案】D解:在△ABC中,sin B sin C≠0,由,得+=2m•,连接CO并延长交AB于D,∵O是△ABC垂心,∴CD⊥AB,=+∴+=2m•(+),两端同乘以得•+•=2m•(+)•,∴•c2+•bc•cos A=2m••=2m•||•c•cos0°=2m•b cos A•c∵A=∴•c2+•bc•=bcm,由正弦定理化为•sin2C+•sin B sin C•=m•sin B sin C,∴cos C sinC+cos B sin C=m•sin B sin C,又sin C≠0,约去sin C,得cos C+cos B=m•sin B,∵C=π-A-B=-B,∴cos C=cos(-B)=-cos B+sin B,代入上式,得∴sin B=m•sin B,又sin B≠0,约去sin B,∴m=.故选:D.9.【答案】C解:对于A,若f1(-1)=f1(1),则f(-1)为f(x)在[-1,1]上的最大值,∴f(-1)>f(1)或f(-1)=f(1).故A错误;对于B,若f2(-1)=f2(1),则f(-1)是f(x)在[-1,1]上的最小值,∴f(-1)<f(1)或f(-1)=f(1),故B错误;对于C,若f2(1)=f1(-1),则f(-1)为f(x)在[-1,1]上的最小值,而f1(-1)=f(-1),f1(1)表示f(x)在[-1,1]上的最大值,∴f1(-1)<f1(1).故C正确;对于D,若f2(1)=f1(-1),由新定义可得f1(-1)≥f2(-1),则f2(1)≥f2(-1),故D错误.故选:C.由新定义可知f1(-1)=f2(-1)=f(-1),f(x)在[-1,1]上的最大值为f1(1),最小值为f2(1),即可判断A,B,D错误,C正确.10.【答案】C解:a n+1-a n=≥0,a1=-,等号不成立,可得a n+1>a n,∴数列{a n}是递增数列.∵数列{a n}满足,,∴==-,∴b n==-∴数列{b n}的前项和为S n=-+-+……+-=2-.则使得|S2019-k|=|2--k|使得|S2019-k|最小的整数k的值为2.故选:C.a n+1-a n=≥0,可得数列{a n}是递增数列.数列{a n}满足,,可得==-,b n==-进而得出结论.11.【答案】-80 -1解:根据题意得,(1-2x)5展开式的通项为T r+1=(-2x)r=(-2)r x r令r=3得(-2)3=-80,令x=1得所有项的系数和为(1-2)5=-1故答案为-80,-112.【答案】解:∵等比数列{a n}中,,,∴q==,∴===()6=,a1a2a3a4==()4()6=4×=.故答案为:,.推导出q==,由等比数列的通项公式得==,a1a2a3a4=,由此能求出结果.13.【答案】7解:∵在△ABC中,角A,B,C所对的边分别为a,b,c,已知,∴由正弦定理可得,解得,,∴,解得ab=6,∵,cos C=,∴,解得a=1,b=6或a=6,b=1,∴a+b=7.故答案为:,7.14.【答案】[0,+∞)【解析】解:根据题意,函数,则f(-)=2f(-)=4f()=4(+-2)=6-8;由f(x)=2x+2-x-2≥0,f(-x)=f(x),可知f(x)偶函数,∴当x<0时,可得f(x)=2f(x+1),可知周期为1,函数值随x的减小而增大,且f(x)min≥0.函数g(x)=f(x)-k有无穷多个零点,即函数y=f(x)与函数y=k有无穷多个交点,则k≥0.故答案为:6-8;[0,+∞).由f(-)=2f(-)=4f()=4(+-2)=6-8可得解;根据由f(x)=2x+2-x-2≥0,f(-x)=f(x),可知f(x)偶函数,当x<0时,可得f(x)=2f(x+1),可知周期为1,函数值随x的减小而增大,且f(x)min≥0,零点问题转化为交点问题,即可求解.15.【答案】解:已知x,y∈R且x2+y2+xy=1,所以x2+y2=1-xy≥2xy,解得,又由已知得(x+y)2=xy+1,由于是求最小值,故可取,所以,令∈,,则xy=t2-1,,故当时x+y+xy的最小值为,故答案为:.16.【答案】10解:∵,设与的夹角为θ,∴===,∴cosθ=-1时,取得最大值10.故答案为:10.根据,可设与的夹角为θ,根据=进行数列的运算即可得出,从而可求出的最大值.17.【答案】[-4,8]解:当x∈[1,4]时,不等式可化为,若a=0,则0≤b≤4,故7a+b∈[0,4];若a>0,y=,y'=a-=a(1-)=a,当x∈[1,2],y递减,x∈[2,4],y递增,可得x=1,y最大值为5a,x=2,y最小3a,故3a+b≥0,5a+b≤4,7a+b═-(3a+b)+2(5a+b)≤8,若a<0,由上知,5a+b≥0,3a+b≤4,由7a+b═-(3a+b)+2(5a+b≥-4,综上,7a+b∈[-4,8].故答案为:[-4,8].当x∈[1,4]时,不等式可化为,分三种情况讨论,根据3a+b,5a+b的范围,确定7a+b范围.考查不等式恒成立问题,函数最值计算,线性规划解不等式,中档题.18.【答案】解:(Ⅰ)函数f(x)=2sin x cos(x+)+=2sin x•(cos x-sin x)+=sin x cosx-sin2x+ =sin2x-•+=sin(2x+).令2kπ+≤x≤2kπ+,求得kπ+≤x≤kπ+,可得函数的减区间为[kπ+,kπ+],k∈Z.(Ⅱ)在区间[0,]上,2x+∈[,],故当2x+=时,函数f(x)取得最大值为1;当2x+=时,函数f(x)取得最小值为-.19.【答案】解:(1)AD为BAC的平分线,|AC|=2|AB|,所以|BD|=2|DC|,由B,C,D三点共线,,所以==.(2)由E为BC的中点,,由平行四边形对角线的性质,所以=,所以由柯西不等式()()≥(2+1)2=9,当且仅当时,取等号,故的最小值为.20.【答案】解:(Ⅰ)依题意,数列{a n}为正项等差数列,所以a1=1,所以=1+,整理得:a2(a2+1)(a2-2)=0,所以a2=2,或a2=0(舍)或a2=-1(舍)所以数列{a n}的公差d=2-1=1,所以a n=1+(n-1)×1=n;(Ⅱ)证明:=(-1)n-1-(-1)n,∴b1+b2+b3+……+b n=(1+)+(--)+(+)+……+((-1)n-1-(-1)n,)=1-≤1+=,命题得证.21.【答案】解:(1)∵f(x)=e x-ax+a,∴f'(x)=e x-a,若a≤0,则f'(x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f'(x)=0,则x=ln a,当f'(x)<0时,x<ln a,f(x)是单调减函数,当f'(x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a lna+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵ ,∴两式相减得a=,记=s(s>0),则f′()=-=[2s-(es-e-s)],设g(s)=2s-(e s-e-s),则g'(s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而>0,∴f′()<0.又f'(x)=e x-a是单调增函数,且>,∴f′()<0.22.【答案】解:(Ⅰ)当b=2时,f′(x)=-2ax-2=,x>0,(1)当a>0,令f′(x)=0,解得x=,∴当0<x<时,f′(x)>0,当x>时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减,(2)当a=0时,令f′(x)=0,解得x=,∴当0<x<时,f′(x)>0,当x>时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减,(3)当-<a<0,令f′(x)=0,解得x=或x=∴当0<x<,或x>时,f′(x)>0,当<x<时,f′(x)<0,∴f(x)在(0,),(,+∞)上单调递增,在(,)上单调递减,(4)a≤-,f′(x)>0恒成立,∴f(x)在(0,+∞)上单调递增;(Ⅱ)问题等价于=ax+b有两解令g(x)=,x>0有g′(x)=,x>0,令g′(x)=0,解得x=e3,当0<x<e3,g′(x)>0,当x>e3,g′(x)<0,∴g(x)在(0,e3)上单调递增,在(e3,+∞)上单调递减,当x→-∞时,g(x)→-∞,当x→+∞时,g(x)→0,∵g(e2)=0,∴由图象可知a>0时,过(0,-)作切线时,斜率a最大,设切点为(x0,y0),则有y=•x+,∴=-,∴x0=e,此时斜率a取最大值,故a的取值范围为(0,].。
