2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷 -(含答案解析)

合集下载

2019-2020学年浙江省杭州高级中学高二(上)期中数学试卷

2019-2020学年浙江省杭州高级中学高二(上)期中数学试卷

2019-2020学年浙江省杭州高级中学高二(上)期中数学试卷试题数:22.满分:01.(单选题.4分)若直线l1:3x+my-2=0.l2:x+2y+8=0互相平行.则实数m的值为()A.-6B.6C. 32D. −322.(单选题.4分)若直线l的斜率为2.且在x轴上的截距为1.则直线l的方程为()A.y=2x+1B.y=2x-1C.y=2x+2D.y=2x-23.(单选题.4分)已知m.n为异面直线.直线l || m.则l与n()A.一定异面B.一定相交C.不可能相交D.不可能平行4.(单选题.4分)圆心为(1.1)且过原点的圆的标准方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=25.(单选题.4分)若直线l的倾斜角α满足0°≤α<150°.且α≠90°.则它的斜率k满足()<k≤0A.- √33B.k>- √33C.k≥0或k<- √3D.k≥0或k<- √336.(单选题.4分)已知圆柱的上、下底面的中心分别为O1.O2.过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形.则该圆柱的表面积为()A.12 √2 πB.12πC.8 √2 πD.10π 7.(单选题.4分)若x.y 满足约束条件 {x +y ≥1x −y ≥−12x −y ≤2.目标函数z=-ax+y 仅在点(1.0)处取得最小值.则实数a 的取值范围是( )A.(-∞.2)B.(-1.1)C.(-1.2)D.(-1.+∞)8.(单选题.4分)某几何体的三视图如图所示.则该几何体的体积为( )A. 13B. 23C. 16D. 129.(单选题.4分)过点P (3.0)作直线2x+(λ+1)y-2λ=0(λ∈R )的垂线.垂足为M.已知定点N (4.2).则当λ变化时.线段|MN|的长度取值范围是( )A. [0,√10+√5]B. [√10−√5,√10+√5]C. [√10,2√5]D. [√5,2√10]10.(单选题.4分)已知正四面体纸盒的俯视图如图所示.其中四边形ABCD 是边长为2的正方形.若在该正四面体纸盒内放一个正方体.使正方体可以在纸盒内任意转动.则正方体棱长的最大值是( )A. 23B. 13C. √2D. √311.(填空题.6分)已知直线l 过点A (3.1).B (2.0).则直线l 的倾斜角为___ .直线l 的方程为___ .12.(填空题.6分)已知直线l 1:ax+y-6=0与l 2:x+(a-2)y+a-1=0相交于点P.若l 1⊥l 2.则a=___ .此时点P 的坐标为___ .13.(填空题.6分)圆x 2+y 2+2y-3=0的半径为___ .若直线y=x+b 与圆x 2+y 2+2y-3=0交于两点.则b 的取值范围是___ .14.(填空题.6分)如图.在长方体ABCD-A 1B 1C 1D 1中.AA 1=1.AB=AD=2.E.F 分别是BC.DC 的中点.则异面直线A 1B 1与EF 所成角为___ ;AD 1与EF 所成角的余弦值为___ . 15.(填空题.4分)已知曲线y= √1−x 2 与直线x-7y+5=0交于A.B 两点.若直线OA.OB 的倾斜角分别为α、β.则cos (α-β)___16.(填空题.4分)已知M (x 0.y 0)到直线x+3y+2=0与直线3x+y+3=0的距离相等.且y 0≥3x 0+1.则 y0x 0 的最小值是___ . 17.(填空题.4分)已知正方体ABCD-A 1B 1C 1D 1的体积为8.点M 在线段BC 上(点M 异于B 、C 两点).点N 为线段CC 1的中点.若平面AMN 截正方体ABCD-A 1B 1C 1D 1所得的截面为五边形.则线段BM 长度的取值范围是___ .18.(问答题.0分)若实数x.y 满足约束条件 {x −y ≥0x +y +2≥0x −2≤0.(1)在平面直角坐标系中画出此约束条件所表示的平面区域;(2)若z=2x-y.求z 的最大值.19.(问答题.0分)已知数列{a n}满足a1=1.na n+1=2(n+1)a n.设b n= a n.n(1)求b1.b2.b3;(2)判断数列{b n}是否为等比数列.并说明理由;(3)求{a n}的通项公式.20.(问答题.0分)如图.在直三棱柱ABC-A1B1C1中.D为棱AC的中点.(1)求证:AB1 || 面BC1D;(2)若AB=AC=2.BC=1. AA1=√3 .求异面直线AB1与BC1所成角的余弦值.21.(问答题.0分)如图.圆M:(x-2)2+y2=1.点P(-1.t)为直线l:x=-1上一动点.过点P引圆M的两条切线.切点分别为A、B.(1)若t=1.求切线所在直线方程;(2)求|AB|的最小值;(3)若两条切线PA.PB与y轴分别交于S、T两点.求|ST|的最小值.22.(问答题.0分)如图.在平面直角坐标系xOy中.已知圆O:x2+y2=4.过点P(0.3).且斜率).为k的直线l与圆O交于不同的两点A.B.点Q(0,43(1)若直线l的斜率k=√2 .求线段AB的长度;(2)设直线QA.QB的斜率分别为k1.k2.求证:k1+k2为定值.并求出该定值;|MQ|.若存在.求出直线l的方程.若不(3)设线段AB的中点为M.是否存在直线l使|MO|= √63存在说明理由.2019-2020学年浙江省杭州高级中学高二(上)期中数学试卷参考答案与试题解析试题数:22.满分:01.(单选题.4分)若直线l1:3x+my-2=0.l2:x+2y+8=0互相平行.则实数m的值为()A.-6B.6C. 32D. −32【正确答案】:B【解析】:由题意利用两条直线平行的性质.求得m的值.【解答】:解:∵直线l1:3x+my-2=0.l2:x+2y+8=0互相平行.∴ 3 1 = m2≠ −28.∴m=6.故选:B.【点评】:本题主要考查两条直线平行的性质.属于基础题.2.(单选题.4分)若直线l的斜率为2.且在x轴上的截距为1.则直线l的方程为()A.y=2x+1B.y=2x-1C.y=2x+2D.y=2x-2【正确答案】:D【解析】:由题意利用点斜式求出直线l的方程.【解答】:解:∵直线l的斜率为2.且在x轴上的截距为1.则直线l的方程为y-0=2(x-1).即y=2x-2.故选:D.【点评】:本题主要考查用点斜式求直线的方程.属于基础题.3.(单选题.4分)已知m.n为异面直线.直线l || m.则l与n()A.一定异面B.一定相交C.不可能相交D.不可能平行【正确答案】:D【解析】:由已知结合空间中两直线的位置关系及平行公理得答案.【解答】:解:若m.n为异面直线.直线l || m.则l与n可能异面.也可能相交.不可能平行.若l与n平行.由平行公理可得.m与n平行.与m.n为异面直线矛盾.结合选项可知.D正确.故选:D.【点评】:本题考查空间中直线与直线位置关系的判定.考查空间想象能力与思维能力.是基础题.4.(单选题.4分)圆心为(1.1)且过原点的圆的标准方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2【正确答案】:D【解析】:利用两点间距离公式求出半径.由此能求出圆的方程.【解答】:解:由题意知圆半径r= √2 .∴圆的方程为(x-1)2+(y-1)2=2.故选:D.【点评】:本题考查圆的方程的求法.解题时要认真审题.注意圆的方程的求法.是基础题.5.(单选题.4分)若直线l的倾斜角α满足0°≤α<150°.且α≠90°.则它的斜率k满足()A.- √3<k≤03B.k>- √33C.k≥0或k<- √3D.k≥0或k<- √33【正确答案】:D【解析】:由直线的倾斜角的范围.得到正切值的范围.求解即可.【解答】:解:直线的倾斜角α满足0°≤α<150°.且α≠90°.由0≤k 或k <- √33 .故选:D .【点评】:本题考查倾斜角和斜率的关系.注意倾斜角的范围.正切函数在[0. π2 )、( π2 .π)上都是单调增函数.6.(单选题.4分)已知圆柱的上、下底面的中心分别为O 1.O 2.过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形.则该圆柱的表面积为( )A.12 √2 πB.12πC.8 √2 πD.10π【正确答案】:B【解析】:利用圆柱的截面是面积为8的正方形.求出圆柱的底面直径与高.然后求解圆柱的表面积.【解答】:解:设圆柱的底面直径为2R.则高为2R.圆柱的上、下底面的中心分别为O 1.O 2.过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形.可得:4R 2=8.解得R= √2 .则该圆柱的表面积为: π•(√2)2×2+2√2π×2√2 =12π.故选:B .【点评】:本题考查圆柱的表面积的求法.考查圆柱的结构特征.截面的性质.是基本知识的考查.7.(单选题.4分)若x.y 满足约束条件 {x +y ≥1x −y ≥−12x −y ≤2.目标函数z=-ax+y 仅在点(1.0)处取得最小值.则实数a 的取值范围是( )A.(-∞.2)B.(-1.1)C.(-1.2)D.(-1.+∞)【正确答案】:C【解析】:作出不等式对应的平面区域.利用线性规划的知识.确定目标取最优解的条件.即可求出a的取值范围.【解答】:解:作出不等式对应的平面区域.可行域为△ABC.由z=-ax+y可得y=ax+z.直线的斜率k=a∵k AC=2.k AB=-1若目标函数z=-ax+y仅在点A(1.0)处取得最小值.则有k AB<k<k AC即-1<a<2.即实数a的取值范围是(-1.2)故选:C.【点评】:本题考查了平面区域中线性规划中的应用问题.解题时利用平移直线法.属于中档题.8.(单选题.4分)某几何体的三视图如图所示.则该几何体的体积为()A. 13B. 23C. 16D. 12【正确答案】:C【解析】:首先把三视图转换为直观图.进一步求出几何体的体积.【解答】:解:根据几何体的三视图转换为几何体为:该几何体为三棱锥体.其中两条虚线分别表示下底的高和垂直底面的高.如图所示:故:V= 13×12×(12+12)×1×=16.故选:C.【点评】:本题考查的知识要点:三视图和直观图形之间的转换.几何体的体积公式.主要考查学生的运算能力和转换能力及思维能力.属于基础题.9.(单选题.4分)过点P(3.0)作直线2x+(λ+1)y-2λ=0(λ∈R)的垂线.垂足为M.已知定点N(4.2).则当λ变化时.线段|MN|的长度取值范围是()A. [0,√10+√5]B. [√10−√5,√10+√5]C. [√10,2√5]D. [√5,2√10]【正确答案】:B【解析】:根据题意.由直线2x+(λ+1)y-2λ=0的方程分析可得直线经过定点(-1.2).设Q (-1.2).分析可得M的轨迹是以PQ为直径的圆.易得圆的圆心与半径.结合点与圆的位置关系即可得答案.【解答】:解:根据题意.直线2x+(λ+1)y-2λ=0(λ∈R ).变形可得2x+y+λ(y-2)=0. 则有 {2x +y =0y −2=0 .解可得 {x =−1y =2 .即直线恒过定点(-1.2).设Q (-1.2).过点P (3.0)作直线2x+(λ+1)y-2λ=0(λ∈R )的垂线.垂足为M. 则M 的轨迹是以PQ 为直径的圆.其圆心为(1.1).半径r= 12 |PQ|= √5 . 其方程为(x-1)2+(y-1)2=5.已知定点N (4.2).则|NC|= √(4−1)2+(2−1)2 = √10 . 则有|NC|-r≤|MN|≤|NC|+r .即 √10 - √5 ≤|MN|≤ √10 + √5 . 故选:B .【点评】:本题考查直线与圆的位置关系.涉及恒过定点的直线方程.注意分析M 的轨迹.属于综合题.10.(单选题.4分)已知正四面体纸盒的俯视图如图所示.其中四边形ABCD 是边长为2的正方形.若在该正四面体纸盒内放一个正方体.使正方体可以在纸盒内任意转动.则正方体棱长的最大值是( )A. 23B. 13 C. √2 D. √3【正确答案】:A【解析】:以正方体为载体作出正四面体的直观图.得出正四面体的棱长.计算正四面体的体积和表面积.得出其内切球的半径.令小正方体的体对角线小于或等于内切球的直径得出小正方体棱长的范围即可.【解答】:解:作出正四面体A-CB 1D 1的直观图如图所示. 由于俯视图的正方形边长为2.故正四面体的棱长为2 √2 .故正四面体的体积V=23- 13×12×2×2×2 ×4= 83 .表面积为S= √34×(2√2)2×4=8 √3 .设正四面体的内切球半径为R.则 13×8√3×R = 83 .解得R= √33. 设放入正四面体纸盒内部的小正方体棱长为a.则 √3 a≤2R= 2√33.故a≤ 23 .故选:A .【点评】:本题考查了棱锥与球的位置关系.考查棱锥三视图与体积、表面积计算.属于中档题. 11.(填空题.6分)已知直线l 过点A (3.1).B (2.0).则直线l 的倾斜角为___ .直线l 的方程为___ .【正确答案】:[1]45°; [2]x-y-2=0【解析】:由两点求斜率公式可得AB 所在直线斜率.再由斜率等于倾斜角的正切值求解.进而求出直线方程.【解答】:解:直线l 过点A (3.1).B (2.0). 由两点求斜率公式可得:k AB =1−03−2=1. 设直线l 的倾斜角为α(0°≤α<180°). ∴tanα=1.则α=45°.∴直线l 的方程为:y-0=1×(x-2).即x-y-2=0. 故答案为:45°.x-y-2=0.【点评】:本题考查直线的斜率公式.考查直线斜率与倾斜角的关系.是基础题.12.(填空题.6分)已知直线l 1:ax+y-6=0与l 2:x+(a-2)y+a-1=0相交于点P.若l 1⊥l 2.则a=___ .此时点P 的坐标为___ . 【正确答案】:[1]1; [2](3.3)【解析】:由直线垂直的性质得a×1+1×(a-2)=0.由此能求出a.再由直线l 1和l 2联立方程组.能求出点P 的坐标.