福州大学考研生物化学笔记知识讲解
生物化学考试重点总结

生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。
祝你考试顺利!。
生命的化学基础—《生物学》考研笔记

●概念和结构
●类固醇是一类不同的脂质,它们的碳链折成4个环,3个6元环,1个五元环。
2.化合物
●概念:由元素组成,通过原子之间发生反应形成化合物
●关键:化学键的形成
●离子键:电子的得失
●共价键:电子的共用
●细胞中不可缺少的化合物——水
●特水分子之间会形成氢键
●液态水中的水分子具有内聚力
●水分子之间的氢键使水能缓和温度的变化
●冰比水轻
●水能够电离
3.化学反应
●特点
●脂肪中的3个酰基一般是不同的,来源于C16、C18和其他脂肪酸
●含有多个碳氢链,所以分子含有较多能量
●脂肪酸
●分类
●不饱和脂肪酸
●含有双键
●脂肪为液态
双键的存在使得碳链弯曲,分子不能排列得太紧密,则占的空间大,因此含有双键的脂肪在常温下士液态
●饱和脂肪酸
●没有双键
●脂肪为固态
●分布及饮食
●动物的脂肪中不饱和脂肪酸很少,植物油中则较多
●果糖
●酮糖——分子式为C6H12O6,与葡萄糖为同分异构体
●戊糖(核酸的成分)
●核糖
●脱氧核糖
●蜂蜜是葡萄糖和果糖的混合物,非双糖
●特点
●有许多羟基,所以单糖属于醇类
●有羰基,羰基在分子一端即成为醛基(如葡萄糖),在分子中间则成为酮基(如果糖)
●结构
●链状结构与环状结构互相转变,达到平衡
●命名
●碳原子数目,12345678——甲乙丙丁戊己庚戌
3.分类:蛋白质、核酸、多糖(脂质不是),都是多聚体
4.少数种类小分子合成许多生物大分子
●单体和多聚体
●单体:生物体制造多聚体所用的单体都是通用的,都是用同样的20种氨基酸和同样的4种核苷酸
生物化学重点笔记(基本知识)

生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学重点笔记

生物化学重点笔记哎呀,一提到生物化学,那可真是一门让人又爱又恨的学科啊!我还记得当初学习这门课的时候,那叫一个头大。
不过,经过一番“摸爬滚打”,我总算是整理出了一份自认为还不错的重点笔记。
先来说说蛋白质这个部分吧。
蛋白质可是生物体内的“大明星”,它们无处不在,而且功能繁多。
老师在课上讲的时候,那真是滔滔不绝,而我则是在下面奋笔疾书。
蛋白质的结构那是相当复杂,一级结构、二级结构、三级结构、四级结构,一个比一个让人眼花缭乱。
就说二级结构吧,有α螺旋、β折叠、β转角这些玩意儿。
α螺旋就像是一个拧得紧紧的麻花,氨基酸链绕着中心轴一圈一圈地转。
想象一下,那就是一条长长的“氨基酸项链”,被巧妙地扭成了螺旋的形状。
每个氨基酸之间的距离、角度,那都是有讲究的,稍微有点偏差,这螺旋可就“变形”啦。
β折叠呢,则像是把一张张纸叠在一起,氨基酸链在平面上伸展然后折叠回来。
这折叠的地方啊,就像是折纸的折痕,整整齐齐,规规矩矩。
有时候我就在想,这大自然可真是个神奇的“建筑师”,能设计出这么精妙的结构。
再说说酶吧,这也是生物化学里的一个重要角色。
酶就像是生物体内的“小工人”,勤勤恳恳地干活,加速各种化学反应。
比如说消化酶,它们在我们的胃肠道里努力工作,把吃进去的大分子食物分解成小分子,让身体能够吸收利用。
还记得有一次做实验,我们要测定一种酶的活性。
那真是小心翼翼啊,每一步操作都不敢马虎。
试剂的添加量要精确到微升,反应的温度和时间也要严格控制。
我眼睛紧紧盯着试管,心里默默祈祷着实验能成功。
当看到最终的数据符合预期时,那种喜悦简直无法形容,感觉自己就像是一个成功的“科学家”。
还有糖类和脂类,这俩也是生物体内的重要物质。
糖类就像是身体的“能量库”,给我们提供动力。
葡萄糖、果糖、蔗糖,各种各样的糖,都有着自己的特点和作用。
脂类呢,则像是身体的“保暖衣”和“储备粮”,既能保护内脏,又能在需要的时候提供能量。
在学习生物化学的过程中,我发现这门学科其实就像是一个神秘的世界,充满了未知和惊喜。
生物化学重点笔记(基本知识)