杭州学军中学2019-2020学年第一学期期末考试高一数学试题(含答案)

杭州学军中学2019学年第一学期期末考试高一数学试卷命题人:何玲娜 审题人:王加义一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U =R ,集合2{|1},{|1}M x x P x x =>=>则下列关系中正确的是( ▲ )A.P M =B.M P M =UC.M P M =ID.()U C M P =∅I 2.若0.52a =,lg 2b =,ln(sin 35)c ︒=,则( ▲ )A .a c b >>B .b a c >>C .c a b >>D . a b c >>3.下列四个函数:①3y x =-;②12x y -=;③2ln y x =;④⎪⎩⎪⎨⎧>≤=0103x x x x y 其中定义域与值域相同的函数有( ▲ )A.1个B.2个C.3个D.4个4.对任意向量→→b a ,,下列关系式中不恒成立的是( ▲ )A .→→→→≤⋅b a b a B . 22→→→→+=⎪⎭⎫ ⎝⎛+b a b a C .→→→→-≤-ba b aD . 22→→→→→→-=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛+b a b a b a 5.设)(x f 是定义域为R ,最小正周期为π3的函数,且在区间]2,(ππ-上的表达式为⎩⎨⎧≤≤-≤≤=0cos 20sin )(x x x x x f ππ,则=+-)6601()3308(ππf f ( ▲ ) A .3 B .3- C .1 D .1- 6. 函数,则使得成立的的取值范围是( ▲ ) A . B . C . D . 7. 已知单位向量b a ,的夹角为ο60,若向量c 满足3|2|≤+-c b a ,则||c 的最大值为( ▲ ) A.3 B.33+ C.31+ D.331+21()ln(1||)1f x x x =+-+()(21)f x f x >-x 1,13⎛⎫ ⎪⎝⎭()1,1,3⎛⎫-∞+∞ ⎪⎝⎭U 11,33⎛⎫- ⎪⎝⎭11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U8.已知实数a <b <c ,设方程0111=-+-+-cx b x a x 的两个实根分别为)(,2121x x x x <,则下列关系中恒成立的是( ▲ )A .c x b x a <<<<21B .c x b a x <<<<21C .c b x x a <<<<21D .21x c b x a <<<<9.记{}{},0)1)((|B ,,)sin()(|<---=+==a x a x x x x f A 为正整数为偶函数ωωθθ 对任意实数a 满足B I A 中的元素不超过两个,且存在实数a 使B I A 中含有两个元素,则ω的最大值为( ▲ )A .4B .5C .6D .710.若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则b a +2=( ▲ )A .67B .56C .35D .2 二、填空题:本大题共6小题,多空题每题6分,单空题每题4分,共30分。
2023-2024学年浙江省杭州学军中学紫金港校区高二上学期期末数学试题

2023-2024学年浙江省杭州学军中学紫金港校区高二上学期期末数学试题1.已知复数z 满足,则()A .2B .4C.D .2.已知集合,则()A.B.C.D .3.小港、小海两人同时相约两次到同一水果店购买葡萄,小港每次购买50元葡萄,小海每次购买3千克葡萄,若这两次葡萄的单价不同,则()A .小港两次购买葡萄的平均价格比小海低B .小海两次购买葡萄的平均价格比小港低C .小港与小海两次购买葡萄的平均价格一样D .丙次购买葡萄的平均价格无法比较4.已知直线与曲线相切,则实数k 的值为()A.B.C .D .5.已知向量,若与共线,则向量在向量上的投影向量为()A .B .C .D .6.已知数列为等比数列,公比为q ,前n 项和为,则“”是“数列是单调递增数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在三棱锥中,,且,则三棱锥外接球的表面积为()A .B.C .D .8.设点,抛物线上的点P 到y 轴的距离为d .若的最小值为1,则()A .6B .4C .3D .29.下列表述正确的是()A.如果,那么B.如果,那么C.如果,那么D .如果,那么10.已知双曲线的两个焦点分别为,且满足条件,可以解得双曲线的方程为,则条件可以是()A.实轴长为4B.双曲线为等轴双曲线C.离心率为D.渐近线方程为11.如图,在棱长为4的正方体中,E,F,G分别为棱的中点,点P为线段上的动点(包含端点),则()A.存在点P,使得平面B.对任意点P,平面平面C.两条异面直线和所成的角为D.点到直线的距离为412.设定义在上的函数的导函数分别为,若且为偶函数,则下列说法中正确的是()A.B.C.的图象关于对称D.函数为周期函数,且周期为413.幸福指数是衡量人们对自身生存和发展状况的感受和体验,即人们的幸福感的一种指数.某机构从某社区随机调查了12人,得到他们的幸福指数(满分:10分)分别是,,,,,,,,,,,,则这组数据的下四分位数(也称第一四分位数)是________.14.已知有100个半径互不相等的同心圆,其中最小圆的半径为1,在每相邻的两个圆中,小圆的切线被大圆截得的弦长都为2,则这100个圆中最大圆的半径是_____.15.设椭圆的右焦点为,点在椭圆外,、在椭圆上,且是线段的中点.若直线、的斜率之积为,则椭圆的离心率为______.16.已知数列满足,若,则_____.17.记的内角A、B、C的对边分别为a、b、c,已知.(1)求角C;(2)若的周长为20,面积为,求边c.18.已知A、B是抛物线上异于顶点的两个动点,直线与x轴交于P.(1)若,求P的坐标;(2)若P为抛物线的焦点,且弦的长等于6,求的面积.19.设a为实数,函数.(1)求的极值;(2)对于,都有,试求实数a的取值范围.20.设正项等比数列的公比为,且,.令,记为数列的前项积,为数列的前项和.(1)若,,求的通项公式;(2)若为等差数列,且,求.21.如图,在三棱锥中,平面平面,且,,点在线段上,点在线段上.(1)求证:;(2)若平面,求的值;(3)在(2)的条件下,求平面与平面所成角的余弦值.22.己知椭圆过点,焦距为.过作直线l与椭圆交于C、D两点,直线分别与直线交于E、F.(1)求椭圆的标准方程;(2)记直线的斜率分别为,证明是定值;(3)是否存在实数,使恒成立.若存在,请求出的值;若不存在,请说明理由.。
浙江省杭州地区重点中学2019-2020学年高二上学期期末考试数学试题Word版含答案

浙江省杭州地区重点中学2019-2020学年上学期期末考试高二数学试题一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直角三角形绕着它的一条直角边旋转而成的几何体是( ) A . 圆锥 B .圆柱 C .圆台 D .球2.抛物线2x y =的准线方程是( ) A .21-=y B .41-=y C .41=y D .21=y 3.直线0433=++y x 的倾斜角大小是( ) A .6π-B . 3πC . 65πD . 32π 4.已知平面α与两条直线m l ,,α⊥l ,则“l m //”是“α⊥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要 5.两条异面直线在同一个平面上的射影不可能是( ) A .两条平行直线 B .两条相交的直线 C. 一条直线与直线外一个点 D . 一条直线6.直线042=-+by ax 被圆012422=+-++y x y x 截得的弦长为4,则22b a +的最小值是( )A . 3B .3 C. 2 D .27.一个结晶体的形状是平行六面体1111ABCD A B C D -,以A 顶点为端点的三条棱长均是1,且它们彼此的夹角都是3π,则对角线1AC 的长度是( ) A .3 B .2 C. 5 D .68.