【解答】:解:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P.l1⊥l2. ∴a×1+1×(a-2)=0.解得a=1.解方程{x+y−6=0x−y=0 .解得x=3.y=3.∴P(3.3).故答案为:1.(3.3).【点评】:本题考查两直线垂直时直线方程中参数值的求法.考查两直线交点坐标的求法.是基础题.解题时要认真审题.注意直线垂直的性质的合理运用.13.(填空题.6分)圆x2+y2+2y-3=0的半径为___ .若直线y=x+b与圆x2+y2+2y-3=0交于两点.则b的取值范围是___ .【正确答案】:[1]2; [2] (−1−2√2,2√2−1)【解析】:将圆方程化为标准方程.找出半径即可.由圆心到直线的距离小于圆的半径求得答案.【解答】:解:圆的方程x2+y2+2y-3=0变形得:x2+(y+1)2=4.∴圆的半径为2.∵直线y=x+b与圆x2+y2+2y-3=0相交.∴d= |1+b|√1+1<2;∴解得b∈ (−1−2√2,2√2−1);故b的取值范围为:(−1−2√2,2√2−1).故答案为:2;(−1−2√2,2√2−1).【点评】:本题考查直线与圆的位置关系的应用.考查了点到直线距离公式.体现了数学转化思想方法.是中档题.14.(填空题.6分)如图.在长方体ABCD-A1B1C1D1中.AA1=1.AB=AD=2.E.F分别是BC.DC的中点.则异面直线A1B1与EF所成角为___ ;AD1与EF所成角的余弦值为___ .【正确答案】:[1] π4 ; [2] √105【解析】:作出异面直线所成的角.根据特殊三角形得出所求角或利用余弦定理计算角的余弦值.【解答】:解:∵A 1B 1 || AB || CD.∴∠CFE 为异面直线A 1B 1与EF 所成的角. ∵CE= 12 BC=1.CF= 12CD=1.BC⊥CD .∴∠CFE= π4 .即异面直线A 1B 1与EF 所成角为 π4. 取CC 1中点H.连接EH.BC 1.∵AD 1 || BC 1 || EH.∴∠HEF 为AD 1与EF 所成的角. ∵CH= 12 CC 1= 12 .∴EH=FH= √14+1 = √52 .又EF= √2 . ∴cos∠HEF=54+2−542×√52×√2=√105. 故答案为: π4 . √105.【点评】:本题考查了异面直线所成角的计算.属于基础题.15.(填空题.4分)已知曲线y= √1−x 2 与直线x-7y+5=0交于A.B 两点.若直线OA.OB 的倾斜角分别为α、β.则cos (α-β)___ 【正确答案】:[1]0【解析】:求得半圆的圆心到直线的距离.可得弦长|AB|.判断三角形ABO 的形状.进而得到所求值.【解答】:解:曲线y= √1−x 2 与直线x-7y+5=0交于A.B 两点.如图所示. 可得半圆的圆心(0.0)到直线的距离为d= √1+49= √22 . 可得弦长|AB|=2 √1−12 = √2 .即有△ABO 为直角三角形.且∠AOB 为直角. 可得cos (α-β)=cos∠AOB=0.故答案为:0.【点评】:本题考查圆方程的运用和直线方程的运用.考查圆的弦长公式和数形结合思想.属于基础题.16.(填空题.4分)已知M(x0.y0)到直线x+3y+2=0与直线3x+y+3=0的距离相等.且y0≥3x0+1.则y0x0的最小值是___ .【正确答案】:[1]-1【解析】:由点到直线的距离公式可得M的轨迹方程.与y0≥3x0+1.作出图形.求得y0x0的范围得答案.【解答】:解:∵M(x0.y0)到直线x+3y+2=0与直线3x+y+3=0的距离相等.∴ |x0+3y0+2|√10= |3x0+y0+3|√10.可得:x0+3y0+2=3x0+y0+3.即2x0-2y0+1=0.或x0+3y0+2=-(3x0+y0+3).即4x0+4y0+5=0.由题意{2x0−2y0+1=0y0≥3x0+1① .或{4x0+4y0+5=0y0≥3x0+1② .由① 可得图1.联立{2x0−2y0+1=0y0=3x0+1 .可得P(−14,14).可知当M与P重合时. y0x0取最小值-1;由② 可得图2.联立{4x0+4y0+5=0y0=3x0+1 .可得P(−916,−1116).>-1.可得y0x0的最小值是-1.综上. y0x0故答案为:-1.【点评】:本题考查轨迹方程的求法.考查简单的线性规划.考查数形结合的解题思想方法.是中档题.17.(填空题.4分)已知正方体ABCD-A1B1C1D1的体积为8.点M在线段BC上(点M异于B、C两点).点N为线段CC1的中点.若平面AMN截正方体ABCD-A1B1C1D1所得的截面为五边形.则线段BM长度的取值范围是___ .【正确答案】:[1](1.2)【解析】:当点M为线段BC的中点时.截面为四边形AMND1.从而当0<BM≤1时.截面为四边形.当BM>1时.截面为五边形.由此能求出线段BM的取值范围.【解答】:解:∵正方体ABCD-A1B1C1D1的体积为8.点M在线段BC上(点M异于B.C两点).点N为线段CC1的中点.平面AMN截正方体ABCD-A1B1C1D1所得的截面为四边形.∴依题意.当点M为线段BC的中点时.由题意可知.截面为四边形AMND1.当0<BM≤1时.截面为四边形.当BM>1时.截面为五边形.∵平面AMN截正方体ABCD-A1B1C1D1所得的截面为五边形.∴线段BM的取值范围为(1.2).故答案为:(1.2).【点评】:本题考查线段的取值范围的求法.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.考查函数与方程思想.是中档题.18.(问答题.0分)若实数x.y 满足约束条件 {x −y ≥0x +y +2≥0x −2≤0 .(1)在平面直角坐标系中画出此约束条件所表示的平面区域; (2)若z=2x-y.求z 的最大值.【正确答案】:【解析】:(1)由约束条件作出可行域;(2)根据可行域.化目标函数为直线方程的斜截式.数形结合得到最优解.联立方程组求出最优解的坐标.代入目标函数得答案.【解答】:解:(1)由约束条件 {x −y ≥0x +y +2≥0x −3≤0 作出此约束条件所表示的平面区域如图△ABC .(2)化目标函数z=2x-y 为y=2x-z.由图可知.当直线y=2x-z 过C 时.直线在y 轴上的截距-z 最小.z 最大.此时x=3.y=-5.z 有最大值11.【点评】:本题考查简单的线性规划.考查了数形结合的解题思想方法.是中档题.19.(问答题.0分)已知数列{a n }满足a 1=1.na n+1=2(n+1)a n .设b n = ann .(1)求b 1.b 2.b 3;(2)判断数列{b n}是否为等比数列.并说明理由;(3)求{a n}的通项公式.【正确答案】:【解析】:(1)直接利用已知条件求出数列的各项.(2)利用定义说明数列为等比数列.(3)利用(1)(2)的结论.直接求出数列的通项公式.【解答】:解:(1)数列{a n}满足a1=1.na n+1=2(n+1)a n.则:a n+1n+1a nn=2(常数).由于b n=a nn.故:b n+1b n=2 .数列{b n}是以b1为首项.2为公比的等比数列.整理得:b n=b1•2n−1=2n−1 .所以:b1=1.b2=2.b3=4.(2)数列{b n}是为等比数列.由于b n+1b n=2(常数);所以:数列{b n}是以b1为首项.2为公比的等比数列.(3)由(1)得:b n=2n−1 .根据b n=a nn.所以:a n=n•2n−1.【点评】:本题考查的知识要点:数列的通项公式的求法及应用.20.(问答题.0分)如图.在直三棱柱ABC-A1B1C1中.D为棱AC的中点.(1)求证:AB1 || 面BC1D;(2)若AB=AC=2.BC=1. AA1=√3 .求异面直线AB1与BC1所成角的余弦值.【正确答案】:【解析】:(1)取A 1C 1的中点D 1.证明平面AB 1D 1 || 平面BC 1D.于是可得AB 1 || 面BC 1D ; (2)建立空间坐标系.利用向量坐标求出 AB 1⃗⃗⃗⃗⃗⃗⃗ 和 BC 1⃗⃗⃗⃗⃗⃗⃗ 的夹角得出异面直线所成角.【解答】:(1)证明:取A 1C 1的中点D 1.连接B 1D 1.AD 1.DD 1. ∵C 1D 1 || AD.C 1D 1=AD.∴四边形ADC 1D 1是平行四边形.∴AD 1 || DC 1. 又AD 1⊄平面BC 1D.C 1D⊂平面BC 1D. ∴AD 1 || 平面BC 1D.同理可证:B 1D 1 || 平面BC 1D.又AD 1∩B 1D 1=D 1.AD 1⊂平面AB 1D 1.B 1D 1⊂平面AB 1D 1. ∴平面AB 1D 1 || 平面BC 1D.又AB 1⊂平面AB 1D 1. ∴AB 1 || 面BC 1D .(2)解:取BC 的中点O.B 1C 1的中点E.连接AO. ∵AB=AC=2.BC=1.∴OA⊥BC .OA=√152. 以O 为原点.以OB.OA.OE 为坐标轴建立空间直角坐标系O-xyz.如图所示. 则A (0.√152 .0).B 1( 12 .0. √3 ).B ( 12 .0.0).C 1(- 12 .0. √3 ). ∴ AB 1⃗⃗⃗⃗⃗⃗⃗ =( 12.- √152. √3 ). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1.0. √3 ). ∴cos < AB 1⃗⃗⃗⃗⃗⃗⃗ . BC 1⃗⃗⃗⃗⃗⃗⃗ >= AB 1⃗⃗⃗⃗⃗⃗⃗⃗ •BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |= −12+3√7×2 = 5√728 . ∴异面直线AB 1与BC 1所成角的余弦值为 5√728 .【点评】:本题考查了线面平行的判定.考查空间向量与异面直线的夹角计算.属于中档题.21.(问答题.0分)如图.圆M:(x-2)2+y2=1.点P(-1.t)为直线l:x=-1上一动点.过点P引圆M的两条切线.切点分别为A、B.(1)若t=1.求切线所在直线方程;(2)求|AB|的最小值;(3)若两条切线PA.PB与y轴分别交于S、T两点.求|ST|的最小值.【正确答案】:【解析】:(1)设切线方程.利用圆心到切线距离等于半径求得斜率即可得解;(2)连接PM.AB交于N.利用∠MPA=∠MAN.结合正余弦可得最值;(3)利用(1)的方法.得到k的二次方程.结合根与系数关系.用含t的式子表示去表示|ST|.可得最值.【解答】:解:(1)由题意.切线斜率存在.可设切线方程为y-1=k(x+1).即kx-y+k+1=0.则圆心M 到切线的距离d=√k 2+1 =1. 解得k=0或- 34 . 故所求切线方程为y=1.3x+4y-1=0;(2)连接PM.AB 交于点N.设∠MPA=∠MAN=θ.则|AB|=2|AM|cosθ=2cosθ.在Rt△MAP 中.sinθ= |AM||PM| = 1|PM| .∵|PM|≥3.∴(sinθ)max = 13 .∴(cosθ)min =2√23 . ∴|AB|min = 4√23; (3)设切线方程为y-t=k (x+1).即kx-y+k+t=0.PA.PB 的斜率为k 1.k 2.故圆心M 到切线的距离d=√k 2+1 =1.得8k 2+6kt+t 2-1=0.∴k 1+k 2=- 34t .k 1k 2= t 2−18 . 在切线方程中令x=0可得y=k+t.故|ST|=|(k 1+t )-(k 2+t )|=|k 1-k 2|= √(k 1+k 2)2−4k 1k 2 = √t 2+84 . ∴|ST|min = √22 .此时t=0. 故|ST|的最小值为 √22.【点评】:此题考查了圆的切线及最值问题.综合性较强.难度较大.22.(问答题.0分)如图.在平面直角坐标系xOy中.已知圆O:x2+y2=4.过点P(0.3).且斜率).为k的直线l与圆O交于不同的两点A.B.点Q(0,43(1)若直线l的斜率k=√2 .求线段AB的长度;(2)设直线QA.QB的斜率分别为k1.k2.求证:k1+k2为定值.并求出该定值;|MQ|.若存在.求出直线l的方程.若不(3)设线段AB的中点为M.是否存在直线l使|MO|= √63存在说明理由.【正确答案】:【解析】:(1)由题意可得直线l的方程.求出圆心O到直线l的距离d及圆的半径.再由弦长与半径即圆心到直线的距离的关系求出弦长;(2)设直线l的方程与圆O联立求出两根之和及两根之积.进而求出直线QA.QB的斜率之和.可证得斜率之和为定值0;|MQ|.可得k的表达式.进而求出k的(3)由(2)可得线段AB的中点M的坐标.由|MO|= √63值.求出直线l 的方程.【解答】:解:(1)由题意可得直线l 的方程为:y= √2x +3. 所以圆O 到直线l 的距离d= √3 = √3 . 圆O 的半径r=2.所以弦长|AB|=2 √r 2−d 2 =2 √22−(√3)2 =2;(2)证明:设直线l 的方程为:y=kx+3.设A (x 1.y 1).B (x 2.y 2).将直线l 的方程与圆联立 {y =kx +3x 2+y 2=4.整理可得:(1+k 2)x 2+6kx+5=0. △=36k 2-20(k 2+1)>0.可得:k 2 >54 .x 1+x 2= −6k 1+k 2 .x 1x 2= 51+k 2 .k 1+k 2= y 1−43x 1 + y 2−43x 2 = (kx 1+3−43)x 2+(kx 2+3−43)x 1x 1x 2 =2k+ 53(x 1+x 2)x 1x 2 =2k+ 53•(−6k 1+k 2)51+k 2 =2k-2k=0.所以可证得:k 1+k 2为定值0.(3)由(2)可得AB 的中点M ( x 1+x 22 . y 1+y 22 ).即( −3k 1+k 2 . 31+k 2 ). 因为|MO|= √63 |MQ|.所以 9k 2(1+k 2)2 + 9(1+k 2)2 = 23 [ 9k 2(1+k 2)2 +( 31+k 2 - 43 )2]. 整理可得: 251+ k 2 = 329 .解得k 2= 19332 .满足k 2 >54 所以k=± √3868. 所以直线l 的方程为:y= ±√3868 x+3.【点评】:本题考查求弦长即直线与圆的位置关系.属于中档题.。