生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学各章知识点总结

生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。
生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。
2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。
(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。
(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。
(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。
二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。
(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。
蛋白质的构象变化直接影响着蛋白质的功能。
2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。
其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。
三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。
(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。
2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。
(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。
生物化学知识点总整理

生物化学知识点总整理生物化学是研究生物体化学组成和生命过程中化学变化规律的一门科学。
它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等方面都具有重要意义。
以下是对生物化学一些重要知识点的总整理。
一、生物大分子1、蛋白质蛋白质的组成:蛋白质由氨基酸通过肽键连接而成。
氨基酸有 20 种,分为必需氨基酸和非必需氨基酸。
蛋白质的结构:包括一级结构(氨基酸的线性排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的三维空间构象)和四级结构(多个亚基的组合)。
蛋白质的性质:具有两性解离、胶体性质、变性和复性等。
蛋白质的功能:催化、运输、调节、免疫防御、结构支持等。
2、核酸核酸的分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA 的结构:双螺旋结构,由两条反向平行的多核苷酸链围绕同一中心轴构成。
RNA 的种类:信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)。
核酸的功能:DNA 是遗传信息的携带者,RNA 参与遗传信息的表达和调控。
3、糖类单糖:如葡萄糖、果糖、半乳糖等,是最简单的糖类。
寡糖:由 2 10 个单糖分子组成,如蔗糖、麦芽糖等。
多糖:包括淀粉、糖原、纤维素等,具有储存能量和构成结构的作用。
4、脂质脂肪:由甘油和脂肪酸组成,是生物体储存能量的重要形式。
磷脂:构成生物膜的重要成分。
固醇:如胆固醇,参与细胞膜的组成和激素的合成。
二、酶1、酶的概念:酶是具有催化作用的生物大分子,大多数是蛋白质。
2、酶的特性:高效性、专一性、可调节性和不稳定性。
3、酶的作用机制:通过降低反应的活化能来加速反应的进行。
4、影响酶活性的因素:温度、pH、底物浓度、酶浓度、抑制剂和激活剂等。
三、生物氧化1、生物氧化的概念:物质在生物体内进行的氧化分解过程,最终生成二氧化碳和水,并释放能量。
2、呼吸链:由一系列电子传递体组成,包括 NADH 呼吸链和FADH2 呼吸链。
(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
四、生物化学的应用 1.农业 2.医药 3.营养 4.临床化学 5.药理学 6.毒理学
