《圆内接四边形》公开课教案

合集下载

北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。

通过学习,学生能够理解圆的内接四边形的性质,并能够运用这些性质解决相关问题。

本节课的内容是九年级数学的重要知识点,也是高考的考点之一。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、圆的性质等基础知识。

但圆的内接四边形的性质较为复杂,需要学生通过实例探究、推理归纳等方法来理解和掌握。

同时,学生需要具备一定的空间想象能力和逻辑思维能力。

三. 教学目标1.理解圆的内接四边形的性质。

2.能够运用圆的内接四边形的性质解决相关问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的内接四边形的性质。

2.如何运用圆的内接四边形的性质解决实际问题。

五. 教学方法1.实例探究:通过具体的图形,引导学生探究圆的内接四边形的性质。

2.推理归纳:引导学生运用已知的数学知识,推理归纳出圆的内接四边形的性质。

3.小组讨论:学生在小组内讨论如何运用圆的内接四边形的性质解决实际问题。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解圆的内接四边形的性质。

2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察圆的内接四边形,引发学生的思考。

2.呈现(10分钟)利用教学课件,呈现圆的内接四边形的性质,引导学生直观地理解。

3.操练(10分钟)让学生通过观察、思考、推理等方法,归纳出圆的内接四边形的性质。

4.巩固(10分钟)通过一些相关的练习题,巩固学生对圆的内接四边形性质的理解。

5.拓展(10分钟)引导学生运用圆的内接四边形的性质解决实际问题,培养学生的运用能力。

6.小结(5分钟)对本节课的内容进行总结,强调圆的内接四边形的性质及其运用。

7.家庭作业(5分钟)布置一些相关的作业,让学生进一步巩固所学知识。

24.1.5圆内接四边形(教案)-2021-2022学年九年级数学上册人教版(安徽)

24.1.5圆内接四边形(教案)-2021-2022学年九年级数学上册人教版(安徽)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆内接四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在学生小组讨论环节,我尝试提出一些开放性的问题,引导学生思考和探究。从成果分享来看,学生们对于圆内接四边形在实际生活中的应用有了更深入的认识。但同时,我也发现部分学生的思考深度和广度仍有待提高。在接下来的教学中,我会进一步加强引导,培养学生独立思考和批判性思维的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆内接四边形的基本概念。圆内接四边形是指四边形的四个顶点都在同一圆上的四边形。它是几何学中的一个重要概念,因为它具有独特的性质和广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆内接四边形在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆内接四边形的基本概念、性质和判定定理,以及它在实际中的应用。通过实践活动和小组讨论,我们加深了对圆内接四边形的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.圆内接四边形的判定定理:四边形ABCD内接于圆O的充分必要条件是它的对角互补,即∠A+∠C=180°,∠B+∠D=180°。

北师大版数学九年级下册《圆的内接四边形》教学设计1

北师大版数学九年级下册《圆的内接四边形》教学设计1

北师大版数学九年级下册《圆的内接四边形》教学设计1一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。

通过学习,学生能够了解圆的内接四边形的性质,并能够运用这些性质解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本性质和四边形的性质。

但对于圆的内接四边形的性质,可能较为陌生。

因此,在教学过程中,需要引导学生通过观察、思考、探究,从而发现和证明圆的内接四边形的性质。

三. 教学目标1.理解圆的内接四边形的性质。

2.能够运用圆的内接四边形的性质解决实际问题。

3.培养学生的观察能力、思考能力和探究能力。

四. 教学重难点1.圆的内接四边形的性质。

2.如何运用圆的内接四边形的性质解决实际问题。

五. 教学方法采用问题驱动法、探究法、小组合作法等教学方法,引导学生通过观察、思考、探究,发现和证明圆的内接四边形的性质。

六. 教学准备1.准备相关的教学PPT、图片、例题和练习题。

2.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过展示一些关于圆的内接四边形的图片,引导学生关注圆的内接四边形,激发学生的学习兴趣。