浙江省杭州学军中学2022-2023学年高二上学期期中模拟数学试题(解析版)

浙江省杭州学军中学2022-2023学年高二上学期期中模拟数学试题(解析版)
【详解】以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立如下图所示的空间直角坐标系,
则 、 、 、 、 ,
设平面 的法向量为 , , ,
则 ,取 ,可得 ,
, .
因此,直线 与平面 所成角的正弦值为 .
故答案为: .
15.四棱锥 中, 平面 , , , ,已知 是四边形 内部一点,且二面角 的平面角大小为 ,则动点 的轨迹的长度为______.
A. 的“欧拉线”方程为小值是
D.若点 在圆 上,则 的最大值是
【答案】ACD
【解析】
【分析】由 及题意可得三角形 的欧拉线为线段 的中垂线,求出 的中垂线方程判断A;由欧拉线与圆 相切可得,圆心 到欧拉线的距离等于半径可得 的值,由圆上的点到直线的距离的最大值为圆心到直线的距离加半径判断B;令 ,得 ,代入圆的方程,由方程有根求出 的范围判断C; 表示圆上的点 与 连线的斜率,设 ,利用点到直线的距离公式得到不等式,即可求出 的取值范围,从而判断D.
【详解】化圆 为 ,
可得圆心坐标为 ,半径为3.
由圆的性质可得,最长的弦即圆的直径,故 .
因为 ,所以 .
弦最短时,弦 与 垂直,且经过点O,此时 .
故四边形 的面积为 .
故选:B.
5.已知双曲线 ,直线 与双曲线C交于M,N两点,直线 与双曲线C交于P,Q两点,若 ,则双曲线C的离心率为()
A. B. C. D.
∴当且仅当 最小,即 重合时外接球的半径最小,此时 为锐角,
故D不对.
故选:ABC.
三、填空题:本题共4小题,每小题5分,共20分.
13.圆心在直线 上,并且经过点 ,与直线 相切的圆的方程为___.
【答案】
【解析】

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题及答案

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷试题及答案

2019-2020学年学军中学西溪校区高二(上)期中数学试卷一、选择题1.圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS2.若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直3.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β4.如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12 B.6 C.4 D.无法确定5.四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.6.某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5 D.27.在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化8.一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3 B.4 C.5 D.69.已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a 10.已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为.12.二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB 与平面β所成的角的余弦值是.13.正三棱锥的高为1,底面边长为2,则它体积为;若有一个球与该正三棱锥的各个面都相切,则球的半径为.14.若f(x)=﹣3x为奇函数,则a=,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为.15.在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是;(2)|A1P|的最小值为.17.若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a >1),则t的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.19.如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E分别为AD,PD 中点.(1)设平面PAB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面PAB.20.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.21.对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.22.如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC 上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A.B.πS C.2πS D.4πS解:∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为,底面圆的直径为,∴圆柱的侧面积S=π××=πS.故选:B.2.若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直解:对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线PA与平面α交于点A,PO⊥α,则OA是PA在α内的射影,在α内作直线l⊥OA,则l⊥PA,这样的直线l有无数条,∴D正确.故选:D.3.已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α⊥β,m∥n,m⊥α,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β解:A.若α∥β,m⊂α,n⊂β,则m∥n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m∥β,n∥α,则α∥β,正确;C.若α⊥β,m∥n,m⊥α,则n∥β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n∥β,或n与β相交,因此不正确.故选:B.4.如图,三棱柱ABC﹣A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC﹣A′B′C′的体积为()A.12 B.6 C.4 D.无法确定解:∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′﹣BCC′B′=.∵.∵V四棱锥A′﹣BCC′B′+V三棱锥A′﹣ABC=V三棱柱ABC﹣A′B′C′.∴.∴V三棱柱ABC﹣A′B′C′=6.故选:B.5.四面体ABCD中,AB=CD=2,其余棱长均为4,则该四面体外接球半径为()A.B.C.3D.解:四面体ABCD放到长方体中,AB=CD=2,其余AC=BC=AD=DB=4设长方体的边长分别为a,b,c.则,解得a2+b2+c2=18,四面体外接球半径:2R=3.R=.故选:D.6.某几何体的三视图如图所示,则该几何体的最长棱长为()A.B.C.5 D.2解:由题意可知几何体是正方体的一部分,是四棱锥P﹣ABCD,正方体的棱长为3,P是所在棱的3等分点,PB==,PA==,PC==,所以最长棱长为PB,.故选:B.7.在长方体ABCD﹣A1B1C1D1中,M,N分别是棱BB1,BC的中点,若M在以C1N为直径的圆上,则异面直线A1D与D1M所成的角为()A.45°B.60°C.900D.随长方体的形状变化而变化解:如图所示:∵M、N分别是棱BB1、BC的中点,∴MN∥CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90°,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D∥B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90°,故选:C.8.一封闭的正方体容器ABCD﹣A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3 B.4 C.5 D.6解:如图,连接QR并延长,分别交AA1,AB的延长线与E,F,连接PE交A1D1于G,连接PF交BC于H,连接PH,QH,GR,则五边形PGRQH即为此容器内存水最多时,容器中水的上表面的形状,故选:C.9.已知a=sin1.5+cos1.5,b=sin1.5•cos1.5,c=(cos1.5)sin1.5,d=(sin1.5)cos1.5,则a,b,c,d的大小关系为()A.b<c<d<a B.b<d<c<a C.d<b<c<a D.d<c<b<a解:因为<1.5<,所以<sin1.5<1;0<cos1.5<,∴a>,0<b<;∴b<a;找中间量sin1.5sin1.5,由y=sin1.5x是R上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y=x sin1.5是(0,+∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5;故c<d,只有A答案合适.故选:A.10.已知集合A={x|x2﹣x﹣6>0},B={x|x2﹣3ax+4≤0},若a>0,且A∩B中恰好有两个整数解,则a的取值范围是()A.[)B.()C.[)D.()解:A=(﹣∞,﹣2)∪(3,+∞),令f(x)=x2﹣3ax+4,由题意,△=9a2﹣16>0,且a>0,∴解得,,又,∴要使A∩B中恰好有两个整数解,则只能是4和5,∴,解得,∴a的取值范围是.故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与AB所成的角大小是,线段EF的长度为a.解:棱长为a的正四面体ABCD中,E,F分别为棱AD,BC的中点,取BD中点G,连结BE,CE,EG,FG,则EG∥AB,且EG=FG==,∴∠EFG是异面直线EF与AB所成的角(或所成角的补角),BE=CE==,EF==,cos∠EFG===,∴∠EFG=,∴异面直线EF与AB所成的角大小是,线段EF的长度为.故答案为:,.12.二面角α﹣l﹣β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为45°,则AB与平面β所成的角的余弦值是.解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α﹣l﹣β的平面角,∠ADC=60°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=AD sin60°=x,Rt△ABD中,AB==2,BC==,∴Rt△ABC中,cos∠ABC===.故答案为:.13.正三棱锥的高为1,底面边长为2,则它体积为2;若有一个球与该正三棱锥的各个面都相切,则球的半径为﹣2 .解:底面等边三角形的面积S==,所以V=,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=,OE=r,OA=1﹣r,侧面斜边的高AB=由△AOE ∽△ABM,得相似得,得,,所以.故答案为:﹣2.14.若f(x)=﹣3x为奇函数,则a= 1 ,此时,不等式f(1﹣x2)+f(3x+9)<0的解集为(﹣2,5).解:∵f(x)为奇函数,∴f(0)=0,,∴a=1.∴∵,∴f(x)为减函数,且为奇函数∵f(1﹣x2)+f(3x+9)<0,∴f(1﹣x2)<﹣f(3x+9)=f(﹣3x﹣9),∴1﹣x2>﹣3x﹣9,∴﹣2<x<5.故不等式的解集为(﹣2,5).故答案为:1,(﹣2,5).15.在长方体ABCD﹣A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=,则MB1+MN的最小值为.解:将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,过点P作PN⊥平面ABCD,交AC1于M,垂足为N,则PN为MB1+MN的最小值.∵AB=2,BC=AA1=,∴AC1==2,AP=AB1==,∵sin∠C1AC===,∴∠C1AC=30°,∴∠PAN=2∠C1AC=60°,∴PN=AP•sin∠PAN==.∴MB1+MN的最小值为.故答案为:.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是平行;(2)|A1P|的最小值为.解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A1(1,0,1),E(0,1,),B(1,1,0),∵P,Q均在平面A1B1C1D1内,∴设P(a,b,1),Q(m,n,1),则=(﹣1,1,﹣),=(a﹣1,b﹣1,1),=(m﹣1,n﹣1,1),∵BP⊥A1E,BQ⊥A1E.∴,解得,∴PQ∥BD,即PQ与BD的位置关系是平行.故答案为:平行.(2)当|A1P|取最小值时,P在平面A1B1C1D1内,设P(a,b,1),由(1)得b=a+,∴|A1P|====,∴当a=,即P(,,1)时,|A1P|的最小值为.故答案为:.17.若不等式[2x(t﹣1)﹣1]•log a≥0对任意的正整数x恒成立(其中a∈R,且a>1),则t的取值范围是.解:原不等式等价于:或即①或②,注意到x=1时,②成立,此时≤t≤;当x∈Z,x≥2时,①成立,在①中,1+≤t≤x﹣,又g(x)=x﹣﹣为单调递增函数,所以,要使对x∈Z,x≥2成立,只需x=2时成立,又x=2时,≤t≤,所以要使不等式对任意的正整数x恒成立,则t的取值范围是:≤t≤,故答案为:≤t≤.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若cos C=,且=,求△ABC的面积;(2)设向量=(2sin,),=(cos B,cos),且∥,b=2,求a+c的取值范围.【解答】解(1)由•=,得ab cos C=.又因为cos C=,所以ab==.又C为△ABC的内角,所以sin C=.所以△ABC的面积S=ab sin C=3.(2)因为∥,所以2sin cos=cos B,即sin B=cos B.因为cos B≠0,所以tan B=.因为B为三角形的内角,0<B<π,所以B=.由正弦定理=,所以a=,c=,所以a+c=,又A+C=,所以a+c==4(cos C+)=4sin(C+),又0,所以<C+,所以∈(2,4].19.如图,在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,且AD=2BC,O,E分别为AD,PD 中点.(1)设平面PAB∩平面PCD=l,请作图确定l的位置并说明你的理由;(2)若Q为直线CE上任意一点,证明:OQ∥平面PAB.【解答】(1)解:分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面PAB,R∈CD⊂平面PCD,所以P、R是平面PAB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.(2)证明:连接OE、OC,因为BC∥AD,且BC=AD,又AO=AD,所以BC∥AO,且BC=AO,所以四边形ABCO为平行四边形,所以OC∥AB,则OC∥平面PAB;又OE为△PAD的中位线,则OE∥AP,所以OE∥平面PAB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB∥平面OEC,又OQ⊂平面OEC,所以OQ∥平面PAB.20.已知数列{a n}的前n项和S n满足2S n﹣na n=3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=,T n为数列{b n}的前n项和,求使T n成立的最小正整数n的值.解:(1)当n≥2时,2S n﹣1﹣(n﹣1)a n﹣1=3(n﹣1),又2S n﹣na n=3n,相减可得(n﹣1)a n﹣1﹣(n﹣2)a n=3,当n≥3时,(n﹣2)a n﹣2﹣(n﹣3)a n﹣1=3,所以(n﹣1)a n﹣1﹣(n﹣2)a n=(n﹣2)a n﹣2﹣(n﹣3)a n﹣1,可得2a n﹣1=a n﹣2+a n,所以{a n}为等差数列.又2S1﹣a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;(2)b n=====(﹣),T n=(﹣+﹣+﹣+﹣+…+﹣)=(﹣),要使T n成立,即(﹣)>,解得n>,所以最小正整数n的值为8.21.对于函数f(x),若存在实数对(m,n),使得等式f(m+x)•f(m﹣x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m,n)型函数”.(1)判断函数f(x)=是否为“(m,n)型函数”,并说明理由;(2)①若函数g(x)是“(1,4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),若当x∈[0,2]时,都有1≤g(x)≤4成立,试求a的取值范围.解:(1),则x2=m2﹣n2不可能恒成立,所以f(x)=x不是““(m,n)型函数”;(2)①由题意,g(x+1)g(1﹣x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1﹣x)=4,所以g(x)g(2﹣x)=4.当x∈[0,1]时,2﹣x ∈[1,2]时,g(2﹣x)===.(a)当0<a<1时,0<,则g(x)在[0,1]内先减后增,且g(,即1+a﹣a2≤g(x)≤2,则当x∈[1,2]时,2≤g(x).所以当x∈[0,2]时,1+a﹣,由题意,,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,,则g(x)在][0,1]内先减后增,且g()≤g(x)≤g(0),即1+a﹣≤g(x)≤1+a,则当x∈[1,2]时,.要满足题意,则应满足,且解得0≤a≤33,所以1≤a<2.(c)当a≥2时,≥1,则g(x)在[0,1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1,2]时,.此时,g(x)min=,g(x)min=1+a.要满足条件,则应,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0,2]时,都有1≤g(x)≤4成立,所以当x∈[1,2]时,1≤g(x)≤4;当x∈[0,1]时,2﹣x∈[1,2]时,所以g(2﹣x)∈[1,4],而g(x)g(2﹣x)=4,所以1,即1≤g(x)≤4,所以问题转化为当x∈[0,1]时,1≤g(x)≤4即可.当x∈[0,1]时,g(x)=x2﹣a(x﹣1)+1(a>0),.(1)当0<<1,即0<a<2时,,解得0≤a≤3,所以0<a<2;(2)当,即a≥2时,只要解得a≤3,所以2<a≤3;综上所述,0<a≤3.22.如图,在等腰三角形ABC中,AB=AC,∠A═120°,M为线段BC的中点,D为线段BC 上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD,记二面角C′﹣AD﹣B的平面角为α.(1)证明:平面△AMC′⊥平面ABD;(2)比较∠C′DB与α的大小,并证明你的结论;(3)求cosα的值.解:(1)证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.(2)解:如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.(3)解:如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′﹣AD﹣B的平面角.设AB=AC=BD=4,则BM=MC=2,MD=4﹣2,CD=4﹣4=C′D,在直角△C′DM中,C′M2=C′D2﹣DM2=36﹣16.。