第一章 糖 第一节概述 一、定义 糖类(carbohydrate)是一类多元醇的醛衍生物或酮衍生物,或者称为多羟醛或多羟酮的聚合物。实际上糖类包括多羟醛、多羟酮、它们的缩聚物及其衍生物。 二、糖的分类 糖类物质是一大类物质的总称。根据其能否水解和水解后的产物,将糖类分为单糖(monosaccharides)、寡糖(oligosaccharides)、多糖(polysaccharide)。
第二节单糖的化学结构 一、名词解释 不对称碳原子(手性碳原子):连接四个不同原子或基团的碳原子。 镜象异构:两类彼此类似但不等同的,无论怎样放置,都无法叠和的物质,互为镜象。 非镜象异构体:有两个或两个以上不对称碳原子构型不同,它们之间就称为非镜象异构体。 差象异构体:仅一个不对称碳原子构型不同,两镜象非对映体异构物称为差象异构体。 端基异构体(异头物):在构型上,仅头部不同的分子,互为端基异构体。 构型:一个分子由于其中各原子特有的固定的空间排列,而使该分子所具有的特定的立体化学形式。
构象:一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。 D-型:互为镜象异构体的两类化合物,能使平面偏振光发生右旋的,其构型称为D型。 L-型:互为镜象异构体的两类化合物,能使平面偏振光发生左旋的,其构型成为L型。 a异头物和b-异头物: 在环状结构中,半缩醛碳原子也称异头碳原子或异头中心。异头碳的羟基与最末的手性碳原子的羟基具有相同取向的异构体称a异头物,具有相反取向的称b异头物。
醛糖:含醛基的单糖 酮糖:含酮基的单糖 呋喃糖:以五元环形式存在的单糖。 吡喃糖:以六元环形式存在的单糖。 二、单糖的开链结构 单糖分为醛糖和酮糖: 三、 单糖的环状结构 单糖通过半缩醛和半缩酮结构形成环状结构——糖上的一些氢氧根与同一分子上的醛基(或酮基)反应成环。
2. 五个碳原子的D-核糖在40℃的水中形成α-呋喃核糖(6%),β-呋喃核糖(18%),α-吡喃核糖(20%)和β-吡喃核糖(56%)。(呋喃型为五元环;吡喃型为六元环。)
3. D- 果糖,通过半缩酮结构,形成五元和六元环。在溶液中57%是β-D-吡喃果糖,31%是β-D-呋喃果糖,9%是α-D-呋喃果糖,3%是α-D-吡喃果糖,只有一小部分(<<1%)仍保持开链状态。
第三节单糖的理化性质 一、物理性质 1、旋光性一切糖类都有不对称碳原子,都具有旋光性。旋光性是鉴定糖的一个重要指标。 2、甜度各种糖的甜度不一,常以蔗糖的甜度为标准进行比较。 3、溶解度单糖分子中有多个羟基,增加了它的水溶性,尤其在热水中溶解度极大。但不溶于乙醚、丙酮等有机溶剂。
二、化学性质 (1)氧化作用及还原性 单糖含有醛基或酮基,因此具有醛或酮的特性。醛基具有还原性质,能还原许多金属化合物,单糖也具有此特性。
(2)与碱的作用 单糖在碱性溶液种极不稳定,很容易分解。分解的产物常因所用碱的强弱以及浓度的大小而不同。
(3)还原作用 单糖的碳基在一些还原剂(如钠汞齐、硼氢化钠等)的作用下,易被还原成羟基,醛糖被还原成一种糖醇,而酮糖可被还原成两种同分异构的糖醇。
(4)成酯作用 单糖分子具有多个醇性烃基,故具有醇的特性。醇的典型性质是能与酸缩和生成酯。 (5)成苷作用 单糖半缩醛结构上的羟基可与其它含羟基的化合物(如醇、酚等)发生缩和反应而生成缩醛式衍生物,称为糖苷(glycoside)。糖的半缩醛烃基与醇性烃基缩合后所生成的化学键称为糖苷键(glycosidic bond)。
第四节寡糖 一、二糖 1. 蔗糖(α-D-葡萄糖-[1→2]-β-D-果糖) 2. 乳糖,主要存在于各种动物的乳汁中(半乳糖-β[1→4]-葡萄糖) 3. 麦芽糖,麦芽糖的糖苷键是葡萄糖-α[1→4]-葡萄糖。 第五节多糖 可以将多糖分为均一多糖(一种类型单体的聚合物)和不均一多糖(两种或两种以上的糖类单体的聚合物)。
一、均一多糖 (一)糖原 糖原主要存在于动物体内的肝脏(肝糖原)和肌肉(肌糖原)中,以肝中含量多,所以有动物淀粉之称。在动物体中,糖原是储存葡萄糖的主要多糖。糖原是由葡萄糖分子通过以下化学键连接成长链而形成的:1) α-[1→4] 键 2) α-[1→6] 分支,大约一个分支含有8-12个葡萄糖。糖原与碘作用呈现红色,无还原性,没有成脎作用;糖原能溶于水及三氯醋酸,但不溶于乙醇及其其它有机溶剂。