已知21,F F 分别是双曲线22221x y a b -=(0,0)a b >>的左、右焦点,若双曲线右支上存在点22221x y a b-=(0,0)a b >>,使02160=∠AF F ,且线段1AF 的中点在y 轴上,则双曲线的离心率是( )A .332 B .3 C. 334 D .32 9.已知直线)(01sin cos :R a y x l ∈=-+αα与圆4)5()2(22=-+-y x 相切,则满足条件的直线l 有( )条A . 1B .2 C. 3 D .410.如图,正方体1111ABCD A B C D -的棱长为1,F E ,分别为线段111,CC B A上两个动点且23=EF ,则下列结论中正确的是( ) A .存在某个位置F E ,,使DF BE ⊥ B .存在某个位置F E ,,使//EF 平面11BCD A C.三棱锥BEF B -1的体积为定值 D .AEF ∆的面积与BEF ∆的面积相等二、填空题(本大题共7小题,其中11-14题每空3分,15-17题每空4分,共36分,将答案填在答题纸上)11.双曲线1322=-y x 的焦距是 ;渐近线方程是 .12.某三棱锥的三视图如图所示,则该三棱锥的体积为 ;最长边的大小是 .13.长方体1111ABCD A B C D -中,1==AD AB ,21=AA ,则异面直线1AA 与1BD 所成角的大小是 ;1BD 与平面11A ADD 所成角的大小是 .14.点P 是抛物线y x 42=上任意一点,则点P 到直线2-=x y 距离的最小值是 ;距离最小时点P 的坐标是 .15.已知向量)0,1,1(=a ,)2,0,1(-=b ,)2,1,(-=x c ,若c b a ,,是共面向量,则=x . 16.矩形ABCD 与ABEF 所在平面相互垂直,AB AF AD 3==,现将ACD ∆绕着直线AC 旋转一周,则在旋转过程中,直线AD 与BE 所成角的取值范围是 .17. 若椭圆)15(1151022>=-++t t y t x 与双曲线191622=-y x 在第一象限内有交点A ,且双曲线左、右焦点分别是21,F F ,021120=∠A F F ,点P 是椭圆上任意一点,则21F PF ∆面积的最大值是 .三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18. 已知直线012:=+-y ax l 与圆03222=--+x y x C :相交于B A ,两个点. (1)求圆C 的圆心与半径; (2)若32||=AB ,求实数a 的值.19. 如图,三棱柱111C B A ABC -中,090=∠ABC ,21===AA BC AB ,⊥1AA 平面ABC ,F E ,分别是111,C A BB 的中点.(1)求证:CE AF ⊥;(2)求平面AEF 与平面ABC 所成锐二面角的余弦值.20.平面上的动点),(y x P 到定点)0,1(F 的距离与到直线1-=x 的距离相等. (1)求点P 的轨迹方程C ;(2)过点F 作直线l 与点P 的轨迹交于B A ,两个不同的点,若3=,求直线l 的方程.21. 如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,5=AB ,7=BC ,8==PA AC ,32π=∠PAC ,G 是ABC ∆重心,E 是边PC 上点,且PC PE λ=.(1)当31=λ时,求证://EG 平面PAB ;(2)若PC 与平面ABE 所成角的正弦值为552时,求λ的值.22.如图,已知椭圆E :22221(0)x y a b a b+=>>的离心率为22,)1,2(P 是椭圆E 上一点。
2019-2020学年人教A版浙江省杭州市高三第一学期期末数学试卷 含解析

2019-2020学年高三第一学期期末数学试卷一、选择题1.设集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1} 2.双曲线的离心率等于()A.B.C.D.3.已知非零向量,,则“•>0”是“向量,夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.若实数x,y满足不等式组,则()A.y≥1 B.x≥2 C.x+2y≥0 D.2x﹣y+1≥0 5.设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1 B.2 C.3 D.46.已知随机变量ξ的取值为i(i=0,1,2).若,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.7.下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.8.若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数9.已知椭圆(a>b>0)的左右焦点分别为F1,F2,抛物线y2=2px(p>0)的焦点为F2.设两曲线的一个交点为P,若,则椭圆的离心率为()A.B.C.D.10.已知非常数数列{a n}满足(n∈N*,α,β为非零常数).若α+β≠0,则()A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列二、填空题11.设复数z满足(1+i)•z=2i(i为虚数单位),则z=,|z|=.12.已知二项式的展开式中含x2的项的系数为15,则a=,展开式中各项系数和等于.13.在△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,则=;若AD =AC=1,则BC=.14.已知函数,则f[f(2019)]=;若关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,则实数a的取值范围是.15.杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有种不同的选拔志愿者的方案.(用数字作答)16.已知函数f(x)=x3﹣9x,g(x)=3x2+a(a∈R).若方程f(x)=g(x)有三个不同的实数解x1,x2,x3,且它们可以构成等差数列,则a=.17.在平面凸四边形ABCD中,AB=2,点M,N分别是边AD,BC的中点,且,若,则=.三、解答题18.已知函数(x∈R).(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.19.已知函数f(x)=x2+k|x﹣1|﹣2.(1)当k=1时,求函数f(x)的单调递增区间.(2)若k≤﹣2,试判断方程f(x)=﹣1的根的个数.20.如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.21.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.参考答案一、选择题1.设集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1} 【分析】化简集合B,根据交集的定义写出A∩B.解:集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},则A∩B={x|2<x<3}.故选:B.2.双曲线的离心率等于()A.B.C.D.【分析】由双曲线=1可得a2=4,b2=1,可得a=2,c=,利用离心率计算公式即可得出.解:由双曲线=1可得a2=4,b2=1,∴a=2,c==.∴双曲线的离心率e==.故选:A.3.已知非零向量,,则“•>0”是“向量,夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,即可判断出结论.解:与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,可能同向共线.因此“”是“向量与夹角为锐角”的必要不充分条件.故选:B.4.若实数x,y满足不等式组,则()A.y≥1 B.x≥2 C.x+2y≥0 D.2x﹣y+1≥0 【分析】作出不等式组对应的平面区域,结合图象即可求解.解:作出不等式组对应的平面区域如图:;由图可得A,B均不成立;对于C:因为直线x+2y=0过平面区域,红线所表,故函数值有正有负,不成立.故只有答案D成立.故选:D.5.设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1 B.2 C.3 D.4【分析】根据e x•e y=(e x)y,可得x+y=xy,再利用基本不等式可得,从而得到,然后确定当x+y取得最小值时x的值即可.