【20套试卷合集】杭州学军中学2019-2020学年数学高二上期中模拟试卷含答案

【20套试卷合集】杭州学军中学2019-2020学年数学高二上期中模拟试卷含答案

2019-2020学年高二上数学期中模拟试卷含答案 一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线的倾斜角的大小是( ) A .B .C .D .2. 圆的圆心坐标和半径分别是( )A .(0,2)2B .(2,0)4C .(-2,0)2D .(2,0)23.点(2,3,4)关于x 轴的对称点的坐标为( )A.(-2,3,4)B.(2,-3,-4)C.(-2,-3,4)D.(-2,-3,-4)4. 有下列四个命题:①“若0=+y x ,则y x ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则022=++q x x 有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题;其中真命题为( ) A. ①② B. ②③ C. ①③ D. ③④5.圆x 2+y 2+2x=0和x 2+y 2﹣4y=0的公共弦所在直线方程为( )A .x ﹣2y=0B .x+2y=0C .2x ﹣y=0D .2x+y=06.圆与圆的位置关系为( ) A .内切 B .相交 C .外切 D .相离7.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则是的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.对任意的实数,直线与圆的位置关系一定是( )A .相切B .相交且直线过圆心C .相交且直线不过圆心D .相离9.圆上的点到直线的距离最大值是( )A .2B .1+C .D .1+ 10.已知直线,圆,则直线和圆在同一坐标系中的图形可能是( )二填空题:(本题共6小题,每小题4分,共24分.把答案填在答题纸的相应位置.)11. 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ,体积是12. 在空间直角坐标系中,若点A (1,2,﹣1),B (﹣3,﹣1,4).则|AB|=13.已知命题,使成立,则: .14.经过点(3,-2),且在两坐标轴上的截距互为相反数的直线方程是15.直线130kx y k -+-=,当k 变化时,所有直线恒过定点16.如图,在正方体111ABCD A B C D -中,①异面直线1A D 与1D C 所成的角为60度;②直线1A D 与平面11AB C D 所成的角为30度;③1D C ⊥平面11AB C D ④平面1ADB 与平面11BB C C 所成角为60度⑤平面11//A D 平面1ADB 以上命题正确的是答题纸 二、填空题:(本题共6小题,每小题4分,共24分.把答案填在答题纸的相应位置.)11、 , ;12、 ;13、14、 ;15、 ;16、三解答题:(本题共4小题,共36分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.)17.(7分)求经过点M(2,-2),且与圆2260x y x+-=与224x y+=交点的圆的方程18.(9分)已知直线:,:,求当为何值时,与:(1)平行;(2)相交;(3)垂直19. (10分)已知圆及直线. 当直线被圆截得的弦长为时,求(1)的值;(2)求过点并与圆相切的切线方程.20.(10分)过原点O作圆x2+y2-8x=0的弦OA。

2019-2020学年浙江省杭州市西湖区杭州学军中学高二数学上学期期末考试数学试题含解析

2019-2020学年浙江省杭州市西湖区杭州学军中学高二数学上学期期末考试数学试题含解析
〖详 解〗分别以 为圆心,半径为 作圆,当两个圆外离时,可以作两个圆的四条公切线,也即 到四条切线的距离都等于 ,符合题目的要求.圆心距 ,由于两个圆外离,故 ,即 .
故选B.
〖点 睛〗本小题主要考查两个圆 位置关系,考查两圆外离时公切线的条数,考查化归与转化的数学思想方法,考查两点间的距离公式,属于基础题.
3.已知直线 , 和平面 , , ,下列条件中能推出 是( )
A. , , B. ,
C. , , , D. ,
〖答 案〗B
〖解 析〗
〖分析〗
根据面面平行的判定定理和线面垂直的性质直接判断即可.
〖详 解〗A:两个平面相交时,两个平面存在互相平行的直线,故本选项不正确;
B:垂直于同一直线的两平面平行,故本选项正确;
解法1:
设 , ,利用三角形面积公式可以求出 的长,在利用 ,求出 的长,最后求出 的面积表达式,利用换元法和配方法求出 面积平方的最大值,最后求出 的值;
解法2:
设 ,求出 、 、 、 的大小,再求出 的大小,最后求出
表达式,利用同角三角函数的关系中商关系和基本不等式求出最大值,根据等号成立的条件求出 的值.
考虑四个选项,只有选D.
〖点 睛〗本题考查最小角定理的应用,线面角的最大值即为BE与CD所成的角.,属中档题.
9.已知 ,作直线 ,使得点 到直线 的距离均为 ,且这样的直线 恰有 条,则 的取值范围是( )
A. B. C. D.
〖答 案〗B
〖解 析〗
〖分析〗
分别以 为圆心,半径为 作圆,当两个圆外离时,可以作两个圆的四条公切线,根据圆心距和 的大小关系,求得 的取值范围.
在三角形OBC中,
cosB=﹣ ,
∴OC2=OB2+BC2﹣2OB=7,