(二)淀粉 淀粉广泛分布于自然界,尤其是在植物的种子(大米、小麦、玉米等)、根茎(马铃薯、红薯)及果实(花生、白果、板栗等)内储存甚多。在植物体中,葡萄糖以淀粉的形式储存。 a. 淀粉有两种形式:直链淀粉和支链淀粉。b.直链淀粉是没有分支的长链,由3000个葡萄糖分子通过α[1→4]糖苷键连接而成。c.支链淀粉的结构与动物的糖原十分相似。由葡萄糖分子通过以下结构连接成长链构成:1) a-[1→4] 键 2)α-[1→6]分支,大约每个分支含有24-30个葡萄糖。3) 典型的就是每个分子中有成百上千的葡萄糖残基存在。3、淀粉的一个重要的性质是与碘的反应,糖淀粉(直链)遇碘产生蓝色,胶淀粉(枝链)遇碘产生紫红色。利用这种颜色反应可以鉴别淀粉。
(三)纤维素 纤维素是构成植物细胞壁和支撑组织的重要成分。纤维素是由一个没有分支的以β[1→4]键相结合的葡萄糖聚合物构成。每个葡萄糖单体之间相应地旋转180°使得氢键在链中连接。链与链之间也有氢键形成。纤维素被纤维素酶水解,纤维素酶由原生动物,细菌(在反刍动物的胃肠道内)和真菌产生。纤维素在性质上与其它糖类的主要区别是在大部分普通溶剂中极其难溶解。例如纤维素不溶于水、稀酸和碱,也不溶于一般的有机溶剂。能与酸成酯。
(四)几丁质 几丁质是构成昆虫和甲壳纲外骨骼的糖类;也构成大部分真菌和藻类的细胞壁。由N-乙酰氨基葡糖的聚合物构成;乙酰基位于葡萄糖环的第二个碳上。相邻线间形成的氢键产生巨大的金属力。
二、不均一多糖 不均一多糖可分为三类:蛋白多糖,肽聚糖和糖蛋白。 1.蛋白多糖是多糖(称为糖胺聚糖)和核蛋白的络合物。糖胺聚糖是没有分支的,重复的二糖单元的聚合物。
2. 肽聚糖由不均一多糖链连上肽形成。存在于细菌的细胞壁中。不均一多糖由N-乙酰胞壁酸和N-乙酰氨基葡糖通过β[1→4]键连接构成。肽的部分是由D型和L型的氨基酸构成的四或五肽。
3.糖蛋白由蛋白质以共价键连接成的低聚糖构成。低聚糖蛋白通常含有1-30个残基,占分子质量的80%或者更多。糖蛋白按化学键类型的分为O-糖蛋白,N-糖蛋白。
第二章脂类 第一节概述 一、定义 脂是一类低溶于水而高溶于非极性溶剂的生物有机分子。对大多数脂质而言,其化学本质是脂肪酸和醇所形成的酯类及其衍生物。
二、分类脂可分成五类: i. 单纯脂 ii. 复合脂 iii. 萜类和类固醇及其衍生物 iv. 衍生脂系 v. 结合脂类 三、生物功能 脂类具有重要的生物功能 ① 供能贮能 ② 构成生物膜 ③ 协助脂溶性维生素的吸收,提供必需脂肪酸 ④ 保护和保温作用。
第二节甘油三酯 一、油和脂的定义 甘油三酯 ( 三脂酰甘油 ) 是植物和动物细胞贮脂 ( depotlipids ) 的主要部分。一般在室温下为液态的称为油( oils ),在室温下为固态的称为脂 ( fats ) ,有时也称为油脂或中性脂。
二、甘油 即 丙三醇 ,因具有甜味而得名。 三、脂肪酸 在高等动植物体内主要存在 12 碳以上的高级脂肪酸;绝大多数含有偶数碳原子,极少含有奇数碳原子。烃链有饱和的,有不饱和的,有的还有取代基(如羟脂酸)。不饱和脂肪酸钟有含 1 个双键的(称为单烯酸),有含 2 个以上双键的(称为多烯酸)。亚油酸( linoleic acid ) 亚麻酸( linolenic acid )是 . 必需脂肪酸。
脂肪酸的简写表示法是先写出碳原子数,再写双键数,最后表明双键的位置。 四、理化性质 油脂的理化性质主要决定于脂肪酸 。脂肪的一个主要的特性是一般不溶于水,而溶于乙醚、 丙酮 、 氯仿 、 石油醚及 四氯化碳 等非极性溶剂。脂肪的熔点取决于所含脂肪酸的成分,脂肪酸都由固定的熔点。动物脂肪 通常含软脂酸和硬脂酸较多,因此在常温下皆呈固态。植物油含有大量的油酸、亚油酸以及其它在常温下为液体的不饱和脂肪酸,因此,植物油在常温下为液体。脂肪虽不溶于水,但在乳化剂作用下,可变成很细小的颗粒,均匀地分散在水里面而形成稳定的乳状液,这个过程叫乳化作用( emulsification )。一切油脂都能被酸、碱和脂肪酶( lipase )所水解,水解的产物是甘油和各种高级脂肪酸。水解作用如在碱性溶液 ( NaOH 或 KOH ) 中进行(为不可逆反应),则产物是甘油和各种高级脂肪酸的盐(钠盐或钾盐),这个过程称为皂化作用( saponification )。不饱和脂肪酸中的双键在适当的温度和催化剂的作用下,可与氢或卤素起加成作用。与卤素的加成作用,称卤化作用( halogenation ) , 与氢加成,称氢化作用( hydrogenation )。天然油脂暴露在空气中相当时间后,就会产生一种刺鼻臭味,称为酸败( rancidity )。 光 、 热 、湿气 会加速油脂的酸败。