解:∵正实数x,y满足e x•e y=(e x)y,∴x+y=xy,又∵,∴,∴xy≥4,∴x+y≥4,当且仅当x=y=2时取等号,∴当x+y取得最小值时,x=2.故选:B.6.已知随机变量ξ的取值为i(i=0,1,2).若,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.【分析】推导出P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=从而P(ξ=1)=,P(ξ=2)=,由此推导出P(ξ=1)>D(ξ).解:∵随机变量ξ的取值为i(i=0,1,2).,E(ξ)=1,∴P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=,∴P(ξ=1)=,P(ξ=2)=,∴D(ξ)=+=.∴P(ξ=1)>D(ξ).故选:C.7.下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.【分析】根据题意,分a=0、a>0和a<0三种情况讨论,分析函数f(x)的定义域、奇偶性以及单调性,综合即可得答案.解:根据题意,函数f(x)=x a(2x+2﹣x)(a∈Z),当a=0,f(x)=(e x+e﹣x),(x≠0)其定义域为{x|x≠0},f(x)为偶函数,不经过原点且在第一象限为增函数,A选项符合;当a为正整数时,f(x)=x a(e x+e﹣x),其定义域为R,图象经过原点,没有选项符合;当a为负整数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},其导数f′(x)=ax a ﹣1(e x+e﹣x)+x a(e x﹣e﹣x),当x>0时,f′(x)=x a﹣1[a(e x+e﹣x)+x(e x﹣e﹣x)]=x a﹣1[(a+x)e x+(a﹣x)e﹣x],则f′(x)先负后正,故f(x)不经过原点且在第一象限先减后增,BD符合;故选:C.8.若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数【分析】举例说明A,B,C错误;利用函数奇偶性的定义证明D正确.解:令f(x)=sin x,g(x)=2x,函数sin2x是周期函数,但y=g(x)不是周期函数,故A错误;令f(x)=x2+1,g(x)=2x,则f(g(x))=4x2+1为偶函数,但y=g(x)不是偶函数,故B错误;令f(x)=x,g(x)=x3,y=f(x),y=g(x)均为R上的单调递增函数,但y=f (x)•g(x)=x4在R上不单调,故C错误;由y=f(x),y=g(x)均为奇函数,则f(﹣x)=﹣f(x),g(﹣x)=﹣g(x),且两函数定义域均关于原点对称,则f(g(﹣x))=f(﹣g(x))=﹣f(g(x)),且定义域关于原点对称,函数y =f(g(x))为奇函数,故D正确.故选:D.9.已知椭圆(a>b>0)的左右焦点分别为F1,F2,抛物线y2=2px(p>0)的焦点为F2.设两曲线的一个交点为P,若,则椭圆的离心率为()A.B.C.D.【分析】设P(x0,y0),由,p=2c,可得x0=,由椭圆、抛物线焦半径公式可得a﹣ex0=x,整理可得:a﹣e=⇒e=即可.解:设P(x0,y0),,.∵,则2c(c﹣x0)=…①,∵抛物线y2=2px(p>0)的焦点为F2.∴p=2c…②,由①②可得x0=,由椭圆、抛物线焦半径公式可得a﹣ex0=x.整理可得:a﹣e=⇒2e2+5e﹣3=0.解得e=(负值舍).故选:A.10.已知非常数数列{a n}满足(n∈N*,α,β为非零常数).若α+β≠0,则()A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列【分析】本题先将递推式进行变形,然后令t=,根据题意有常数t≠0,且t≠1.将递推式通过换元法简化为a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=(t ﹣1)(a n+1﹣a n).根据此时逐步递推可得a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).根据题意有a2﹣a1≠0,则当t﹣1=1,即t=2,即=2,即α+2β=0时,可得到数列{a n}是一个等差数列.由此可得正确选项.解:由题意,得=a n+1+a n.令t=,则=1﹣t,∵α,β为非零常数且α+β≠0,∴t,1﹣t均为非零常数,∴常数t≠0,且t≠1.故a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=ta n+1﹣a n+1+(1﹣t)a n=(t﹣1)(a n+1﹣a n).∵常数t≠0,且t≠1.∴t﹣1≠﹣1,且t﹣1≠0.∴a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).∵数列{a n}是非常数数列,∴a2﹣a1≠0,则当t﹣1=1,即t=2,即=2,即α+2β=0时,a n+1﹣a n=a n﹣a n﹣1=a n﹣1﹣a n﹣2=…=a2﹣a1.此时数列{a n}很明显是一个等差数列.∴存在α,β,只要满足α,β为非零,且α+2β=0时,对任意a1,a2,都有数列{a n}为等差数列.故选:B.二、填空题:单空题每题4分,多空题每题6分,共36分11.设复数z满足(1+i)•z=2i(i为虚数单位),则z=1+i,|z|=.【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.解:由(1+i)•z=2i,得z=,∴|z|=.故答案为:1+i;.12.已知二项式的展开式中含x2的项的系数为15,则a= 1 ,展开式中各项系数和等于64 .【分析】由题意利用二项展开式的通项公式,求出a的值,再令x=1,可得展开式中各项系数和.解:二项式的展开式的通项公式为T r+1=•a r•x6﹣2r,令6﹣2r=2 求得r=2,故展开式中含x2的项的系数为•a2=15,则a=1.再令x=1,可得展开式中各项系数和等于(1+1)6=64,故答案为:1;64.13.在△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,则= 2 ;若AD=AC=1,则BC=.【分析】①根据三角形角平分线定理和正弦定理,即可求出的值;②由余弦定理列出方程,即可求得BD、CD和BC的值.解:①如图所示,△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,所以c=2b,所以===2;②由AD=AC=1,所以AB=2AC=2,设DC=x,则BD=2x,由余弦定理得cos∠BAD===,cos∠CAD===,又∠BAD=∠CAD,所以=,解得x=;所以BC=3x=.故答案为:2,.14.已知函数,则f[f(2019)]=0 ;若关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,则实数a的取值范围是[﹣1,] .【分析】推导出f(2019)=cos2019π=cosπ=﹣1,从而f[f(2019)]=f(﹣1)=1﹣(﹣1)2=0.作出函数的图象,结合图形,能求出实数a的取值范围.解:∵函数,∴f(2019)=cos2019π=cosπ=﹣1,f[f(2019)]=f(﹣1)=1﹣(﹣1)2=0.作出函数的图象,如下图:设f(x)与x轴从左到右的两个交点分别为A(﹣1,0),B(,0),f(x+a)与f(x)的图象是平移关系,∵关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,∴结合图形,得实数a的取值范围是(﹣1,].故答案为:0,(﹣1,].15.杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有21 种不同的选拔志愿者的方案.(用数字作答)【分析】由题意可以分为四类,每一类分别求解,再根据分类计数原理可得.解:若甲,乙都参加,则甲只能参加C项目,乙只能参见A项目,B项目有3种方法,若甲参加,乙不参加,则甲只能参加C项目,A,B项目,有A32=6种方法,若甲参加,乙不参加,则乙只能参加A项目,B,C项目,有A32=6种方法,若甲不参加,乙不参加,有A33=6种方法,根据分类计数原理,共有3+6+6+6=21种.