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()S B.πS C.2πS D.4πSA.1π【答案】B【考点】棱柱、棱锥、棱台的侧面积和表面积【解析】根据圆柱的轴截面是正方形,且轴截面面积是S求出圆柱的母线长与底面圆的直径,代入侧面积公式计算.【解答】∵圆柱的轴截面是正方形,且轴截面面积是S,∴圆柱的母线长为√S,底面圆的直径为√S,∴圆柱的侧面积S=π×√S×√S=πS.2. 若直线l与平面α相交,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l垂直【答案】D【考点】空间中直线与平面之间的位置关系【解析】α内过直线l与平面α交点的直线与直线l共面,判断A错误;α内过直线l与平面α交点的直线有无数条,判断B错误;α内不存在与直线l平行的直线,判断C错误;画出图形,结合图形判断D正确.【解答】对于A,α内过直线l与平面α交点的直线与直线l是共面直线,∴A错误;对于B,α内过直线l与平面α交点的直线有无数条,且这些直线与直线l都是共面直线,∴B错误;对于C,α内不存在与直线l平行的直线,∴C错误;对于D,如图所示,直线PA与平面α交于点A,PO⊥α,则OA是PA在α内的射影,在α内作直线l⊥OA,则l⊥PA,这样的直线l有无数条,∴D正确.3. 已知m,n是空间两条不同的直线,α,β是空间两个不同的平面,则下列命题正确的是()A.若α // β,m⊂α,n⊂β,则m // nB.若m,n异面,m⊂α,n⊂β,m // β,n // α,则α // βC.若α⊥β,m // n,m⊥α,则n // βD.若α⊥β,α∩β=m,n⊥m,则n⊥β【答案】B【考点】命题的真假判断与应用【解析】A.由α // β,m⊂α,n⊂β,可知m与n无公共点,即可判断出正误;B.由m,n异面,m⊂α,n⊂β,m // β,n // α,即可得出α与β的位置关系;C.若α⊥β,m // n,m⊥α,则n // β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,可得n与β的三种位置关系都有可能.【解答】A.若α // β,m⊂α,n⊂β,则m // n或为异面直线,因此不正确;B.若m,n异面,m⊂α,n⊂β,m // β,n // α,则α // β,正确;C.若α⊥β,m // n,m⊥α,则n // β或n⊂β,因此不正确;D.若α⊥β,α∩β=m,n⊥m,则n⊂β,或n // β,或n与β相交,因此不正确.4. 如图,三棱柱ABC−A′B′C′中,侧面B′B′CC′的面积是4,点A′到侧面B′BCC′的距离是3,则三棱柱ABC−A′B′C′的体积为()A.12B.6C.4D.无法确定【答案】B【考点】柱体、锥体、台体的体积计算【解析】由已知求得四棱锥A′−BCC′B′的体积,结合V A′−ABC=13V ABC−A′B′C′,可得V四棱锥A′−BCC′B′+V三棱锥A′−ABC=V三棱柱ABC−A′B′C′,从而求得三棱柱ABC−A′B′C′的体积.【解答】∵侧面B′BCC′的面积是4,点A′到侧面B′BCC′的距离是3,∴V四棱锥A′−BCC′B′=13×4×3=4.∵V A′−ABC=13V ABC−A′B′C′.∵ V 四棱锥A′−BCC′B′+V 三棱锥A′−ABC =V 三棱柱ABC−A′B′C′. ∴ 23V ABC−A ′B ′C ′=V A ′−BCC ′B ′=4. ∴ V 三棱柱ABC−A′B′C′=6.5. 四面体ABCD 中,AB =CD =2,其余棱长均为4,则该四面体外接球半径为( )A.√14B.√142C.3√2D.3√22【答案】D【考点】球的体积和表面积 【解析】把四面体ABCD 放到长方体中,不难发现AB =CD =2,其余棱长均为4正好是长方体的对角线.从而即可求解四面体外接球半径 【解答】四面体ABCD 放到长方体中,AB =CD =2,其余AC =BC =AD =DB =4 设长方体的边长分别为a ,b ,c .则{a 2+b 2=20b 2+c 2=20a 2+c 2=32 ,解得a 2+b 2+c 2=18, 四面体外接球半径:2R =3√2.R =3√22.6. 某几何体的三视图如图所示,则该几何体的最长棱长为( )A.√19B.√22C.5D.2√7【答案】 B【考点】由三视图求体积 【解析】画出几何体的直观图,利用三视图的数据,求解几何体的最长棱长. 【解答】由题意可知几何体是正方体的一部分,是四棱锥P −ABCD ,正方体的棱长为3,P 是所在棱的3等分点,PB =√32+32+22=√22,PA =√32+22=√13,PC =√32+32+12=√19, 所以最长棱长为PB ,√22.7. 在长方体ABCD −A 1B 1C 1D 1中,M ,N 分别是棱BB 1,BC 的中点,若M 在以C 1N 为直径的圆上,则异面直线A 1D 与D 1M 所成的角为( )A.45∘B.60∘C.900D.随长方体的形状变化而变化【答案】C【考点】异面直线及其所成的角【解析】推导出C1M⊥MN,C1M⊥CB1,C1D1⊥B1C,从而B1C⊥平面C1D1M,由A1D // B1C,得A1D⊥平面C1D1M,由此能求出异面直线A1D与D1M所成的角的大小.【解答】如图所示:∵M、N分别是棱BB1、BC的中点,∴MN // CB1,∵M在以C1N为直径的圆上,∴∠C1MN=90∘,∴C1M⊥MN,∴C1M⊥CB1,由长方体的几何特征,我们可得C1D1⊥B1C,∴B1C⊥平面C1D1M,∵A1D // B1C,∴A1D⊥平面C1D1M,∴A1D⊥D1M,即异面直线A1D与D1M所成的角为90∘,故选:C.8. 一封闭的正方体容器ABCD−A1B1C1D1,P,Q,R分别为AD,BB1,A1B1的中点,如图所示.由于某种原因,在P,Q,R处各有一个小洞,当此容器内存水最多时,容器中水的上表面的形状是()边形A.3B.4C.5D.6【答案】C【考点】平面的基本性质及推论【解析】画出过P,Q,R三点的平面与正方体容器ABCD−A1B1C1D1的截面得答案.【解答】如图,连接QR 并延长,分别交AA 1,AB 的延长线与E ,F , 连接PE 交A 1D 1于G ,连接PF 交BC 于H ,连接PH ,QH ,GR ,则五边形PGRQH 即为此容器内存水最多时,容器中水的上表面的形状,9. 已知a =sin1.5+cos1.5,b =sin1.5⋅cos1.5,c =(cos1.5)sin1.5,d =(sin1.5)cos1.5,则a ,b ,c ,d 的大小关系为( ) A.b <c <d <a B.b <d <c <a C.d <b <c <a D.d <c <b <a 【答案】 A【考点】三角函数的恒等变换及化简求值 【解析】因为π3<1.5<π2,所以√32<sin1.5<1;0<cos1.5<12,注意到四个答案里都是a 最大,主要比较c 与d 的大小关系即可;找中间量sin1.5sin1.5,由y =sin1.5x 是R 上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y =x sin1.5是(0, +∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5; 故c <d ,只有A 答案合适. 【解答】因为π3<1.5<π2,所以√32<sin1.5<1;0<cos1.5<12,∴ a >√32,0<b <12;∴ b <a ;找中间量sin1.5sin1.5,由y =sin1.5x 是R 上的减函数,sin1.5>cos1.5,可得sin1.5sin1.5<sin1.5cos1.5;由y =x sin1.5是(0, +∞)上的增函数,sin1.5>cos1.5,可得cos1.5sin1.5<sin1.5sin1.5; 故c <d ,只有A 答案合适.10. 已知集合A ={x|x 2−x −6>0},B ={x|x 2−3ax +4≤0},若a >0,且A ∩B 中恰好有两个整数解,则a 的取值范围是( ) A.[2915,209) B.(2915,209)C.[139,209)D.(53,209)【答案】 A【考点】交集及其运算 【解析】可以求出集合A =(−∞, −2)∪(3, +∞),可令f(x)=x 2−3ax +4,根据a >0及△>0即可得出a >43,并且求出B =[3a−√9a2−162,3a+√9a 2−162],可得出0<3a−√9a2−162<2,从而得出要使A ∩B 中恰好有两个整数解,只能是4和5,从而可得出{f(4)≤0f(5)≤0f(6)>0 ,解出a的范围即可. 【解答】A =(−∞, −2)∪(3, +∞),令f(x)=x 2−3ax +4,由题意,△=9a 2−16>0,且a >0,∴ 解得a >43,B =[3a−√9a2−162,3a+√9a 2−162],又0<3a−√9a 2−162=2<2,∴ 要使A ∩B 中恰好有两个整数解,则只能是4和5, ∴ {f(4)=16−12a +4≤0f(5)=25−15a +4≤0f(6)=36−18a +4>0 ,解得2915≤a <209,∴ a 的取值范围是[2915,209).二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成的角大小是________,线段EF 的长度为________. 【答案】4,√2 【考点】异面直线及其所成的角 【解析】取BD 中点G ,连结BE ,CE ,EG ,FG ,则EG // AB ,且EG =FG =12AB =a2,∠EFG 是异面直线EF 与AB 所成的角(或所成角的补角),由此能求出异面直线EF 与AB 所成的角大小和线段EF 的长度. 【解答】棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点, 取BD 中点G ,连结BE ,CE ,EG ,FG , 则EG // AB ,且EG =FG =12AB =a2,∴ ∠EFG 是异面直线EF 与AB 所成的角(或所成角的补角), BE =CE =√a 2−(a2)2=√3a2,EF =√(√3a 2)2−(a2)2=√2a 2, cos∠EFG =EF 2+GF 2−EG 22×EF×GF =a 22+a 24−a 242×√2a 2×a 2=√22, ∴ ∠EFG =π4,∴ 异面直线EF 与AB 所成的角大小是π4,线段EF 的长度为√22a .二面角α−l −β的大小是60∘,线段AB ⊂α,B ∈l ,AB 与l 所成的角为45∘,则AB 与平面β所成的角的余弦值是________. 【答案】 √104【考点】直线与平面所成的角【解析】根据二面角和直线和平面所成角的定义,先作出对应的平面角,结合三角形的边角关系进行求解即可.【解答】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,根据三垂线定理可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=60∘又∵AB与l所成角为45∘,∴∠ABD=45∘连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角.设AD=2x,则Rt△ACD中,AC=ADsin60∘=√3x,Rt△ABD中,AB=ADsin45=2√2x,BC=√(2√2x)2−(√3x)2=√5x,∴Rt△ABC中,cos∠ABC=BCAB =√5x2√2x=√104.正三棱锥的高为1,底面边长为2√6,则它体积为________;若有一个球与该正三棱锥的各个面都相切,则球的半径为________.【答案】2√3,√6−2【考点】球的体积和表面积柱体、锥体、台体的体积计算【解析】求出底面的面积,利用体积公式带入即可,要求内切球半径,根据横截面图,利用三角形相似得出r.【解答】底面等边三角形的面积S=√34⋅(2√6)2=6√3,所以V=13⋅6√3⋅1=2√3,设内切球的球心为O,半径为r,则在O与底面的中心M,BM=2√6⋅√32⋅13=√2,OE=r,OA=1−r,侧面斜边的高AB=√1+OM2=√3由△AOE∽△ABM,得相似得rBM =1−rAB,得2=3,r(√3+√2)=√2,所以r=√6−2.若f(x)=a−4x2−3x为奇函数,则a=________,此时,不等式f(1−x2)+f(3x+ 9)<0的解集为________.【答案】1,(−2, 5)【考点】奇偶性与单调性的综合【解析】含有参数的函数奇偶性问题,要利用常见的结论,通过赋值法解决;第二问综合应用函数单调性和奇偶性的性质.【解答】∵f(x)为奇函数,∴f(0)=0,a−4020−3×0=0,∴a=1.∴f(x)=1−4x2x =12x−2x,∵12x,−2x,∴f(x)为减函数,且为奇函数∵f(1−x2)+f(3x+9)<0,∴f(1−x2)<−f(3x+9)=f(−3x−9),∴1−x2>−3x−9,∴−2<x<5.故不等式的解集为(−2, 5).在长方体ABCD−A1B1C1D1中,M是对角线AC1上一点,N是底面ABCD上一点.若AB=2,BC=AA1=√2,则MB1+MN的最小值为________3√22.【答案】3√22.【考点】点、线、面间的距离计算【解析】将△AB1C1绕边AC1旋转到APC1位置,使得平面APC1和平面ACC1在同一平面内,则P到平面ABCD的距离即为MB1+MN的最小值,利用勾股定理解出即可.【解答】将△AB1C1绕边AC1旋转到APC1位置,使得平面APC 1和平面ACC 1在同一平面内,过点P 作PN ⊥平面ABCD ,交AC 1于M ,垂足为N ,则PN 为MB 1+MN 的最小值. ∵ AB =2,BC =AA 1=√2,∴ AC 1=√4+2+2=2√2,AP =AB 1=√4+2=√6, ∵ sin∠C 1AC =CC1AC 1=√22√2=12,∴ ∠C 1AC =30∘,∴ ∠PAN =2∠C 1AC =60∘,∴ PN =AP ⋅sin∠PAN =√6⋅√32=3√22.∴ MB 1+MN 的最小值为3√22.在棱长为1的正方体ABCD −A 1B 1C 1D 1中,E 为CC 1的中点,P ,Q 是正方体表面上相异两点,满足BP ⊥A 1E ,BQ ⊥A 1E .(1)若P ,Q 均在平面A 1B 1C 1D 1内,则PQ 与BD 的位置关系是________;(2)|A 1P|的最小值为________. 【答案】 平行3√24【考点】点、线、面间的距离计算空间中直线与直线之间的位置关系 【解析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能判断PQ 与BD 的位置关系.(2)当|A 1P|取最小值时,P 在平面A 1B 1C 1D 1内,设P(a, b, 1),推导出b =a +12,由此能求出|A 1P|的最小值. 【解答】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则A 1(1, 0, 1),E(0, 1, 12),B(1, 1, 0),∵ P ,Q 均在平面A 1B 1C 1D 1内,∴ 设P(a, b, 1),Q(m, n, 1),则A 1E →=(−1, 1, −12),BP →=(a −1, b −1, 1),BQ →=(m −1, n −1, 1),∵ BP ⊥A 1E ,BQ ⊥A 1E .∴ {BP →⋅A 1E →=−(a −1)+(b −1)−12=0BQ →⋅A 1E →=−(m −1)+(n −1)−12=0, 解得{b −a =12n −m =12 ,∴ PQ // BD ,即PQ 与BD 的位置关系是平行.故答案为:平行.当|A 1P|取最小值时,P 在平面A 1B 1C 1D 1内,设P(a, b, 1),由(1)得b =a +12,∴ |A 1P|=√(a −1)2+b 2=√(a −1)2+(a +12)2=√2a 2−a +54=√2(a −14)2+98,∴ 当a =14,即P(14, 34, 1)时,|A 1P|的最小值为3√24.故答案为:3√24.若不等式[2x (t −1)−1]•log a4x−14t ≥0对任意的正整数x 恒成立(其中a ∈R ,且a >1),则t 的取值范围是________54≤t ≤32 . 【答案】 54≤t ≤32 【考点】 函数恒成立问题 【解析】原不等式等价于{2x (t −1)−1≥0log a 4x−14t≥0 或{2x (t −1)−1≤0log a 4x−14t≤0 即{t ≥1+12xt ≤x −14 ①或{t ≤1+12xt ≥x −14②,进而求解; 【解答】原不等式等价于: {2x (t −1)−1≥0log a4x−14t≥0或{2x (t −1)−1≤0log a4x−14t ≤0即{t ≥1+12x t ≤x −14 ①或{t ≤1+12xt ≥x −14②,注意到x =1时,②成立,此时34≤t ≤32;当x ∈Z ,x ≥2时,①成立,在①中,1+12x ≤t ≤x −14,又g(x)=x −12x −54为单调所以,要使{t ≥1+12xt ≤x −14 对x ∈Z ,x ≥2成立,只需x =2时成立,又x =2时,54≤t ≤74, 所以要使不等式对任意的正整数x 恒成立, 则t 的取值范围是:54≤t ≤32,三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cosC =35,且CB →⋅CA →=92,求△ABC 的面积;(2)设向量x →=(2sin B2, √3),y →=(cosB, cos B2),且x → // y →,b =2,求a +c 的取值范围. 