最新 2001—2018年江苏专转本高等数学真题及参考答案 精品

合集下载

2001—2010年江苏专转本高等数学真题(附答案)

2001—2010年江苏专转本高等数学真题(附答案)

2011--2010江苏省普通高校“专转本”统一考试高等数学试题及答案成败在于努力从2001年到2010年的转本试卷及答案杨威2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专转本2001-2011年数学历年真题

江苏专转本2001-2011年数学历年真题

江苏省2001年普通高校“专转本”统一考试试卷高等数学注意事项:1. 考生务必将密封线内的各项填写清楚。

2. 考生须用钢笔或圆珠笔将答案直接打在试卷上,答在草稿纸上无效。

3. 本试卷共8页,四大题24小题,满分100分,考试时间120分钟。

题号 一 二 三 四 合计分数评卷人 得分一、选择题(本大题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。

1、下列极限正确的是( )A. 01lim(1)x x e x→+= B. 11lim(1)x x e x →∞+=C.1lim sin1x x x →∞= D. 01lim sin 1x x x→=2、不定积分211dx x=-⎰( )A.211x- B.211C x+- C. arcsin x D. arcsin x C +3、若()()f x f x =-,且在(0,)+∞内:()0,()0f x f x '''>>,则()f x 在(,0)-∞内必有( )A.()0,()0f x f x '''<< B. ()0,()0f x f x '''<> C.()0,()0f x f x '''>< D. ()0,()0f x f x '''>>4、定积分21x dx -=⎰( )A. 0B. 2C. -1D. 15、方程224x y x +=在空间直角坐标系下表示( )A. 圆柱面B. 点C. 圆D. 旋转抛物面评卷人 得分二、填空题(本大题共5小题,每小题3分,共15分,请把正确答案的结果填在划线上)。

6、设参数方程为22tx tey t t⎧=⎪⎨=+⎪⎩;则0t dy dx == 。

7、微分方程6130y y y '''-+=的通解为: 。

01—10年江苏专转本数学真题(附答案)

01—10年江苏专转本数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

(整理)2001—年江苏专转本高等数学真题(附答案) (2).

(整理)2001—年江苏专转本高等数学真题(附答案) (2).

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

(完整版)2018年江苏省普通高校“专转本”统一考试《高等数学》试卷

(完整版)2018年江苏省普通高校“专转本”统一考试《高等数学》试卷

2018年江苏省普通高校“专转本”统一考试一、 选择题(本大题共6小题,每小题4分,满分24分)1、当0x →时,下列无穷小与()2sin f x x x =同阶的是 ( )A.2cos 1x -1 C. 31x - D 。

()3211x +- 2、设函数2()x a f x x x b-=++,若1x =为其可去间断点,则常数a ,b 的值分别为 ( ) A 。

1,2- B 。

1,2- C 。

1,2-- D. 1,23、设1()1x f x x ϕ-⎛⎫= ⎪+⎝⎭,其中()x ϕ为可导函数,且()13ϕ'=,则()0f '等于 ( ) A.6- B 。

6 C.3- D. 34、设()2x F x e =是函数()f x 的一个原函数,则()xf x dx '=⎰ ( ) A. 2112x e x C ⎛⎫-+ ⎪⎝⎭ B. ()221x e x C -+ C. 2112x e x C ⎛⎫++ ⎪⎝⎭D. ()221x e x C ++ 5、下列反常积分发散的是( )A 。