故答案为:21.16.已知函数f(x)=x3﹣9x,g(x)=3x2+a(a∈R).若方程f(x)=g(x)有三个不同的实数解x1,x2,x3,且它们可以构成等差数列,则a=﹣11 .【分析】问题等价为函数h(x)=x3﹣3x2﹣9x与常函数y=a由三个不同的实数根,依题意,函数h(x)关于(x2,h(x2))中心对称,而利用三次函数的性质可求得x2=1,进而求得a的值.解:方程f(x)=g(x)即为x3﹣3x2﹣9x=a,依题意,函数h(x)=x3﹣3x2﹣9x与常函数y=a由三个不同的实数根x1,x2,x3,不妨设x1<x2<x3,由x1,x2,x3构成等差数列可知,函数h(x)关于(x2,h(x2))中心对称,而三次函数的对称中心点就是二阶导函数的零点,且h′(x)=3x2﹣6x﹣9,h''(x)=6x﹣6,令h''(x)=6x﹣6=0,解得x=1,即x2=1,故函数h(x)的对称中心即为(1,﹣11),则a=﹣11.故答案为:﹣11.17.在平面凸四边形ABCD中,AB=2,点M,N分别是边AD,BC的中点,且,若,则=﹣2 .【分析】取BD的中点O,连接OM,ON,运用向量的中点表示和数量积的性质,以及加减运算,计算可得所求值.解:取BD的中点O,连接OM,ON,可得,平方可得==,即有,,即有•()=()•()=()=(4﹣)=,解得,所以==,故答案为:﹣2.三、解答题:5小题,共74分18.已知函数(x∈R).(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.【分析】(1)由题意利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性,得出结论.(2)由题意利用正弦函数的定义域和值域,得出结论.解:(1)函数=sin2x﹣=sin2x ﹣cos2x+sin x cos x=sin2x﹣cos2x=sin(2x﹣),∴f(x)的最小正周期为=π.(2)在区间上,2x﹣∈[﹣,],故当2x﹣=﹣时,函数f(x)取得最小值为﹣,当2x﹣=时,函数f(x)取得最大值为,故f(x)的值域为[﹣,].19.已知函数f(x)=x2+k|x﹣1|﹣2.(1)当k=1时,求函数f(x)的单调递增区间.(2)若k≤﹣2,试判断方程f(x)=﹣1的根的个数.【分析】(1)写出k=1时的函数解析式,分别讨论各段的单调增区间即可得f(x)的单调增区间;(2)解出各段上函数的解析式,再结合k的取值范围得到方程根的个数.解:(1)k=1时,f(x)=x2+|x﹣1|﹣2=,当x≥1时,f(x)=(x+)2﹣,此时函数在[1,+∞)上单调递增;当x<1时,f(x)=(x﹣)2﹣,此时函数在(,1)上单调递增,综上函数f(x)的单调递增区间是(,+∞);(2)当x≥1时,则x2+k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1+k)=0,即x=﹣1﹣k,或x=1;当x<1时,则x2﹣k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1﹣k)=0,即x=k﹣1,故当k<﹣2,﹣1﹣k>1,k﹣1<1,则方程有3个不等实数根;当k=﹣2时,﹣1﹣k=1,k﹣1=﹣3,则方程有2个不等实数根.20.如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【分析】(1)利用面积可得bc=8,利用,可知C、P、D三点共线,即可求出m的值;(2)由(1)可表示出||,利用机泵不等式可得最小值.解:(1)设||=c,||=b,所以S△ABC=bc sin=2,解得bc=8,由=m+=m+,且C,P,D三点共线,所以m+=1,解得m=;(2)由(1)可知,所以||2=()2=因为=bc cos=﹣4,所以||2=≥2•﹣=,故||≥,当且仅当b=2,c=时取得等号,综上||的最小值为.21.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.【分析】(1)由题意得,,代入等差数列的通项公式即可求得首项与公差,则等差数列的通项公式与前n项和可求;(2)由,结合0<<1恒成立,即可得到c n<<=,结合等差数列的前n项和公式即可证明.【解答】(1)解:由题意得,,即,得a1=d(d ≠0),由a6=12,得a1=d=2.∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n,,由a1b1=a2b2=1,得,,∴;(2)证明:∵,由0<<1恒成立,∴c n<<=,∴c1+c2+…+c n<.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.【分析】(1)求出导数,分类讨论a的正负即可;(2)表示出g(x)=2f(x)+3﹣x2﹣a2,求出其导数,构造函数,再利用导数判断出g (x)单调区间,进而求出a的取值范围解:(1)f′(x)=e x+a,①当a≥0时,f′(x)>0,则f(x)在R上单调递增,不满足题意;②当a<0时,令f′(x)=0,解得x=ln(﹣a),则f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,要使f(x)有两个零点,只需f(ln (﹣a))<0,解得a<﹣e;(2)令g(x)=2f(x)+3﹣x2﹣a2=2e x﹣(x﹣a)2+3,x≥0,则g′(x)=2(e x﹣x+a),又令h(x)=2(e x﹣x+a),则h′(x)=2(e x﹣1)≥0,所以h(x)在[0,+∞)上单调递增,且h(0)=2(a+1),①当a≥﹣1时,g′(x)≥0恒成立,即函数g(x)在[0,+∞)上单调递增,从而必须满足g(0)=5﹣a2≥0,解得﹣≤a≤,又因为a≥﹣1,所以﹣1≤a≤;②当a<﹣1时,则存在x0>0,使h(x0)=0且x∈(0,x0)时,h(x)<0,即g′(x)<0,即g(x)单调递减,x∈(x0,+∞)时,h(x)>0,即g′(x)>0,即g(x)单调递增,所以g(x)最小值为g(x0)=≥0,又h(x0)=2()=0,从而≥0,解得0<x0≤ln3,由=x0﹣a,则a=x0﹣,令M(x)=x﹣e x,0<x≤ln3,则M′(x)=1﹣e x<0,所以M(x)在(0,ln3上单调递减,则M(x)≥M(ln3)=ln3﹣3,又M(x)<M(0)=﹣1,故ln3﹣3≤a<﹣1,综上,ln3﹣3≤a≤.。
浙江省杭州学军中学高二上学期末考试数学含答案

杭州学军中学2018学年第一学期期末考试高二数学试卷参考公式:球的体积公式:V =34πR 3其中R 表示球的半径一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆22(1)3x y -+=的圆心坐标和半径分别是()A.(1,0),3- B.(1,0),3C.(1,0),3- D.(1,0),32.在空间中,设α,β表示平面,m ,n 表示直线.则下列命题正确的是()A.若m ∥n ,n ⊥α,则m ⊥αB.若α⊥β,m ⊂α,则m ⊥βC.若m 上有无数个点不在α内,则m ∥αD.若m ∥α,那么m 与α内的任何直线平行3.已知b a ,为实数,则“a >b ”是“a 1<b1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为()A .6B .32C .12D .625.曲线C :y y x 22--=与直线0:=--m y x l 有两个交点,则实数m 的取值范围()22.221.212.2112.≤≤--≤<--+<≤+<<--m D m C m B m A 6.一个水平放置的一个的正三棱锥,其底面是边长为6的正三角形、侧棱长均为5,其正视图,俯视图如图所示,则其侧视图()A.形状是等腰三角形,面积为133 B.形状是等腰三角形,面积为2393C.不是等腰三角形,面积为133 D.不是等腰三角形,面积为23937.已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则D 到平面ABC 的距离等于()A.32B .33C .36D .18.已知直线)(2sin cos :R y x l ∈=⋅+⋅ααα,圆0sin 2cos 2:22=⋅+⋅++y x y x C θθ)(R ∈θ,则直线l 与圆C 的位置关系一定不是()A.