【答案】由CB →⋅CA →=92,得abcosC =92.又因为cosC =35,所以ab =92cosC =152.又C 为△ABC 的内角,所以sinC =45. 所以△ABC 的面积S =12absinC =3.因为x → // y →,所以2sin B2cos B 2=√3cosB ,即sinB =√3cosB .因为cosB ≠0,所以tanB =√3. 因为B 为三角形的内角,0<B <π,所以B =π3. 由正弦定理asinA =csinC =bsinB =√3,所以a =√3,c =√3,所以a +c =√3+sinC),又A +C =2π3,所以a +c =√3[sin(2π3−C)+sinC]=4(cosC +√32sinC)=4sin(C +π6),又0<C <2π3,所以π6<C +π6<5π6,所以∈(2, 4].【考点】平面向量数量积的性质及其运算 【解析】(1)由CB →⋅CA →=92,得ab =152.可得△ABC 的面积S =12absinC =3. (2)由x → // y →,可得B =π3.由正弦定理可得a =√3,c =√3,则a +c =√3[sin(2π3−C)+sinC]=4(cosC +√32sinC)=4sin(C +π6),即可求解.由CB →⋅CA →=92,得abcosC =92.又因为cosC =35,所以ab =92cosC =152.又C 为△ABC 的内角,所以sinC =45. 所以△ABC 的面积S =12absinC =3.因为x → // y →,所以2sin B2cos B 2=√3cosB ,即sinB =√3cosB .因为cosB ≠0,所以tanB =√3. 因为B 为三角形的内角,0<B <π,所以B =π3. 由正弦定理asinA =csinC =bsinB =√3,所以a =√3,c =√3,所以a +c =√3+sinC),又A +C =2π3,所以a +c =√3[sin(2π3−C)+sinC]=4(cosC +√32sinC)=4sin(C +π6),又0<C <2π3,所以π6<C +π6<5π6,所以∈(2, 4].如图,在四棱锥P −ABCD 的底面ABCD 中,BC // AD ,且AD =2BC ,O ,E 分别为AD ,PD 中点.(1)设平面PAB ∩平面PCD =l ,请作图确定l 的位置并说明你的理由;(2)若Q 为直线CE 上任意一点,证明:OQ // 平面PAB . 【答案】分别延长AB 和DC 交于点R ,连接PR ,则直线PR 就是l 的位置; R ∈AB ⊂平面PAB ,R ∈CD ⊂平面PCD ,所以P 、R 是平面PAB 和平面PCD 的两个公共点, 由公理1可知,过P 、R 的直线就是两个平面的交线l . 证明:连接OE 、OC ,因为BC // AD ,且BC =12AD , 又AO =12AD ,所以BC // AO ,且BC =AO ,所以四边形ABCO 为平行四边形, 所以OC // AB ,则OC // 平面PAB ; 又OE 为△PAD 的中位线,则OE // AP , 所以OE // 平面PAB ,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB // 平面OEC,又OQ⊂平面OEC,所以OQ // 平面PAB.【考点】直线与平面平行【解析】(1)分别延长AB和DC交于点R,连接PR,直线PR就是交线l的位置;根据平面公理即可得出结论;(2)连接OE、OC,证明OC // 平面PAB,OE // 平面PAB,得出平面PAB // 平面OEC,证得OQ // 平面PAB.【解答】分别延长AB和DC交于点R,连接PR,则直线PR就是l的位置;R∈AB⊂平面PAB,R∈CD⊂平面PCD,所以P、R是平面PAB和平面PCD的两个公共点,由公理1可知,过P、R的直线就是两个平面的交线l.AD,证明:连接OE、OC,因为BC // AD,且BC=12AD,所以BC // AO,又AO=12且BC=AO,所以四边形ABCO为平行四边形,所以OC // AB,则OC // 平面PAB;又OE为△PAD的中位线,则OE // AP,所以OE // 平面PAB,又OE⊂平面OEC,OC⊂平面OEC,且OE∩OC=O,所以平面PAB // 平面OEC,又OQ⊂平面OEC,所以OQ // 平面PAB.已知数列{a n}的前n项和S n满足2S n−na n=3n(n∈N∗),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=a a+a a,T n为数列{b n}的前n项和,求使T n>√3成立的最小正整10数n的值.【答案】当n≥2时,2S n−1−(n−1)a n−1=3(n−1),又2S n−na n=3n,相减可得(n−1)a n−1−(n−2)a n=3,当n≥3时,(n−2)a n−2−(n−3)a n−1=3,所以(n−1)a n−1−(n−2)a n=(n−2)a n−2−(n−3)a n−1,可得2a n−1=a n−2+a n,所以{a n}为等差数列.又2S1−a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;b n=a a+a a =a⋅a(a+a)=√2n+1⋅√2n+3(√2n+1+√2n+3)=√2n+3−√2n+1 22n+1⋅2n+3=12(2n+12n+3),T n=12(√3√5√5−√7√7−13+13−√11+⋯√2n+1√2n+3)=12(√3√2n+3),要使T n>√310成立,即12(√3√2n+3)>√310,解得n>638,所以最小正整数n的值为8.【考点】数列递推式数列的求和【解析】(1)运用数列的递推式,两次将n换为n−1,相减,结合等差数列的定义和通项公式,即可得到所求;(2)求得b n=√a⋅√a(√a+√a)=√2n+1⋅√2n+3(√2n+1+√2n+3)=√2n+3−√2n+12√2n+1⋅√2n+3=1 2(2n+12n+3),再由数列的裂项相消求和,以及不等式的解法,可得所求最小值.【解答】当n≥2时,2S n−1−(n−1)a n−1=3(n−1),又2S n−na n=3n,相减可得(n−1)a n−1−(n−2)a n=3,当n≥3时,(n−2)a n−2−(n−3)a n−1=3,所以(n−1)a n−1−(n−2)a n=(n−2)a n−2−(n−3)a n−1,可得2a n−1=a n−2+a n,所以{a n}为等差数列.又2S1−a1=3,且a1=S1,得a1=3,又a2=5,所以{a n}为公差为2的等差数列,则a n=2n+1;b n=a a+a a =a⋅a(a+a)=√2n+1⋅√2n+3(√2n+1+√2n+3)=√2n+3−√2n+1 2√2n+1⋅√2n+3=12(√2n+1√2n+3),T n=12(355−77−13+13−11+⋯2n+12n+3)=12(32n+3),要使T n>√310成立,即12(√3√2n+3)>√310,解得n>638,所以最小正整数n的值为8.对于函数f(x),若存在实数对(m, n),使得等式f(m+x)⋅f(m−x)=n对定义域中的每一个x都成立,则称函数f(x)是“(m, n)型函数”.(1)判断函数f(x)=√x是否为“(m, n)型函数”,并说明理由;(2)①若函数g(x)是“(1, 4)型函数”,已知g(0)=1,求g(2);②若函数g(x)是“(1, 4)型函数”,且当x∈[0, 1]时,g(x)=x2−a(x−1)+1(a>0),若当x∈[0, 2]时,都有1≤g(x)≤4成立,试求a的取值范围.【答案】√m+x⋅√m−x=√m2−x2=n,则x2=m2−n2不可能恒成立,所以f(x)=x不是““(m, n)型函数”;①由题意,g(x+1)g(1−x)=4,取x=1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵(x+1)g(1−x)=4,所以g(x)g(2−x)=4.当x∈[0, 1]时,2−x∈[1, 2]时,g(2−x)=4g(x)=4x2−a(x−1)+1=4x2−ax+a+1.(a)当0<a<1时,0<a2<12,则g(x)在[0, 1]内先减后增,且g(a2≤g(x)≤41+a−a24,即1+a−14a2≤g(x)≤2,则当x∈[1, 2]时,2≤g(x)≤41+a−14a2.所以当x∈[0, 2]时,1+a−14a2≤g(x)≤41+a−14a2,由题意,{1+a−14a2≥141+a−14a2≤4,解得0≤a≤4,所以0<a<1.(b)当1≤a<2时,12≤a2<1,则g(x)在][0, 1]内先减后增,且g(a2)≤g(x)≤g(0),即1+a−14a2≤g(x)≤1+a,则当x∈[1, 2]时,41+a ≤g(x)≤41+a−14a2.要满足题意,则应满足{41+a≥11+a−a24≥1,且{1+a≤441+a−a24≤4解得0≤a≤33,所以1≤a<2.(c)当a≥2时,a2≥1,则g(x)在[0, 1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a,则当x∈[1, 2]时,41+a ≤g(x)≤2.此时,g(x)min=41+a,g(x)min=1+a.要满足条件,则应{41+a≥11+a≤4,解得a≤3,所以2≤a≤3.综上所述,0<a≤3.方法二:当x∈[0, 2]时,都有1≤g(x)≤4成立,所以当x∈[1, 2]时,1≤g(x)≤4;当x∈[0, 1]时,2−x∈[1, 2]时,所以g(2−x)∈[1, 4],而g(x)g(2−x)=4,所以1≤4g(x)≤4,即1≤g(x)≤4,所以问题转化为当x∈[0, 1]时,1≤g(x)≤4即可.当x∈[0, 1]时,g(x)=x2−a(x−1)+1(a>0),.(1)当0<a2<1,即0<a<2时,{g(a2)=1+a −a 24≥1g(0)=a +1≤4g(1)=2≤4,解得0≤a ≤3,所以0<a <2;(2)当a 2≥1,即a ≥2时,只要{g(0)=a +1≤4g(1)=2≥1解得a ≤3,所以2<a ≤3; 综上所述,0<a ≤3. 【考点】函数与方程的综合运用 【解析】(1)√m +x ⋅√m −x =√m 2−x 2=n ,则x 2=m 2−n 2不可能恒成立,即可判定; (2)①由g(x +1)g(1−x)=4,取x =1,则g(2)g(0)=4,即可求得g(2)=4. ②方法一:可得当x ∈[0, 1]时,2−x ∈[1, 2]时,g(2−x)=4g(x)=4x 2−a(x−1)+1=4x 2−ax+a+1.(a)当0<a <1时,(b)当1≤a <2时,(c)当a ≥2时讨论即可方法二:当x ∈[1, 2]时,1≤g(x)≤4;当x ∈[0, 1]时,2−x ∈[1, 2]时,所以g(2−x)∈[1, 4],而g(x)g(2−x)=4,所以1≤4g(x)≤4,即1≤g(x)≤4,问题转化为当x ∈[0, 1]时,1≤g(x)≤4即可. 【解答】√m +x ⋅√m −x =√m 2−x 2=n ,则x 2=m 2−n 2不可能恒成立,所以f(x)=x 不是““(m, n)型函数”;①由题意,g(x +1)g(1−x)=4,取x =1,则g(2)g(0)=4,又g(0)=1,所以g(2)=4.②方法一:∵ (x +1)g(1−x)=4,所以g(x)g(2−x)=4.当x ∈[0, 1]时,2−x ∈[1, 2]时,g(2−x)=4g(x)=4x 2−a(x−1)+1=4x 2−ax+a+1.(a)当0<a <1时,0<a 2<12,则g(x)在[0, 1]内先减后增,且g(a 2≤g(x)≤41+a−a 24,即1+a −14a 2≤g(x)≤2,则当x ∈[1, 2]时,2≤g(x)≤41+a−14a 2.所以当x ∈[0, 2]时,1+a −14a 2≤g(x)≤41+a−14a 2,由题意,{1+a −14a 2≥141+a−14a2≤4 ,解得0≤a ≤4,所以0<a <1.(b)当1≤a <2时,12≤a2<1,则g(x)在][0, 1]内先减后增,且g(a2)≤g(x)≤g(0),即1+a −14a 2≤g(x)≤1+a ,则当x ∈[1, 2]时,41+a ≤g(x)≤41+a−14a 2.要满足题意,则应满足{41+a ≥11+a −a 24≥1,且{1+a ≤441+a−a24≤4 解得0≤a ≤33,所以1≤a <2.(c)当a ≥2时,a2≥1,则g(x)在[0, 1]内递减,且g(1)≤g(x)≤g(0),即2≤g(x)≤1+a ,则当x ∈[1, 2]时,41+a ≤g(x)≤2.此时,g(x)min =41+a ,g(x)min =1+a .要满足条件,则应{41+a≥11+a ≤4,解得a ≤3,所以2≤a ≤3. 综上所述,0<a ≤3.方法二:当x ∈[0, 2]时,都有1≤g(x)≤4成立,所以当x ∈[1, 2]时,1≤g(x)≤4;当x ∈[0, 1]时,2−x ∈[1, 2]时,所以g(2−x)∈[1, 4], 而g(x)g(2−x)=4,所以1≤4g(x)≤4,即1≤g(x)≤4, 所以问题转化为当x ∈[0, 1]时,1≤g(x)≤4即可.当x ∈[0, 1]时,g(x)=x 2−a(x −1)+1(a >0),.(1)当0<a2<1,即0<a <2时,{g(a2)=1+a −a 24≥1g(0)=a +1≤4g(1)=2≤4,解得0≤a ≤3,所以0<a <2;(2)当a2≥1,即a ≥2时,只要{g(0)=a +1≤4g(1)=2≥1解得a ≤3,所以2<a ≤3; 综上所述,0<a ≤3.如图,在等腰三角形ABC 中,AB =AC ,∠A =120∘,M 为线段BC 的中点,D 为线段BC 上一点,且BD =BA ,沿直线AD 将△ADC 翻折至△ADC′,使AC′⊥BD ,记二面角C′−AD −B 的平面角为α.(1)证明:平面△AMC′⊥平面ABD ;(2)比较∠C′DB 与α的大小,并证明你的结论;(3)求cosα的值. 【答案】证明:∵ AM ⊥BD ,BD ⊥AC′,AM ∩AC′=A , ∴ BD ⊥平面AMC′,∵ BD ⊂平面ABD ,∴ 平面△AMC′⊥平面ABD .如图,在△C′AM 所在平面内,过点C′作C′P ⊥AM ,垂足为P , 则C′P ⊥平面ABD ,过P 作PQ ⊥AD ,连接C′Q , 则C′Q ⊥AQ ,∠C′QP =α.又QC′是由QC 翻折得到, ∴ ∠C′QP =α=2∠C′CQ ,且∠C′CQ 就是直线C′C 与平面ABC 所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′−AD−B的平面角.设AB=AC=BD=4,则BM=MC=2√3,MD=4−2√3,CD=4√3−4=C′D,在直角△C′DM中,C′M2=C′D2−DM2=36−16√3.【考点】二面角的平面角及求法平面与平面垂直【解析】(1)推导出AM⊥BD,BD⊥AC′,从而BD⊥平面AMC′,由此能证明平面△AMC′⊥平面ABD.(2)过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.QC′是由QC翻折得到,从而∠C′QP=α=2∠C′CQ,且∠C′CQ 就是直线C′C与平面ABC所成的角.同理,∠C′DB=2∠C′CD.由此能证明∠C′DB>α.(3)在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.推导出∠C′QP就是二面角C′−AD−B的平面角.由此能求出cosα的值.【解答】证明:∵AM⊥BD,BD⊥AC′,AM∩AC′=A,∴BD⊥平面AMC′,∵BD⊂平面ABD,∴平面△AMC′⊥平面ABD.如图,在△C′AM所在平面内,过点C′作C′P⊥AM,垂足为P,则C′P⊥平面ABD,过P作PQ⊥AD,连接C′Q,则C′Q⊥AQ,∠C′QP=α.又QC′是由QC翻折得到,∴∠C′QP=α=2∠C′CQ,且∠C′CQ就是直线C′C与平面ABC所成的角.同理,又C′D是由DC翻折得到,∴∠C′DB=2∠C′CD.由线面角的最小性可知,∠C′CD>∠C′CQ,∴∠C′DB>α.如图,在△C′AM中,过点C′作AM的垂线,垂足为P,过P作AD的垂线,垂足为Q.平面AMC′⊥平面BCD,交线为AM,C′P⊥平面ABD,又PQ⊥AD,∴CQ⊥AD.∴∠C′QP就是二面角C′−AD−B的平面角.设AB=AC=BD=4,则BM=MC=2√3,MD=4−2√3,CD=4√3−4=C′D,在直角△C′DM中,C′M2=C′D2−DM2=36−16√3.。