0x e dx -∞⎰B 。

311dx x +∞⎰C 。

211dx x +∞-∞+⎰D 。

011dx x+∞+⎰ 6、下列级数中绝对收敛的是( )A. 1n n ∞=∑()1121nn n ∞=+-∑ C. 21sin n n n ∞=∑ D 。

31(3)n n n ∞=-∑ 二、填空题(本大题共6小题,每小题4分,共24分)7设()102lim 1lim sin x x x ax x x→→∞+=,则常数a =_________. 8、设函数()0y x =>,则y '=____________.9、设(),z z x y =是由方程21z xyz +=所确定的函数,则z x ∂=∂___________. 10、曲线43234612y x x x x =+--的凸区间为___________.11、已知空间三点()1,1,1M ,()1,1,0A ,()2,1,2B ,则AMB ∠的大小为__________.12、幂级数1(4)5nn n x n ∞=+∑的收敛域为____________.三、计算题(本大题共8小题,每小题8分,共64分)13、求极限()22011lim ln 1x x x →⎡⎤⎢⎥-+⎢⎥⎣⎦. 14、设函数)(x y y =由参数方程323101x xt t y t t ⎧-+-=⎪⎨=++⎪⎩所确定,求0t dy dx =. 15、求不定积分. 16、计算定积分()2121ln x xdx +⎰ .17、求通过点()1,2,3M 及直线131415x t y t z t =+⎧⎪=+⎨⎪=+⎩的平面方程.18、求微分方程()323220y x y dx x dy -+=的通解. 19、设,x z xf y y ⎛⎫= ⎪⎝⎭,其中函数具有一阶连续偏导数,求全微分dz .20、计算二重积分D xydxdy ⎰⎰,其中()(){}22,11,0D x y x y y x =-+≤≤≤. 四、证明题(本大题共2小题,每小题9分,共18分)21、证明:当0x >时,ln x ≤ 22、设0()0()00x f t dt x F x x x⎧⎪≠=⎨⎪⎩⎰ =,其中函数()f x 在),(+∞-∞上连续,且0()lim 1x f x x →=,证明:()F x '在点0=x 处连续.五、综合题(本大题共2小题,每小题10分,共20分)23、设D 是由曲线弧cos 42y x x ππ⎛⎫=≤≤ ⎪⎝⎭与sin 4y x x ππ⎛⎫=≤≤ ⎪⎝⎭及x 轴所围成的平面图形,试求: (1)D 的面积;(2)D 绕x 轴旋转一周所形成的旋转体的体积.24、设函数()f x 满足方程()()()320f x f x f x '''-+=,且在0x =处取得极值1,试求:(1)函数)(x f 的表达式;(2)曲线()()f x y f x '=的渐近线.。

江苏省“专转本”《高等数学》试卷分类解析不定积分.

江苏省“专转本”《高等数学》试卷分类解析不定积分.

同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。

解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。

江苏省2018年专转本高等数学试卷及解答

江苏省2018年专转本高等数学试卷及解答

B .6
C . −3
D .3

f ′(x) =
ϕ
′(1 1
− &##43;
− (1 x)2

x)
=

(1
2 + x)2
ϕ
′(1 1
− +
x x
)
,则
f ′(0) = −2ϕ′(1) = −6 ,答案为:A
∫ 4.设 F (x) = e2x 是函数 f (x) 的一个原函数,则 x f ′(x)dx 等于 ( B ).
4
2
y
y
= sin x
π


x
≤π
)及 x 轴所围成,试求:
4
(1)平面图形 D 的面积;
(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.
O ππ 42
π
π
π
π
2
1
1
∫ ∫ 解
(1) A =
π sin xdx −
2 π
cos
xdx
=−
cos
x
−sin x
= −(−1 −
π
π
4
4
4
4
) − (1− 2
. 3π 4

= MA
(0,0, −1)

MB
=
(1,0,1) ,则 cos ∠AMC
= | MMAA|
⋅ ⋅
MB | MA
|
= −1 1⋅ 2
= − 1 2
,所以 ∠AMB
= 3π 4
∑∞ (x + 4)n
12.幂级数
的收敛域为
n=1 n ⋅ 5n

2001—2010年江苏专转本高等数学真题(附答案)

2001—2010年江苏专转本高等数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( ) A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(lim C 、11sinlim =∞→xx x D 、11sinlim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分) 6、设⎩⎨⎧+==22t t y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctanπ+++=xx y ,求dy .12、计算xx dte x x tx sin lim22⎰-→.13、求)1(sin )1()(2--=x x x x x f 的间断点,并说明其类型.14、已知xy x y ln 2+=,求1,1==y x dxdy .15、计算dx eexx⎰+12.16、已知⎰∞-=+02211dx xk ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b axx f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2yx x f z =,其中f 具有二阶连续偏导数,求xz ∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctanπ+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2yx x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、y x z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