相交B.相切C.相离D.无法确定(第4题)(第6题)9.在正方体ABCD ﹣A 1B 1C 1D 1中,点M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为3π,则点P 的轨迹是()A .圆的一部分B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分10.已知在△ABC 中,2π=∠ACB ,AB=2BC,现将△ABC 绕BC 所在直线旋转到△PBC,设二面角P﹣BC﹣A 大小为θ,PB 与平面ABC 所成角为α,PC 与平面PAB 所成角为β,若0<θ<π,则())33,0(sin ],3,0(.∈∈βπαA ]33,0(sin ],3,0(.∈∈βπαB )21,0(sin ],3,0(.∈∈βπαC 1.(0,],sin (0,)62D παβ∈∈二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.双曲线x 24-y 23=1的渐近线方程是;实轴长为___________.12.已知直线l :mx +y -2m -1=0,圆C :x 2+y 2-2x -4y =0,直线恒过定点;当直线l 被圆C 所截得的弦长最短时,实数m =.13.已知抛物线y 2=mx 的焦点坐标F 为(2,0),则m 的值为;若点P 在抛物线上,点A (5,3),则|PA |+|PF |的最小值为.14.如图,在三棱锥S—ABC 中,若底面ABC 是正三角形,侧棱长SA=SB=SC=3M 、N 分别为棱SC 、BC 的中点,并且AM ⊥MN ,则异面直线MN 与AC 所成角为_____;三棱锥S—ABC 的外接球的体积为.15.已知两圆02:221=-+x y x C ,4)1(:222=++y x C 的圆心分别为21,C C ,P 为一个动点,且22||||21=+PC PC ,则动点P 的轨迹方程为_______________.16.设双曲线2222:1(0,0)x y C a b a b-=>>的顶点为12,A A ,P 为双曲线上一点,直线1PA 交双曲线C 的一条渐近线于M 点,直线2A M 和2A P 的斜率分别为12,k k ,若21A M PA ⊥且1240k k +=,则双曲线C 离心率17.已知点P 是正方体1111ABCD A B C D -表面上一动点,且满足||2||PA PB =,设1PD 与平面ABCD 所成的角为θ,则θ的最大值是(第14题)(第9题)三、解答题(本大题共5小题,共74分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高二第一学期期末数学试卷一、选择题1.经过点A(1,3),斜率为2的直线方程是()A.2x﹣y﹣1=0 B.2x+y+1=0 C.2x+y﹣1=0 D.2x﹣y+1=0 2.椭圆的焦距是()A.B.C.1 D.23.已知直线m,n和平面α,β,γ,下列条件中能推出α∥β的是()A.m⊂α,n⊂β,m∥n B.m⊥α,m⊥βC.m⊂α,n⊂α,m∥β,n∥βD.α⊥γ,β⊥γ4.圆x2+y2﹣2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切5.已知a、b是异面直线,P是a、b外的一点,则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行6.如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为()A.B.C.D.7.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0] B.[﹣∞,﹣]∪[0,+∞]C.[﹣,] D.[﹣,0]8.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0 B.C.D.9.已知两点,到直线l的距离均等于a,且这样的直线可作4条,则a的取值范围是()A.a≥1 B.0<a<1 C.0<a≤1 D.0<a<210.如图,正四面体ABCD中,P、Q、R在棱AB、AD、AC上,且AQ=QD,==,分别记二面角A﹣PQ﹣R,A﹣PR﹣Q,A﹣QR﹣P的平面角为α、β、γ,则()A.β<γ<αB.γ<β<αC.α>γ>βD.α>β>γ二、填空题11.若圆x2+y2+2ax+y﹣1=0的圆心在直线y=x上,则a的值是,半径为.12.若直线l1:x+my+6=0与l2:(m﹣2)x+3y+2m=0互相平行,则m的值为,它们之间的距离为.13.某几何体的三视图如图所示,则该几何体的体积为,外接球的表面积为.14.已知双曲线与椭圆共焦点,则m的值为,设F为双曲线C的一个焦点,P是C上任意一点,则|PF|的取值范围是.15.异面直线a,b所成角为,过空间一点O的直线l与直线a,b所成角均为θ,若这样的直线l有且只有两条,则θ的取值范围为.16.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P ﹣ABC中,PA⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC 于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.17.已知椭圆上的三点A,B,C,斜率为负数的直线BC与y轴交于M,若原点O是△ABC的重心,且△BMA与△CMO的面积之比为,则直线BC的斜率为.三、解答题18.已知x>0,y>0,且2x+5y=20.(1)求xy的最大值;(2)求的最小值.19.如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点,E为BC的中点.(1)求证:BG∥平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理由.20.如图,已知位于y轴左侧的圆C与y轴相切于点(0,2)且被x轴分成的两段圆弧长之比为1:2,直线l与圆C相交于M,N两点,且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.21.如图,在四棱锥P﹣ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=,CD=2AB=2,∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)求直线PD与平面PBC所成的角的正弦值.22.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且过点(,),点P在第四象限,A为左顶点,B为上顶点,PA交y轴于点C,PB交x轴于点D.(1)求椭圆C的标准方程;(2)求△PCD面积的最大值.参考答案一、选择题1.经过点A(1,3),斜率为2的直线方程是()A.2x﹣y﹣1=0 B.2x+y+1=0 C.2x+y﹣1=0 D.2x﹣y+1=0 【分析】直接代入点斜式方程即可.解:由点斜式直接带入:y﹣3=2(x﹣1),即2x﹣y+1=0,故选:D.2.椭圆的焦距是()A.B.C.1 D.2【分析】根据题意,由椭圆的标准方程可得a、b的值,计算可得c的值,进而由焦距定义计算可得答案.解:根据题意,椭圆的标准方程为:,则a2=5,b2=4,则c==1,则其焦距2c=2;故选:D.3.已知直线m,n和平面α,β,γ,下列条件中能推出α∥β的是()A.m⊂α,n⊂β,m∥n B.m⊥α,m⊥βC.m⊂α,n⊂α,m∥β,n∥βD.α⊥γ,β⊥γ【分析】利用平面平行的判定定理,对四个选项分别进行判断,能够得到正确答案.解:由直线m和n,若m⊂α,n⊂β,n∥m,则α与β相交或平行,故A不正确;若m⊥α,m⊥β,则垂直于同一条直线的两个平面互相平行,即α∥β,故B正确;若m⊂α,n⊂α,m∥β,n∥β,则α与β相交或平行,故C不正确;若α⊥γ,β⊥γ,则由平面与平面平行的判定知,故D不正确.故选:B.4.圆x2+y2﹣2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切【分析】把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.