2.呈现(10分钟)呈现圆的内接四边形的性质,引导学生观察、思考,发现其中的规律。

在此过程中,教师引导学生进行探究,培养学生自主学习的能力。

3.操练(10分钟)通过一些例题,让学生运用圆的内接四边形的性质解决问题。

教师引导学生进行讨论,解答疑问。

4.巩固(10分钟)学生独立完成一些练习题,巩固所学知识。

教师进行个别辅导,帮助学生解决问题。

5.拓展(10分钟)引导学生思考:圆的内接四边形的性质是否只适用于圆的内接四边形?能否推广到其他类型的四边形?从而激发学生的探究欲望。

6.小结(5分钟)对本节课的主要内容进行总结,强调圆的内接四边形的性质及其运用。

7.家庭作业(5分钟)布置一些相关的练习题,让学生回家后巩固所学知识。

九年级数学下册《圆的内接四边形》教案、教学设计

九年级数学下册《圆的内接四边形》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆的内接四边形的性质及其应用,特别是对角互补定理的理解和应用。
2.难点:将圆的内接四边形的性质与实际问题相结合,解决复杂的几何问题。
(二)教学设想
1.引入新课:通过生活中常见的圆形物体(如硬币、圆桌等)引导学生观察和思考,激发学生对圆的内接四边形的兴趣。接着展示一些内接四边形的实例,让学生初步感知内接四边形的特点。
作业要求:
1.学生在完成作业时,要认真审题,确保解题过程清晰、简洁。
2.培养良好的学习习惯,书写规范,保持作业整洁。
3.遇到问题要积极思考,可以与同学讨论,也可以向教师请教。
4.家长要关注学生的学习进度,鼓励孩子独立完成作业,培养自主学习能力。
5.课堂练习:布置一定数量的课堂练习题,让学生当堂完成,巩固所学知识。教师及时批改并给予反馈,针对学生的错误进行有针对性的讲解。
6.拓展延伸:针对学有余力的学生,提供一些拓展性的问题和实际应用案例,激发学生的探究欲望,培养他们的创新思维。
7.评价反思:在教学过程中,注重过程性评价,关注学生的参与度、合作交流能力、问题解决能力等方面。课后,教师和学生共同反思教学效果,为下一步教学提供参考。
1.基础巩固题:完成课本第56页的练习题第1、2、3题,要求学生在理解圆的内接四边形性质的基础上,正确解答相关问题。
2.能力提升题:完成课本第57页的练习题第4、5题,鼓励学生运用对角互补定理解决实际问题,提高解题技巧。
3.拓展思考题:思考并解答以下问题:
a.除了对角互补定理,你还能发现圆的内接四边形的其他性质吗?
二、学情分析
九年级学生已经具备了一定的几何基础,掌握了圆的基本概念和相关性质,能够运用这些知识解决一些简单问题。在此基础上,学生对圆的内接四边形的学习将更具挑战性。他们需要将已知的圆的性质与四边形的性质相结合,理解圆的内接四边形的独特性质,并学会运用这些性质解决实际问题。在这个过程中,学生可能会遇到一些困难,如对内接四边形对角互补性质的理解、解决实际问题时思路的拓展等。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,激发学生的学习兴趣,提高他们的自信心,使他们在探索和解决问题中不断成长。

浙教版初中数学初三数学上册《圆内接四边形》教案及教学反思

浙教版初中数学初三数学上册《圆内接四边形》教案及教学反思

浙教版初中数学初三数学上册《圆内接四边形》教案及教学反思教案教学目标•理解什么是圆内接四边形;•掌握圆内接四边形的性质和判定方法;•能够应用圆内接四边形的性质解决问题。