22、设⎪⎩⎪⎨⎧=≠=00)()(x ax xx f x g ,其中)(x f 具有二阶连续导数,且0)0(=f .(1)求a ,使得)(x g 在0=x 处连续; (2)求)('x g .23、设)(x f 在[]c ,0上具有严格单调递减的导数)('x f 且0)0(=f ;试证明:对于满足不等式c b a b a <+<<<0的a 、b 有)()()(b a f b f a f +>+.24、一租赁公司有40套设备,若定金每月每套200元时可全租出,当租金每月每套增加10元时,租出设备就会减少一套,对于租出的设备每套每月需花20元的维护费。

问每月一套的定金多少时公司可获得最大利润?2002年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共10小题,每小题3分,共30分)1、下列极限中,正确的是 ( ) A 、 e x xx =+→cot 0)tan 1(lim B 、 11sinlim 0=→xx x C 、 e x xx =+→sec 0)cos 1(limD 、 e n nn =+∞→1)1(lim2、已知)(x f 是可导的函数,则=--→hh f h f h )()(lim( )A 、)(x f 'B 、)0(f 'C 、)0(2f 'D 、)(2x f '3、设)(x f 有连续的导函数,且0≠a 、1,则下列命题正确的是 ( ) A 、C ax f adx ax f +='⎰)(1)( B 、C ax f dx ax f +='⎰)()(C 、)())(ax af dx ax f =''⎰D 、C x f dx ax f +='⎰)()(4、若x e y arctan =,则=dy ( )A 、dx ex211+ B 、dx e e xx21+ C 、dx ex211+ D 、dx ee xx 21+5、在空间坐标系下,下列为平面方程的是 ( ) A 、x y =2 B 、⎩⎨⎧=++=++120z y x z y x C 、22+x =74+y =3-zD 、043=+z x6、微分方程02=+'+''y y y 的通解是 ( ) A 、x c x c y sin cos 21+= B 、xxe c e c y 221+= C 、()xex c c y -+=21 D 、xx e c e c y -+=217、已知)(x f 在()+∞∞-,内是可导函数,则))()(('--x f x f 一定是 ( ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、不能确定奇偶性 8、设dx xx I ⎰+=141,则I 的范围是 ( )A 、220≤≤I B 、1≥I C 、0≤I D 、122≤≤I 9、若广义积分dx xp ⎰∞+11收敛,则p 应满足 ( ) A 、10<<pB 、1>pC 、1-<pD 、0<p10、若xxee xf 11121)(+-=,则0=x 是()x f 的 ( )A 、可去间断点B 、跳跃间断点C 、无穷间断点D 、连续点二、填空题(本大题共5小题,每小题3分,共15分)11、设函数)(x y y =是由方程)sin(xy e e y x =-确定,则='=0x y12、函数x exx f =)(的单调增加区间为 13、⎰-=+11221ta dx x xn x 14、设)(x y 满足微分方程1='y y e x ,且1)0(=y ,则=y 15、交换积分次序()=⎰⎰dx y x f dy ee y10,三、计算题(本大题共8小题,每小题4分,共32 分) 16、求极限()⎰+→xx dtt t t xx 020sin tan lim17、已知()()⎩⎨⎧-=+=t t t a y t t t a x cos sin sin cos ,求4π=t dx dy18、已知()22ln yx x z ++=,求x z ∂∂,xy z ∂∂∂219、设⎪⎩⎪⎨⎧<+≥+=0,11,11)(x e x x x f x,求()dx x f ⎰-20120、计算⎰⎰⎰⎰-+++2201221022222x x dy y x dx dy y x dx21、求()x e y x y sin cos =-'满足1)0(=y 的解.22、求积分dx xx x ⎰-421arcsin23、设()()⎪⎩⎪⎨⎧=≠+=0,0,11x k x x x f x,且()x f 在0=x 点连续,求:(1)k 的值(2)()x f '四、综合题(本大题共3小题,第24小题7分,第25小题8分,第26小题8分,共23分)24、从原点作抛物线42)(2+-=x x x f 的两条切线,由这两条切线与抛物线所围成的图形记为S ,求:(1)S 的面积; (2)图形S 绕X 轴旋转一周所得的立体体积.25、证明:当22ππ<<-x 时,211cos x x π-≤成立.26、已知某厂生产x 件产品的成本为240120025000)(x x x C ++=(元),产品产量x 与价格P 之间的关系为:x x P 201440)(-=(元) 求:(1) 要使平均成本最小,应生产多少件产品?