2019-2020学年浙江省杭州市学军中学高二上学期期中数学试题(解析版)

2019-2020学年浙江省杭州市学军中学高二上学期期中数学试题(解析版)
过 的截面图像为D选项对应的图像.
设 是棱 靠近 的三等分点,过 的截面图像为A选项对应的图像.
故C选项的图像不可能.
故选C.
【点睛】
本小题主要考查球与内接正方体的截面问题,考查空间想象能力,考查分析与思考问题的能力,属于基础题.
7.设实数 , 满足条件 且 ,则 的最小值为()
A. B. C. D.
.
(2)由于 平面 ,所以几何体的体积为 .
【点睛】
本小题主要考查三视图还原为原图,考查三棱锥的表面积和体积的计算,属于基础题.
19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ADC=60°,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=4,M为PD的中点.
(1)证明:MO∥平面PAB;
本题考查根据直观图面积求解原图面积的问题,关键是能够熟练掌握直观图与原图的面积之比.
3.设m,n为两条直线,若直线m⊥平面α,直线n⊂平面β,下列说法正确的是()
①若α∥β,则m⊥n②若α⊥β,则m∥n③若m∥n,则α⊥β④若m⊥n,则α∥β
A.①④B.②③C.①③D.③④
【答案】C
【解析】根据线面平行和垂直以及面面平行和垂直的定义和性质分别进行判断,∴m⊥平面β,
∵n⊂平面β,∴则m⊥n成立,故①正确,;
②若α⊥β,∵m⊥平面α,∴m∥β或m⊂β,
∵n⊂平面β,∴m∥n不一定成立,故②错误;
③若m∥n,则n⊥平面α,则α⊥β成立,故③正确;
④若m⊥n,则α∥β不一定成立,故④错误.
故正确的是①③.
故选:C.
【答案】A
【解析】对 分成 三种情况进行分类讨论,利用基本不等式求得 的最小值.
【详解】
依题意 成立,故 .由于 ,所以 且 .