教学重点•圆内接四边形的性质和判定方法。

教学难点•解决带有圆内接四边形的综合问题。

教学过程1.导入环节(5分钟)•引导学生回顾前面所学过的圆的相关知识,如圆的定义、圆的性质等。

•引入本节课的主题——圆内接四边形,帮助学生认识什么是圆内接四边形。

2.讲解环节(25分钟)•介绍圆内接四边形的定义和性质。

•讲解圆内接四边形的判定方法。

•指导学生通过绘图分析解决带有圆内接四边形的问题。

3.练习环节(20分钟)•给出若干道练习题,帮助学生巩固对圆内接四边形的掌握。

•引导学生自主思考、组合解决带有圆内接四边形的问题,提高综合解决问题的能力。

4.检测环节(10分钟)•设计一定数量的考试题目,检测学生对圆内接四边形的掌握情况。

5.总结反思(5分钟)•结合本节课的学习情况和学生表现,总结本节课的主要内容和重点难点。

•引导学生对自己本次学习的不足以及如何提高学习效果进行反思,并给出相应的建议与引导。

教学反思本节课的教学内容是圆内接四边形,本人是采用了国内外公认的教学法-问题解决法来进行本次课堂的教学。

在经过本人多次的教学实践之后,发现这种教学法的确非常适合解决数学类的难题,并且也极大地提高了学生们的主动性和创造性。

具体来看,本人采用了以下教学策略:1.提出问题。

在本节课的教学过程中,本人首先是通过提出学生们非常熟悉、且较为感兴趣的问题——什么是圆内接四边形来引入本课程的主题。

此时有时会将一些问题转换为生活中的实际问题,引导学生能够理解学习内容和学科间的内在联系,加以升华。

2.引入知识。

在本人引入了本节课程的主题之后,还会针对圆内接四边形的概念和性质进行深入而详细的讲解。

这样不仅能够激活学生的学习兴趣,还可以提供一些基础理论,使学生可以较好地理解圆内接四边形的性质和判定方法。

人教版九年级数学上册教案:24.1.4圆内接四边形课堂优秀教学案例

人教版九年级数学上册教案:24.1.4圆内接四边形课堂优秀教学案例
五、案例亮点
1.创设生活化的情境导入
本教学案例以校园操场的跑道为背景,创设生活化的情境导入,使学生能够从现实生活的实例中感受到圆内接四边形的实际应用,从而激发他们的学习兴趣。这种导入方式充分体现了数学与生活的紧密联系,有助于提高学生对数学知识的应用意识。
2.问题导向的教学策略
本案例以问题导向的教学策略为核心,通过设计不同难度层次的问题,引导学生逐步深入探讨圆内接四边形的性质。这种策略有助于培养学生的逻辑思维能力和解决问题的能力,使学生在解决问题的过程中掌握知识、发展能力。
3.引导学生总结:在问题解决后,引导学生总结圆内接四边形的性质,提高他们的归纳总结能力。
(三)小组合作
小组合作是本节课的重要教学策略,通过分组讨论、合作探究,培养学生的团队协作能力和交流沟通能力。
1.分组讨论:将学生分成若干小组,让他们在组内讨论问题,共同探究圆内接四边形的性质。
2.交流分享:鼓励小组代表在全班分享本组的讨论成果,促进学生之间的交流与互动。
5.知识与技能、过程与方法、情感态度与价值观的全面培养
本教学案例在教学内容与过程中,充分关注知识与技能、过程与方法、情感态度与价值观的全面培养。通过讲授新知、学生小组讨论、总结归纳等环节,引导学生掌握圆内接四边形的性质,提高解题能力。同时,注重培养学生的合作意识、创新意识和数学应用意识,使他们在学习过程中形成正确的价值观。
3.教师评价:教师对学生进行全面的评价,包括知识掌握、技能运用、合作交流等方面,以激励学生不断进步。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将运用生动的生活实例和问题情境,引导学生从已知的几何知识出发,自然过渡到本节课的主题——圆内接四边形。
1.生活实例引入:展示一幅校园操场的图片,让学生观察并思考:“为什么操场上的跑道是椭圆形而不是圆形?椭圆形内接四边形有哪些特殊性质?”通过这个实例,让学生感受到圆内接四边形在实际生活中的应用,激发他们的学习兴趣。