解:把圆x2+y2﹣2x=0与圆x2+y2+4y=0分别化为标准方程得:(x﹣1)2+y2=1,x2+(y+2)2=4,故圆心坐标分别为(1,0)和(0,﹣2),半径分别为R=2和r=1,∵圆心之间的距离d=,R+r=3,R﹣r=1,∴R﹣r<d<R+r,则两圆的位置关系是相交.故选:C.5.已知a、b是异面直线,P是a、b外的一点,则下列结论中正确的是()A.过P有且只有一条直线与a、b都垂直B.过P有且只有一条直线与a、b都平行C.过P有且只有一个平面与a、b都垂直D.过P有且只有一个平面与a、b都平行【分析】对于A,取直线a上任意一点,作b的平行线c,则a,c确定平面,利用过一点作已知平面的垂线,有且只有一条,可得结论;对于B,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的直线不存在;对于C,根据a、b是异面直线,可得过P不存在平面与a、b都垂直;对于D,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的平面不存在.解:对于A,取直线a上任意一点,作b的平行线c,则a,c确定平面,过P作平面的垂线有且只有一条,所以过P有且只有一条直线与a、b都垂直,故A正确;对于B,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的直线不存在,故B不正确;对于C,∵a、b是异面直线,∴过P不存在平面与a、b都垂直,故C不正确;对于D,若P与a或b确定的平面,与b或a平行,此时与a、b都平行的平面不存在,故D不正确;故选:A.6.如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为()A.B.C.D.【分析】设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,由余弦定理可得OC,cos∠COB,求得tan∠COB,即为渐近线的斜率,由a,b,c的关系和离心率公式,即可得到.解:设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,在三角形OBC中,cos B=﹣,∴OC2=OB2+BC2﹣2OB•BC•cos B=1+4﹣2×1×2×(﹣)=7,∴OC=,则cos∠COB==,可得sin∠COB==,tan∠COB==,可得双曲线的渐近线的斜率为,不妨设双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,可得=,可得e=====.故选:D.7.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0] B.[﹣∞,﹣]∪[0,+∞]C.[﹣,] D.[﹣,0]【分析】由弦长公式得,当圆心到直线的距离等于1时,弦长等于2,故当弦长大于或等于2时,圆心到直线的距离小于或等于1,解此不等式求出k的取值范围.解:设圆心(3,2)到直线y=kx+3的距离为d,由弦长公式得,MN=2≥2,故d≤1,即≤1,化简得 8k(k+)≤0,∴﹣≤k≤0,故k的取值范围是[﹣,0].故选:A.8.正四面体ABCD,CD在平面α内,点E是线段AC的中点,在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是()A.0 B.C.D.【分析】由正四面体ABCD,可得所有棱长都相等.①点E是线段AC的中点,BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.利用反证法可以证明.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.设直线BE与平面ACD所成的角为θ,可得cosθ=.于是可得在该四面体绕CD旋转的过程中,可得直线BE 与平面α所成角为,.解:由正四面体ABCD,可得所有棱长都相等.①∵点E是线段AC的中点,∴BE⊥AC.在该四面体绕CD旋转的过程中,直线BE与平面α所成角不可能是.反证法:若直线BE与平面α所成角是,则BE⊥平面α.则在某一过程必有BE⊥CD.事实上,在该四面体绕CD旋转的过程中,BE与CD是不可能垂直的,因此假设错位,于是直线BE与平面α所成角不可能是90°.②在该四面体绕CD旋转的过程中,当BE∥α时,可得直线BE与平面α所成角为0.③如图所示的正四面体B﹣ABC.作BO⊥平面ACD,垂足为O.则E,O,D三点在同一条直线上.设直线BE与平面ACD所成的角为θ,可得cosθ=.∴θ>.于是可得在该四面体绕CD旋转的过程中,可得直线BE与平面α所成角为,.综上可得:直线BE与平面α所成角不可能是.故选:D.9.已知两点,到直线l的距离均等于a,且这样的直线可作4条,则a的取值范围是()A.a≥1 B.0<a<1 C.0<a≤1 D.0<a<2【分析】(1)由题意做出简图,分别讨论A,B在同一侧和两侧两种情况,只需a小于A,B两点距离的一半,再由两点间的距离公式即可求出a的取值范围.解:由题意如图所示:因为若A,B在直线的同一侧,可做两条直线,所以若有这样的直线又4条,则当A,B两点分别在直线的两侧时,还应该有两条,所以2a小于A,B的距离,因为|AB|==2,所以0<2a<2,所以:0<a<1,故选:B.10.如图,正四面体ABCD中,P、Q、R在棱AB、AD、AC上,且AQ=QD,==,分别记二面角A﹣PQ﹣R,A﹣PR﹣Q,A﹣QR﹣P的平面角为α、β、γ,则()A.β<γ<αB.γ<β<αC.α>γ>βD.α>β>γ【分析】由四面体为正四面体,结合AQ=QD,==,通过图形直观分析得答案.解:观察可知,α>β>γ,α为钝角,β,γ均为锐角,β平缓一点,γ陡急一点,∴,则α>β>γ,故选:D.二、填空题:单空题每题4分,多空题每题6分11.若圆x2+y2+2ax+y﹣1=0的圆心在直线y=x上,则a的值是,半径为.【分析】根据题意,将圆的方程变形为标准方程的形式,求出圆的圆心以及半径,又由圆的圆心在直线y=x上,即可得a的值,据此可得答案.解:根据题意,圆的一般方程为x2+y2+2ax+y﹣1=0,则其标准方程为(x+a)2+(y+)2=a2+:其圆心为(﹣a,﹣),半径r=,若其圆心在直线y=x上,则有﹣a=﹣,即a=,其半径r==;故答案为:,12.若直线l1:x+my+6=0与l2:(m﹣2)x+3y+2m=0互相平行,则m的值为﹣1 ,它们之间的距离为.【分析】由m(m﹣2)﹣3=0,解得m.经过验证可得m.利用平行线之间的距离公式即可得出它们之间的距离.解:由m(m﹣2)﹣3=0,解得m=3或﹣1.经过验证:m=3时两条直线平行舍去.∴m=﹣1.直线l1:x+my+6=0与l2:(m﹣2)x+3y+2m=0分别化为:x﹣y+6=0,x﹣y+=0.∴它们之间的距离==.故答案为:﹣1,.13.某几何体的三视图如图所示,则该几何体的体积为24 ,外接球的表面积为41π.【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积,求出外接球的半径,即可求解外接球的表面积.解:由题意可知几何体是三棱柱,如图:是长方体的一半,所以几何体的体积为:=24;几何体的外接球,就是长方体的外接球,外接球的半径为:=.外接球的表面积为:=41π.故答案为:24;41π.14.已知双曲线与椭圆共焦点,则m的值为 3 ,设F为双曲线C的一个焦点,P是C上任意一点,则|PF|的取值范围是[1,+∞).【分析】由椭圆方程求得焦点坐标,再由双曲线中的隐含条件列式求得m值;求出|PF|的最小值,可得|PF|的取值范围.解:由椭圆,得c=,则其焦点坐标为(0,±2),∴双曲线的焦点坐标为(0,±2),∴1+m=4,得m=3;不妨设F为双曲线的上焦点F(0,2),则当P为双曲线的上顶点时,|PF|最小为1.∴|PF|的取值范围是[1,+∞).故答案为:3;[1,+∞).15.异面直线a,b所成角为,过空间一点O的直线l与直线a,b所成角均为θ,若这样的直线l有且只有两条,则θ的取值范围为(,).【分析】由最小角定理可得:θ的取值范围为,得解.解:由最小角定理可得:异面直线a,b所成角为,过空间一点O的直线l与直线a,b所成角均为θ,若这样的直线l有且只有两条,则θ的取值范围为:<θ,故答案为:(,).16.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P ﹣ABC中,PA⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC 于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.