浙江省杭州学军中学高二上学期期中考试(数学理).doc

浙江省杭州学军中学高二上学期期中考试(数学理).doc

浙江省杭州学军中学高二上学期期中考试(数学理)【考生须知】1.本科考试分试题卷和答题卷,考生须在答题卷上作答; 2.本科考试时间为100分钟,满分为100分.3.考生考试时禁止使用计算器.一.选择题(本大题有10小题,每小题3分,共30分,请从A,B,C,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分.)1.用“辗转相除法”求得459和357的最大公约数是( )A 3B 9C 17D 512.某公司生产三种型号的轿车,产量分别是1600辆、6000辆和辆,为检验公司的产品质量,现从这三种型号的轿车种抽取48辆进行检验,这三种型号的轿车依次应抽取( )A 16,16,16B 8,30,10C 4,33,11D 12,27,9 3.若右面框图表示的程序所输出的结果是13?处应填( )A 10<kB 10≤kC 9≥kD 9>k4.如图是元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) A 84,4.84 B 84,1.6C 85,1.6D 85,45.使用秦九韶算法计算2=x 时56)(6+=x x f 的值,所要进行的乘法和加法的次数分别为( )A 6,1B 1,1C 6,6D 1,676.设12,F F 为双曲线2214x y -=的两个焦点,点P 在双曲线上,且满足12PF PF ⊥,则12F PF ∆的面积是( )A 2B 1 CD7.下列各对双曲线中,既有相同的离心率,又有相同渐近线的是 ( ) A 2213x y -=与22193x y -= B 2213x y -=与2213x y -=C 2213x y -=与2213y x -= D 2213x y -=与22139y x -= 8.椭圆221mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M与坐标原点的直线的斜率为2,则mn的值为( ) A2B3 C 1 D 29.以正方形ABCD 的相对顶点A 、C 为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为( ) A3210- B315- C215- D2210- 10.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A 2B 3C 115D 3716二.填空题(本大题有5小题,每小题4分,共请将答案写在答题卷上) 11.已知x 、y 的取值如下表:从散点图分析,y 与x 线性相关,且回归方程为0.95y x a =+,则a = 12.抛物线24x y =的焦点坐标是13.若双曲线2221613x y p-=(p >0)的左焦点在抛物线22y px =的准线上,则p 的值为 14.已知椭圆22221x y a b+=(a >b >0)的焦点为1F ,2F .以|21F F |为直径的圆与椭圆有公共点,则椭圆的离心率e 的取值范围是_ _15. 设1F 、2F 是双曲线224x y -=的两焦点,Q 是双曲线上任意一点,从1F 引12FQF ∠平分线的垂线,垂足为P ,则点P 的轨迹方程是三.解答题(本大题有5小题, 共50分,解答应写出文字说明、证明过程或演算步骤)16. 某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:(1)根据上面频率分布表,推出①,②,③,④处的数值分别为 ,, , ;(2)在所给的坐标系中画出区间[80,150]上的频率分布直方图(画在上面的坐标系中); (3)根据题中信息估计总体:(ⅰ)1以上的学生数;(ⅱ)成绩落在[126,150]中的概率. 17. 已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过(2,0)A -、(2,0)B 、31,2C ⎛⎫ ⎪⎝⎭三点. (1)求椭圆E 的方程:(2)若点D 为椭圆E 上不同于A 、B 的任意一点,(1,0),(1,0)F H -,当DFH 内切圆的面积最大时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省杭州市西湖区学军中学西溪校区高二(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.圆柱的轴截面是边长为10的正方形,则圆柱的侧面积为()A. 50πB. 100πC. 125πD. 100+25π2.已知平面α,点A∈α,B∉α,直线l⊂α,则直线AB与l的位置关系是()A. 平行B. 相交C. 异面D. 无法确定3.设m,n表示不同直线,α,β,γ表示不同平面,下列叙述正确的是()A. 若m//α,m//n,则n//αB. 若m//n,m⊂α,n⊂β,则α//βC. 若α⊥γ,β⊥γ,则α//βD. 若m⊥α,n⊥α,则m//n4.如图,已知三棱柱ABC−A1B1C1的体积为90,则四面体A1B1BC的体积为()A. 20B. 30C. 45D. 605.在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外接球半径为()A. √32B. √3 C. 32D. 36.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为()A. 4√3B. 4√2C. 6D. 2√57.正四面体ABCD中,M,N分别是棱BC、AD的中点,则异面直线AM,CN所成角的余弦值为()A. −23B. 14C. 23D. −148.在棱长为1的正方体ABCD−A1B1C1D1中,E,F分别为棱AB,C1D1的中点,G为棱CC1上靠近C点的三等分点,用过点E,F,G的平面截正方体,则截面图形的周长为()A. 13+2√23B. 10+2√23C. 13+2√26D. 1439. 已知sinx +cosx =√22,则sin 4x +cos 4x =( ) A. 78 B. −78 C. 74 D. −74 10. 已知A ={x|x 2−x −6≤0},B ={x|x −a >0},A ∩B =⌀,则a 的取值范围是( )A. a =3B. a ≥3C. a <3D. a ≤3二、填空题(本大题共7小题,共36.0分)11. 在正四面体ABCD 中,M ,N 分别是BC 和DA 的中点,则异面直线MN 和CD 所成角为______. 12. 如图,二面角C −EF −G 的大小是60°,线段AB 在平面EFGH 上,B 在EF 上,AB 与EF 所成的角为30°,则AB 与平面CDEF 所成的角的正弦值是______.13. 已知正三棱锥的底面边长为2√3,侧棱长为2√5,则该正三棱锥内切球的表面积为________. 14. 已知f(x)=m +23x −1是奇函数,则m = ______ .15. 如图所示,在长方体ABCD −A 1B 1C 1D 1中,AD =2,AB =AE =1,M 为矩形AEHD 内一点,若∠MGF =∠MGH ,MG 和平面EFGH 所成角的正切值为12,则点M 到平面EFGH 的距离为______ .16. 已知正方体ABCD −A 1B 1C 1D 1的棱长为a ,AM ⃗⃗⃗⃗⃗⃗ =12MC 1⃗⃗⃗⃗⃗⃗⃗⃗ ,点N 为B 1B 的中点,则|MN|=______. 17. 已知函数f(3x )=4xlog 23+233,则f(x)=______ .三、解答题(本大题共5小题,共74.0分)18. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量p⃗ =(2sinA,cos(A −B)),q ⃗ =(sinB,−1),且p⃗ ⋅q ⃗ =12. (1)求角C 的大小;(2)若c =√3,求b −a 的取值范围.19.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA//平面MDB.20.已知数列{a n}的前n项和为S n(n∈N∗),满足S n=2a n−1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{a n}的前n项积为T n,求T n.21.已知f(x)=(|x−1|−3)2.(Ⅰ)若函数g(x)=f(x)−ax−2有三个零点,求实数a的值;(Ⅱ)若对任意x∈[−1,1],均有f(2x)−2k−2x≤0恒成立,求实数k的取值范围.22.如图四棱锥P−ABCD中,底面ABCD是正方形,PB⊥BC,PD⊥CD,且PA=AB,E为PD中点.(1)求证:PA⊥平面ABCD;(2)求二面角A−BE−C的余弦值.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查圆柱的侧面积及轴截面,属于基础题.根据圆柱的轴截面是正方形,求出圆柱的底面圆的周长,代入侧面积公式计算即可.【解答】解:∵圆柱的轴截面是正方形,且边长为10,∴圆柱的底面周长为:10π,∴圆柱的侧面积S=10×10π=100π.故选B.2.答案:D解析:【分析】本题考查空间中直线与平面的位置关系,属于基础题.【解答】解:已知平面α,点A∈α,B∉α,直线l⊂α,则直线AB与l的位置关系是相交或异面.故选D.3.答案:D解析:【分析】本题考查命题的真假的判断,平面的基本性质及推论,本题解题的关键是在推导这种线面位置关系的问题时,注意容可能的情况,属于基础题.选项A中还有直线n在平面α内的情况,选项B、选项C中还有两个平面相交的情况,D选项中忙着直线与平面垂直的性质定理.【解答】解:选项A中若m//α,m//n,则n//α,还有直线n在平面α内的情况,故A不正确,选项B中若m//n,m⊂α,n⊂β,则α//β,有可能两个平面相交,故B不正确,选项C中若α⊥γ,β⊥γ,则α//β,还有两个平面相交的可能,故C不正确.选项D,若m⊥α,n⊥α,则m//n,满足直线与平面垂直的性质,所以D正确;故选:D.4.答案:B解析:【分析】本题考查棱柱和棱锥的体积公式的运用;首先由已知得到V C−ABB1A1为三棱柱体积的23,而则四面体A1B1BC的体积为四棱锥V C−ABB1A1体积的一半,即得到所求.【解答】解:由已知得到V C−ABB1A1为三棱柱体积的23,而则四面体A1B1BC的体积为四棱锥V C−ABB1A1体积的12,所以四面体A 1−B 1BC 的体积为三棱柱ABC −A 1B 1C 1的体积的13,即为90×13=30; 故选B . 5.答案:B 解析:解:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设P ,M 分别为AB ,CD 的中点,则N 在DP 上,且ON ⊥DP ,OM ⊥CD . 因为∠CDA =∠CDB =∠ADB =60°,设CD 与平面ABD 所成角为θ,∴cosθ=1√3,sinθ=√2√3. 在△DMN 中,DM =12CD =1,DN =23⋅DP =23⋅√32⋅3=√3. 由余弦定理得MN 2=12+(√3)2−2⋅1⋅√3⋅1√3=2,故MN =√2.∴四边形DMON 的外接圆的直径OD =MN sinθ=√2√2√3=√3.故球O 的半径R =√3.故选:B .设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上,且点N 为△ABD 的中心.设P ,M 分别为AB ,CD 的中点,则N 在DP 上,且ON ⊥DP ,OM ⊥CD ,从而可求DM ,MN ,进而可求四边形DMON 的外接圆的直径,即可求得球O 的半径.本题考查四面体ABCD 的外接球,考查学生的计算能力,确定四面体ABCD 的外接球球心位置是关键.6.答案:C解析:【分析】本题考查的知识点是由三视图,求体积,其中根据已知分析出几何体的形状是解答的关键. 根据几何体的三视图还原几何体形状,求出各棱的长度,比较后,可得答案.【解答】解:利用“三线交汇得顶点”的方法,该几何体是三棱锥P −ABC ,如图所示,其中,正方体棱长为4,点P 是正方体其中一条棱的中点,则:AB =AC =4,PC =√42+22=2√5,BC =4√2,AP =BP =√42+42+22=6,所以最长棱为6.故选:C .7.答案:C解析:解:取MD中点O,连结NO,CO,∵N是AD中点,∴NO//AM,∴∠CNO是异面直线AM,CN所成角,设正四面体ABCD中棱长为2,则AM=DM=CN=√4−1=√3,ON=12AM=√32,CO=√(√32)2+12=√72,∴cos∠CNO=34+3−742×√32×√3=23.故选:C.取MD中点O,连结NO,CO,则NO//AM,从而∠CNO是异面直线AM,CN所成角,由此能求出异面直线AM,CN所成角的余弦值.本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.8.答案:B解析:【分析】本题考查正方体中的截面问题,考查学生空间想象能力和计算能力,属中档题.根据已知条件画出过点E,F,G的截面,求周长即可.【详解】解:连接FG并延长交DC延长线于点H,连接EH交BC于点M,连接GM,取A1D1靠近点A1的三等分点N,连接FN并延长交B1A1的延长线于点Q,连接QE交A1A于点P,连接NP,则六边形EMGFNP即为过点E,F,G的截面,由G 为棱CC 1靠近C 点的三等分点,可得CH FC 1=12,即CH =14, 由CH BE =12,知点M 为靠近点C 的三等分点,即CM =13,由勾股定理得GM =√23=NP ,FG =PE =√49+14=56, 同理得EM =FN =56,则截面图形的周长为2√23+56×4=10+2√23, 故选B .9.答案:A解析:解:sinx +cosx =√22, ∴sin 2x +cos 2x +2sinxcosx =12, ∴1+2sinxcosx =12,∴sinxcosx =−14;∴sin 4x +cos 4x =(sin 2x +cos 2x)2−2sin 2xcos 2x =1−2×(−14)2=78.故选:A .根据平方关系求出sin x cosx 的值,再利用平方关系求sin 4x +cos 4x 的值.本题考查了三角函数求值的应用问题,是基础题.10.答案:B解析:解:A ={x|−2≤x ≤3},B ={x|x >a};∵A ∩B =⌀;∴a ≥3.故选:B .解出集合A ,B ,根据A ∩B =⌀即可得出a 的取值范围.考查描述法表示集合的概念,一元二次不等式的解法,以及交集的运算.11.答案:π4解析:【分析】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,是基础题.取AC 中点O ,连结AM 、DM 、OM 、ON ,则∠MNO 是异面直线MN和CD 所成角(或所成角的补角),由此能求出异面直线MN 和CD 所成角.【解答】解:如图,取AC 中点O ,连结AM 、DM 、OM 、ON ,设正四面体ABCD 的棱长为2,∵M,N分别是BC和DA的中点,∴AM=DM=√4−1=√3,MN=√3−1=√2,MO=//12AB=1,NO=//12DC=1,∴∠MNO是异面直线MN和CD所成角(或所成角的补角),∵cos∠MNO=MN2+NO2−OM22⋅MN⋅NO =2×√2×1=√22,∴∠MNO=π4,∴异面直线MN和CD所成角为π4.故答案为:π4.12.答案:√34解析:解:过点A作平面CDEF的垂线,垂足为C,在平面CDEF内过C作EF的垂线,垂足为D,连接AD,则由三垂线定理可知AD⊥EF,故∠ADC为二面角C−EF−G的平面角,为60°,又由已知,∠ABD=30°,连接CB,则∠ABC为AB与平面CDEF所成的角,设AD=2,则AC=√3,CD=1,所以AB=4,所以sin∠ABC=ACAB =√34.故答案为:√34.过点A作平面CDEF的垂线,垂足为C,在平面CDEF内过C作EF的垂线,垂足为D,连接AD,可得∠ADC为二面角C−EF−G的平面角,连接CB,则∠ABC为AB与平面CDEF所成的角,在直角三角形ABC中求出此角即可.本题主要考查了平面与平面之间的位置关系,以及直线与平面所成角,考查空间想象能力、运算能力和推理论证能力,属于中档题.13.答案:9−√172π解析:【分析】本题考查棱锥的全面积和体积的求法,考查球的表面积的求法,解题时要认真审题,注意空间思维能力的培养.求出棱锥的体积,设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,由此能求出球的表面积.【解答】解:如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,P−ABC是正三棱锥,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心,∵AB=2√3,则AE=3,∴S△ABC=3√3,所以PE=√PB2−BE2=√17,S△PAB=S△PBC=S△PCA=12×2√3×√17=√51,∴棱锥的全面积S=3√3+3√51.设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵AD=2,则PD=√PA2−AE2=4,∴V P−ABC=13×3√3×4=4√3,则由等体积可得r=√3√51+√3=√17−14.∴S球=4π(√17−14)2=9−√172π.故答案为9−√172π.14.答案:1解析:解:f(x)=m+23x−1是奇函数,可得f(1)=−f(−1),即m231−1=−(m+23−1−1),解得m=1,此时f(x)=1+23x−1,满足f(x)=−f(−x).故答案为:1.利用函数是奇函数,推出结果即可.本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.15.答案:√22解析:解:取FG的中点N,作MO⊥EH于O,连接MN,ON,MH,OG,在长方体ABCD −A 1B 1C 1D 1中,AD =2,AB =AE =1,M 为矩形AEHD 内一点,若∠MGF =∠MGH ,可得△MNG≌△MGH ,则△ONG≌△OGH ,MG 和平面EFGH 所成角的正切值为12,可得 MO OG =12,OG =√2,则MO =√22. 则点M 到平面EFGH 的距离为:√22.故答案为:√22. 取FG 的中点N ,作MO ⊥EH 于O ,连接MN ,ON ,MH ,OG ,通过MG 和平面EFGH 所成角的正切值为12,推出MO OG =12,然后求解即可.本题考查直线与平面的所成角的求法,点到平面的距离的求法,考查转化思想以及计算能力.16.答案:√216a解析:解:正方体ABCD −A 1B 1C 1D 1的棱长为a ,AM ⃗⃗⃗⃗⃗⃗ =12MC 1⃗⃗⃗⃗⃗⃗⃗⃗ ,点N 为B 1B 的中点,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则A(a,0,0),C 1(0,a ,a),M(2a 3,a 3,a 3),N(a,a ,a 2),∴|MN|=√(a −2a 3)2+(a −a 3)2+(a 2−a 3)2=√216a . 故答案为:√216a. 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,由此能求出|MN|. 本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想、数形结合思想,是中档题.17.答案:f(x)=4log 2x +233解析:解:∵函数f(3x )=4xlog 23+233,设t =3x ,则x =log 3t ,∴f(t)=4log 3tlog 23+233=4×lgt lg3×lg3lg2+233 =4×lgt lg2+233 =4log 2t +233,即f(t)=4log 2t +233;故答案为:f(x)=4log 2x +233.设t =3x ,用t 表示x ,求出f(t),即是f(x)的解析式.本题考查了用换元法求函数的解析式问题,是基础题.18.答案:解:(1)由p ⃗ ⋅q ⃗ =12,得2sinAsinB −cos(A −B)=12, ∴2sinAsinB −cosAcosB −sinAsinB =12,∴−cos(A +B)=12,即cosC =12,又0<C <π,∴C =π3; (2)∵c =√3,C =π3,∴√3sin π3=a sinA =b sinB ,∴a =2sinA ,b =2sinB ;∴b −a =2sinB −2sinA=2sin[π−(π3+A)]−2sinA =2sin(π3+A)−2sinA =2(√32cosA −12sinA) =2cos(A +π6),∵0<A <2π3,∴π6<A +π6<5π6, ∴−√32<cos(A +π6)<√32,∴2cos(A +π6)∈(−√3,√3),∴b −a 的取值范围是(−√3,√3).解析:(1)由平面向量的数量积,利用三角恒等变换求得cos C 的值,再结合范围0<C <π得出C 的值;(2)由正弦定理求得a =2sinA ,b =2sinB ,再利用三角恒等变换与三角函数的图象与性质求出b −a 的范围.本题考查了正弦、余弦定理,平面向量的数量积应用问题,也考查了三角函数的图象和性质以及三角函数恒等变换的应用问题.19.答案:证明:连接AC 交BD 于N ,因为ABCD 是平行四边形,所以N 是AC 的中点,又因为M 是SC 的中点,所以MN//SA ,因为MN ⊂平面MDB ,SA ⊄平面MDB ,所以SA//平面MDB .解析:要说明SA//平面MDB ,就要在平面MDB 内找一条直线与SA 平行,注意到M 是SC 的中点,于是可找AC 的中点,构造与SA 平行的中位线,再说明此中位线在平面MDB 内,即可得证. 20.答案:解:(Ⅰ) 由S n =2a n −1可得,当n =1时,a 1=S 1=2a 1−1,即有a 1=1;当n ≥2时a n =S n −S n−1,a n =2a n −2a n−1,即a n =2a n−1,则数列{a n }为首项为1,公比为2的等比数列,即a n =2n−1,n ∈N ∗.(Ⅱ)T n =a 1⋅a 2⋅a 3…a n =20+1+2+3+⋯+(n−1)=2n(n−1)2.解析:(Ⅰ) 运用数列的递推式:当n =1时,a 1=S 1,当n ≥2时a n =S n −S n−1,结合等比数列的定义和通项公式,即可得到所求;(Ⅱ)运用指数的运算性质和等差数列的求和公式,计算即可得到所求.本题考查数列的递推式和等比数列的定义和通项公式的运用,考查运算能力,属于中档题. 21.答案:解:(Ⅰ)由题意g(x)=f(x)−ax −2=0等价于f(x)=ax +2有三个不同的解,由f(x)={(x −4)2,x ≥1(x +2)2,x <1, 可得函数图象如图所示:联立方程:(x −4)2=ax +2,由Δ=(a +8)2−56=0,可得a =−8±2√14,结合图象可知a =−8+2√14.同理(x +2)2=ax +2,由Δ=(4−a)2−8=0,可得a =4±2√2,因为4+2√2<K PQ =7,结合图象可知a =4−2√2,综上可得:a =−8+2√14或a =4−2√2.(Ⅱ)设2x =t ∈[12,2],原不等式等价于(|t −1|−3)2≤2kt 2, 两边同乘t 2得:[t(|t −1|−3)]2≤2k ,设m(t)=t(|t −1|−3),t ∈[12,2],原题等价于2k ≥[m(t)]2的最大值,(1)当t ∈[1,2]时,m(t)=t(t −4),易得m(t)∈[−4,−3],(2)当t ∈[12,1)时,m(t)=−t(t +2),易得m(t)∈(−3,54],所以[m(t)]2的最大值为16,即2k ≥16,故k ≥4.解析:本题是函数与方程的综合应用,属于难题.(Ⅰ)由题意g(x)=f(x)−ax −2=0等价于f(x)=ax +2有三个不同的解,由f(x)={(x −4)2,x ≥1(x +2)2,x <1,画图,结合图象解方程可得a 的值; (Ⅱ)设2x =t ∈[12,2],原不等式等价于(|t −1|−3)2≤2kt 2,两边同乘t 2得:[t(|t −1|−3)]2≤2k ,设m(t)=t(|t −1|−3),t ∈[12,2],原题等价于2k ≥[m(t)]2的最大值,对t 讨论求解即可. 22.答案:解:(1)证明:∵底面ABCD 为正方形,∴BC ⊥AB ,又BC ⊥PB ,AB ∩PB =B ,∴BC ⊥平面PAB ,∴BC ⊥PA .同理CD ⊥PA ,BC ∩CD =C ,∴PA ⊥平面ABCD .(2)解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立如图的空间直角坐标系,不妨设正方形的边长为2.则A(0,0,0),C(2,2,0),E(0,1,1),B(2,0,0),设m⃗⃗⃗ =(x,y ,z)为平面ABE 的一个法向量, 又AE⃗⃗⃗⃗⃗ =(0,1,1),AB ⃗⃗⃗⃗⃗ =(2,0,0), {n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =y +z =0n⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x =0,令y =−1,z =1,得m ⃗⃗⃗ =(0,−1,1), 同理n⃗ =(1,0,2)是平面BCE 的一个法向量, 则cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ |⋅|n ⃗⃗ |=√2⋅√5=√105. ∴二面角A −BE −C 的余弦值为√105.解析:(1)推导出BC ⊥AB ,BC ⊥PB ,从而BC ⊥平面PAB ,进而BC ⊥PA.同理CD ⊥PA ,由此能证明PA ⊥平面ABCD .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A −BE −C 的余弦值.本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.。

相关文档
最新文档