《圆周角第2课时圆内接四边形》示范公开课教学设计【部编新人教版九年级数学上册】

《圆周角第2课时圆内接四边形》示范公开课教学设计【部编新人教版九年级数学上册】

《圆内接四边形》教学设计一、教学目标1.理解圆内接多边形的定义,掌握圆内接四边形的概念和性质;2.能运用圆内接四边形的性质证明和计算;3.经历圆内接四边形的性质的探究与证明,渗透“由特殊到一般”的数学思想方法;4.通过学生自主探究、合作交流的学习过程,体验实现自身价值的愉悦和数学的应用.二、教学重难点重点:圆内接四边形的概念及性质.难点:圆内接四边形与圆周角性质的综合应用.三、教学用具多媒体课件四、教学过程设计【回顾】同学们上一节课我们学习了圆周角定理及其推论,一起回顾一下吧.教师并提出问题,引导学生回顾上节课的内容,教师追问:直径是特殊的弦,它所对的圆周角相等,都是90°,那对于一般的弦,它所对的圆周角是否也相等呢?也就是说,同圆或等圆中,同弦或等弦所对的圆周角相等吗?【合作探究】猜想:∠B=∠E,∠D=∠F追问1:能否验证你的猜想呢?预设答案:∵∠B,∠E所对的弧都是AC;∠D,∠F所对的弧都是ABC;根据同弧所对的圆周角相等,得:∠B=∠E,∠D=∠F教师PPT展示,任意作出弦AC所对的4个圆周角,引导学生发现,根据角的顶点在弦的上方还是下方,把4个角归为两类,让学生提出猜想,并验证,最终教师PPT展示验证的过程.追问2:∠B=∠D吗?预设答案:不一定相等.教师提出问题后,引导学生先观察图形:不难发现,∠B是锐角,∠D是钝角.显然不相等.并进一步引导学生发现,若AC是直径,则它所对的圆周角∠B=∠D,从而得出结论:∠B=∠D不一定相等.追问3:∠B和∠D有什么数量关系呢?教师引导学生把问题转化为四边形的一组对角的数量关系,进一步让学生观察这个四边形有什么特点,引导学生发现四边形的四个顶点都在圆上,从而引出圆内接四边形的概念.如果一个四边形的所有顶点都在同一个圆上,这个四边形叫做圆内接四边形.这个圆叫做这个四边形的外接圆.如上图中,四边形ABCD 是⊙O 的内接四边形;⊙O 是四边形ABCD 的外接圆.追问3就转化为了:圆内接四边形的一组对角有什么关系?猜想:互补验证:连接OA ,OC .∵1=12B ∠∠,1=22D ∠∠又∵∠1+∠2=360° ∴∠B +∠D =()11+22∠∠=180° 同理:∠A +∠C =180°教师引导学生猜想,然后学生自主验证、小组交流后,尝试用语言归纳总结出所得结论.教师汇总并补充.圆内接四边形的对角互补.追问4:现在,你能回答课程刚开始的问题了吗?同圆或等圆中,同弦或等弦所对的圆周角相等吗?预设答案:同圆或等圆中,同弦或等弦所对的圆周角相等或互补.教师提出问题,引导学生回顾刚才探究的过程,然后得出结论,需要提醒的是,前面只探究了同弦所对的圆周角,对于同圆或等圆中等弦的情况,学生可自行探究.【延伸】预设答案:相等.证明:∵∠BCE+∠BCD=180°,∠BCD+∠A=180°∴∠BCE=∠A教师引导学生自主探究,小组交流后,尝试用语言总结出所得结论,选代表回答,教师补充.圆内接四边形的一个外角等于它的内对角.圆内接四边形也可扩展到圆内接多边形.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形.这个圆叫做这个多边形的外接圆.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1:如图,四边形ABCD是圆的内接四边形,且ABCD是平行四边形.求证:四边形ABCD是矩形.解:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.如图在圆内接四边形ABCD中,(1)若∠B=30°,则∠D=__.(2)若∠A∶∠C=5∶4,则∠A=__.答:(1)150°;(2)100°.2.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69° B.42°C.48° D.38°答:A.3.若ABCD为圆内接四边形,下列可能成立的是( )A. ∠A∶∠B∶∠C∶∠D= 1∶2∶3∶4B. ∠A∶∠B∶∠C∶∠D= 2∶1∶3∶4C. ∠A∶∠B∶∠C∶∠D= 3∶2∶1∶4D. ∠A∶∠B∶∠C∶∠D=4∶3∶2∶1 答:B.思维导图的形式呈现本节课的主要内容:教科书第88页练习第2、5题.。