(2) 当企业生产多少件产品时,企业可获最大利润,并求最大利润.2003年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共8小题,每小题3分,共24分) 1、已知2)(0'=x f ,则=--+→hh x f h x f h )()(lim000( )A 、2B 、4C 、0D 、2-2、若已知)()('x f x F =,且)(x f 连续,则下列表达式正确的是 ( ) A 、c x f dx x F +=⎰)()( B 、c x f dx x F dx d+=⎰)()( C 、c x F dx x f +=⎰)()(D 、)()(x f dx x F dxd=⎰ 3、下列极限中,正确的是 ( )A 、22sin lim=∞→xxx B 、1arctan lim=∞→xxx C 、∞=--→24lim22x x x D 、1lim 0=+→xx x 4、已知)1ln(2x x y ++=,则下列正确的是 ( ) A 、dx x x dy 211++=B 、dx x y 21'+=C 、dx xdy 211+=D 、211'xx y ++=5、在空间直角坐标系下,与平面1=++z y x 垂直的直线方程为 ( )A 、⎩⎨⎧=++=++021z y x z y xB 、31422-=+=+zy x C 、5222=++z y xD 、321-=-=-z y x6、下列说法正确的是 ( )A 、级数∑∞=11n n收敛B 、级数∑∞=+121n n n 收敛 C 、级数∑∞=-1)1(n nn 绝对收敛D 、级数∑∞=1!n n 收敛7、微分方程0''=+y y 满足00==x y ,1'==x y 的解是A 、x c x c y sin cos 21+=B 、x y sin =C 、x y cos =D 、x c y cos =8、若函数⎪⎪⎩⎪⎪⎨⎧<-=>=0)31ln(1020sin )(x x bx x x x axx f 为连续函数,则a 、b 满足A 、2=a 、b 为任何实数B 、21=+b aC 、2=a 、23-=b D 、1==b a二、填空题(本大题共4小题,每小题3分,共12分) 9、设函数)(x y y =由方程xy e y x =+)ln(所确定,则==0'x y10、曲线93)(23++-==x x x x f y 的凹区间为 11、=+⎰-dx x x x )sin (113212、交换积分次序=+⎰⎰⎰⎰-yy dx y x f dy dx y x f dy 3031201),(),(三、计算题(本大题共8小题,每小题5分,共40分)13、求极限xx x cos 1120)1(lim -→+14、求函数⎪⎪⎭⎫⎝⎛=y x z tan 的全微分 15、求不定积分dx x x ⎰ln16、计算θθθππd ⎰-+222cos1sin17、求微分方程xe x y xy 2'=-的通解.18、已知⎩⎨⎧-=+=tt y t x arctan )1ln(2,求dx dy 、22dx yd .19、求函数1)1sin()(--=x x x f 的间断点并判断其类型.20、计算二重积分⎰⎰+-Ddxdy y x )1(22,其中D 是第一象限内由圆x y x 222=+及直线0=y 所围成的区域.四、综合题(本大题共3小题,第21小题9分,第22小题7分,第23小题8分,共24分) 21、设有抛物线24x x y -=,求:(i )、抛物线上哪一点处的切线平行于X 轴?写出该切线方程; (ii )、求由抛物线与其水平切线及Y 轴所围平面图形的面积; (iii )、求该平面图形绕X 轴旋转一周所成的旋转体的体积.22、证明方程2=xxe 在区间()1,0内有且仅有一个实根.23、要设计一个容积为V 立方米的有盖圆形油桶,已知单位面积造价:侧面是底面的一半,而盖又是侧面的一半,问油桶的尺寸如何设计,可以使造价最低?五、附加题(2000级考生必做,2001级考生不做) 24、将函数xx f +=41)(展开为x 的幂级数,并指出收敛区间。

相关文档
最新文档