【分析】由已知可证AE⊥平面PBC,PC⊥平面AEF,可得△AEF、△PEF均为直角三角形,由已知得AF=,从而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE =EF时,取“=”,解得当AE=EF=时,△AEF的面积最大,即可求得tan∠BPC的值解:显然BC⊥平面PAB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC得PC⊥平面AEF,所以△AEF、△PEF均为直角三角形,由已知得AF=,而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE=EF时,取“=”,所以,当AE=EF=时,△AEF的面积最大,此时tan∠BPC===,17.已知椭圆上的三点A,B,C,斜率为负数的直线BC与y轴交于M,若原点O是△ABC的重心,且△BMA与△CMO的面积之比为,则直线BC的斜率为.【分析】设B(x1,y1),C(x2,y2)A(x3,y3),M(0,m),直线BC的方程为y=kx+m.由原点O是△ABC的重心,得△BMA与△CMO的高之比为3,结合△BMA与△CMO的面积之比为,得2BM=MC.可得2x1+x2=0,联立直线与椭圆方程,利用根与系数的关系得到36k2m2=1﹣m2+4k2,利用重心坐标公式求得A的坐标,代入椭圆方程即可求解直线BC的斜率.解:设B(x1,y1),C(x2,y2)A(x3,y3),M(0,m),直线BC的方程为y=kx+m.∵原点O是△ABC的重心,∴△BMA与△CMO的高之比为3,又△BMA与△CMO的面积之比为,则2BM=MC.即2=,得2x1+x2=0,…①联立,得(4k2+1)x2+8mkx+4m2﹣4=0.则x1+x2=,x1x2=,…②由①②整理可得:36k2m2=1﹣m2+4k2,…③∵原点O是△ABC的重心,∴,y3=﹣(y2+y1)=﹣[k(x1+x2)+2m]=﹣.∵,∴()2+4()2=4,即1+4k2=4m2,…④.由③④可得k2=,∵k<0.∴k=﹣.故答案为:.三、解答题:5小题,共74分18.已知x>0,y>0,且2x+5y=20.(1)求xy的最大值;(2)求的最小值.【分析】(1)由x>0,y>0,且2x+5y=20.利用基本本不等式的性质即可得出xy的最大值;(2)由x>0,y>0,且2x+5y=20.可得=(2x+5y)•()=(7++),利用基本本不等式的性质即可得出.解:(1)∵x>0,y>0,且2x+5y=20.∴20≥2,化为:xy≤10,当且仅当2x=5y=10时取等号.∴xy的最大值为10.(2)∵x>0,y>0,且2x+5y=20.∴=(2x+5y)•()=(7++)≥(7+2)=(7+2),当且仅当y=x,2x+5y=20取等号.∴的最小值为:(7+2).19.如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点,E为BC的中点.(1)求证:BG∥平面PDE;(2)求证:AD⊥PB;(3)在棱PC上是否存在一点F,使平面DEF⊥平面ABCD,若存在,确定点F的位置;若不存在,说明理由.【分析】(1)连接DE、PE,证明四边形BEDG是平行四边形,得出BG∥ED,即可证明BG∥平面PDE;(2)连接PG,证明PG⊥AD,再证BG⊥AD,得出AD⊥平面PGB,即可证明AD⊥PB;(3)F为PC边的中点时,平面DEF⊥平面ABCD,再证明即可.【解答】(1)证明:连接DE、PE,则DG∥BE,且DG=BE,所以四边形BEDG是平行四边形,所以BG∥ED,又BG⊄平面PDE,DE⊂平面PDE,所以BG∥平面PDE;(2)证明:连接PG,因为△PAD为正三角形,G为AD边的中点,所以PG⊥AD;又AG=AB,∠BAD=60°,所以BG=AB,所以∠BGA=90°,即BG⊥AD;又PG⊂平面PGB,BG⊂平面PGB,PG∩BG=G,所以AD⊥平面PGB,又PB⊂平面PGB,所以AD⊥PB;(3)解:当F为PC边的中点时,满足平面DEF⊥平面ABCD,证明如下:取PC的中点F,连接DE、EF、DF,在△PBC中,FE∥PB,在菱形ABCD中,EF∩DE=E,所以平面DEF∥平面PGB,因为BG⊥平面PAD,所以BG⊥PG,又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD,而PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.20.如图,已知位于y轴左侧的圆C与y轴相切于点(0,2)且被x轴分成的两段圆弧长之比为1:2,直线l与圆C相交于M,N两点,且以MN为直径的圆恰好经过坐标原点O.(1)求圆C的方程;(2)求直线OM的斜率k的取值范围.【分析】(1)依题意,容易求得半径r=4,圆心坐标为(﹣4,2),由此得到方程;(2)依题意,只需求出点N(或M)在劣弧PQ上运动时的直线ON(或OM)斜率,结合图象得解.解:(1)因为位于y轴左侧的圆C与y轴相切于点(0,2),所以圆心在直线y=2上,设圆C与x轴交于P,Q点,又因为被x轴分成的两段圆弧长之比为1:2,所以可得∠PCQ=,所以r=4,圆心C的坐标:(﹣4,2),所以圆C的方程:(x+4)2+(y﹣2)2=16;(2)依题意,只需求出点N(或M)在劣弧PQ上运动时的直线ON(或OM)斜率,设其直线方程为y=tx(t>0),此时有,解得;若点M在劣弧PQ上,则直线OM的斜率k=t,于是;若点N在劣弧上,则直线OM的斜率,于是;又当k=0时,点N为(0,2)也满足条件;综上所述,所求直线OM的斜率k的取值范围为.21.如图,在四棱锥P﹣ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=,CD=2AB=2,∠PAD=120°.(Ⅰ)求证:平面PAD⊥平面PCD;(Ⅱ)求直线PD与平面PBC所成的角的正弦值.【分析】(I)取CD的中点E,连接BE.可证四边形ABED是矩形,故而AB⊥AD,结合AB⊥PD得出AB⊥平面PAD,又AB∥CD得出CD⊥平面PAD,于是平面PAD⊥平面PCD;(II)以A为原点建立坐标系,求出和平面PBC的法向量,则直线PD与平面PBC 所成的角的正弦值为|cos<,>|.【解答】证明:(I)取CD的中点E,连接BE.∵BC=BD,E为CD中点,∴BE⊥CD,又∵AB∥CD,AB=CD=DE,∴四边形ABED是矩形,∴AB⊥AD,又AB⊥PA,PA⊂平面PAD,AD⊂平面PAD,PA∩AD=A,∴AB⊥平面PAD.∵AB∥CD,∴CD⊥平面BEF,又CD⊂平面PCD,∴平面BEF⊥平面PCD.∴平面PAD⊥平面PCD.(II)以A为原点,AB为x轴,AD为y轴,以平面ABCD过点A的垂线为z轴建立空间直角坐标角系A﹣xyz,如图所示:∵PB=BD=,AB=,AB⊥PA,AB⊥AD,∴PA=AD=2.∴P(0,﹣1,),D(0,2,0),B(,0,0),C(2,2,0),∴=(0,3,﹣),=(﹣,﹣1,),=(,2,0).设平面PBC的法向量=(x,y,z),则,∴,取x=,得=(,﹣1,),∴cos<,>===﹣.∴直线PD与平面PBC所成的角的正弦值为.22.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且过点(,),点P在第四象限,A为左顶点,B为上顶点,PA交y轴于点C,PB交x轴于点D.(1)求椭圆C的标准方程;(2)求△PCD面积的最大值.【分析】(1)利用椭圆的离心率求得,将(,)代入椭圆方程,即可求得a 和b的值.(2)设P(m,n),m>0,n>0,且.可得S===﹣=.设P处的切线为:x﹣2y+t=0,t<0.由⇒8y2﹣4ty+t2﹣4=0,△=﹣16t2+128=0⇒t=﹣2时.S△PCD取得最大值,解:(1)由已知得,⇒,点(,)代入+=1可得.代入点(,)解得b2=1,∴椭圆C的标准方程:.(2)可得A(﹣2,0),B(0,1).设P(m,n),m>0,n>0,且.PA:,PB:,可得C(0,),D().由可得x=.S===﹣=.设P处的切线为:x﹣2y+t=0,t<0.⇒8y2﹣4ty+t2﹣4=0,△=﹣16t2+128=0⇒t=﹣2.此时,方程组的解即点P(,﹣)时,S△PCD取得最大值,最大值为﹣1.。