数学教案-圆的内接四边形

数学教案-圆的内接四边形

数学教案-圆的内接四边形一、教学目标1.让学生理解圆的内接四边形的定义及判定定理。

2.培养学生运用圆的内接四边形的性质解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象力。

二、教学重点与难点重点:圆的内接四边形的性质及判定定理。

难点:运用圆的内接四边形的性质解决实际问题。

三、教学过程1.导入新课师:同学们,我们先来回顾一下圆的性质。

请大家说出圆的几个重要性质。

生1:圆的直径所对的圆周角是直角。

生2:圆的半径垂直于弦,则这条弦被半径平分。

生3:圆的弦所对的圆周角等于弦所对的圆心角的一半。

师:很好,那么我们今天要学习的是圆的内接四边形,请大家思考一下,什么是圆的内接四边形呢?2.探索新知师:我们先来观察一个图形,请大家看大屏幕。

这是一个圆,圆内有四条弦,它们分别连接圆上的四个点,构成了一个四边形。

我们称这个四边形为圆的内接四边形。

师:那么,圆的内接四边形有什么性质呢?请大家根据图形,尝试找出一些性质。

生1:我发现,圆的内接四边形的对角互补。

生2:我还发现,圆的内接四边形的对边平行。

师:很好,同学们已经找到了圆的内接四边形的一些性质。

下面我们来看一下圆的内接四边形的判定定理。

定理:一个四边形是圆的内接四边形,当且仅当它的对角互补。

师:请大家理解定理的内容,然后思考一下,如何证明一个四边形是圆的内接四边形?3.课堂练习师:下面我们来做一个练习题。

请大家看大屏幕,这是一个圆的内接四边形ABCD,已知∠BAC=60°,求∠BCD的度数。

生1:根据圆的内接四边形的性质,我们知道∠BAC和∠BCD互补,所以∠BCD=180°-∠BAC=180°-60°=120°。

师:很好,同学们已经掌握了圆的内接四边形的性质。

下面我们来解决一些实际问题。

4.实际问题师:请大家看大屏幕,这是一个实际问题。

在一个圆形花坛中,有四条小路相交于圆心O,其中两条小路的延长线分别交圆于A、B 两点,另外两条小路的延长线分别交圆于C、D两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆内接四边形》公开课教案
一、教学目标:
A 识记圆的内接四边形的概念
B 掌握圆内接四边形的性质
C 运用圆内接四边形的性质解决有关问题
二、前提测评:
1. 如图(1),△ABC叫⊙O的_________三角形,⊙O叫△ABC 的____圆。

2. 如上图(1),若的度数为
1000,则BOC=___,A=___
3. 如图(2)四边形ABCD中, B与1互补,
AD的延长线与DC所夹2=600 ,
则1=___,B=___.
4. 判断:
圆上任意两点之间分圆周为两条弧,这两条弧的度数和为3600( )
三、达标教学(导读提纲)
1. 如图(3),四边形ABCD的各顶点都在⊙O上,所以四边形ABCD是⊙O的____四边形, ⊙O叫四边形ABCD的____圆.
2. 什么叫圆内接多边形?多边形的外接圆呢?
3. 你能解决下列问题吗?如上图:
(1) ∵ 所对圆心角为1
所对圆心角为2,
2= 的度数+ 的度数=______度.
BAD+BCD= 2+ 1=_______
(2)为什么DCE=A?
4. 如何概述归纳第3题的结论?
学生先讨论,教师然后归纳为:
定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

例1:如图4,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1相交于点C,与⊙O2相交于点D,经过点B 的直线EF与⊙O1 相交于点E,与⊙O2相交于点F。

求证:CE∥DF
分析:要证CE∥DF,可用下列三种方法:
(1) 证内错角相等,两直线平行
(2) 证同位角相等,两直线平行
(3) 同旁内角互补,两直线平行
以上三种方法都行,但用方法(3)较好。

证明:连结AB
∵ABEC是⊙O1的内接四边形
BAD=E
又∵ADFB是⊙O2的内接四边形
BAD+F=1800
F=1800
CE∥DF
四、达标练习:
1、填空
(1)四边形ABCD内接于⊙O,则C=____,ADC=_____;若B=800,则ADC=______ CDE=______(图5)
(2)四边形ABCD内接于⊙O,BOD=1000
则BAD=______BCD=______(图6)
(3)四边形ABCD内接于⊙O, C=1:3,则A=_____,
(4)梯形ABCD内接于⊙O,AD∥BC, B=750,则C=_____(图7) 2、选择题
(5)圆内接平行四边形必为( )
A.菱形
B.矩形
C.正方形
D.等腰梯形
五、课堂小结
1、圆内接四边形的性质定理,是在圆中探求角相等或互补关系时,常用的定理,运用这个定理时要注意观察图形,分清四边形的外角和它的内对角的位置。

2、直线形和圆之间的联系密切,证题时,需要引辅助线,同学们要注意引辅助线的方法。

六、课外作业
教科书习题7.2 A组1 (4)、15、16题。

相关文档
最新文档