现代控制理论1-8三习题库

合集下载

《现代控制理论》第3版课后习题答案

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得2221332222213*********1x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令..3.21y x y x y x ===,,,则有 相应的模拟结构图如下:1-6 (2)已知系统传递函数2)3)(2()1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:ss s s s s s s s W 31233310)3(4)3)(2()1(6)(22++++-++-=+++=1-7 给定下列状态空间表达式[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321100210311032010x x x y u x x x x x x ‘(1) 画出其模拟结构图(2) 求系统的传递函数 解:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-=-=31103201)()(s s s A sI s W 1-8 求下列矩阵的特征矢量(3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6712203010A 解:A 的特征方程 061166712230123=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ当11-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3121113121116712203010p p p p p p 解得: 113121p p p -== 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P (或令111-=p ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P ) 当21-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---32221232221226712203010p p p p p p 解得: 1232122221,2p p p p =-= 令212=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14222122p p p P(或令112=p ,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21213222122p p p P ) 当31-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---33231333231336712203010p p p p p p 解得: 133313233,3p p p p =-= 令113=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3313323133p p p P 1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32121321321110021357213311201214x x x y y u x x x x x x解:A 的特征方程 0)3)(1(311212142=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλλλA I 当31=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3121113121113311201214p p p p p p 解之得 113121p p p == 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P 当32=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1113311201214312111312111p p p p p p 解之得 32222212,1p p p p =+= 令112=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0013222122p p p P 当13=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23132313311201214p p p p p p解之得3323132,0p p p == 令133=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1203323133p p p P约旦标准型1-10 已知两系统的传递函数分别为W 1(s)和W 2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为 求系统的闭环传递函数 解:1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为 求系统的闭环传递函数 解:1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为 (1)⎥⎦⎤⎢⎣⎡=11b 解法1: 解法2:求T,使得⎥⎦⎤⎢⎣⎡=-111B T 得⎥⎦⎤⎢⎣⎡=-10111T 所以 ⎥⎦⎤⎢⎣⎡-=1011T 所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数At e 。

(完整word版)现代控制理论复习题库

(完整word版)现代控制理论复习题库

一、选择题1.下面关于建模和模型说法错误的是( C )。

A.无论是何种系统,其模型均可用来提示规律或因果关系。

B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。

C.为设计控制器为目的建立模型只需要简练就可以了。

D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。

2.系统()3()10()++=的类型是( B ) 。

y t y t u tA.集中参数、线性、动态系统。

B.集中参数、非线性、动态系统。

C.非集中参数、线性、动态系统。

D.集中参数、非线性、静态系统。

3.下面关于控制与控制系统说法错误的是( B )。

A.反馈闭环控制可以在一定程度上克服不确定性。

B.反馈闭环控制不可能克服系统参数摄动。

C.反馈闭环控制可在一定程度上克服外界扰动的影响。

D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。

x Pz说法错误的是( D )。

4.下面关于线性非奇异变换=A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。

B.对于线性定常系统,线性非奇异变换不改变系统的特征值。

C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。

D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。

5.下面关于稳定线性系统的响应说法正确的是( A )。

A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。

B.线性系统的零状态响应是稳态响应的一部分。

C.线性系统暂态响应是零输入响应的一部分。

D.离零点最近的极点在输出响应中所表征的运动模态权值越大。

6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( A ) 。

A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。

B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。

C.能观性表征的是状态反映输出的能力。

D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。

现代控制理论练习题2

现代控制理论练习题2

第一章习题:1-1试求图1.27系统的模拟结构图,并建立其状态空间表达式。

图1.27 系统结构图1-2有电路如图1.28所示。

以电压u (t )为输入量,以求电感内的电流和电容上的电压作为状态变量的状态方程,和以电阻R 2上的电压作为输出量的输出方程。

图1.28 电路图1-3有机械系统如图1.29所示,M 1和M 2分别受外力f 1和f 2的作用。

求以M 1和M 2的运动速度为输出的状态空间表达式。

图1.29 机械系统1-6已知系统传递函数: (1))3)(1()1(10)(++-=s s s s s W(2)2)3)(2()1(6)(+++=s s s s s W试求出系统的约当标准型的实现,并画出相应的模拟结构图。

1-7给定下列状态空间表达式:)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛321321.3.21.1,0,0210311032010x x x y u x x x x x x(1) 画出其模拟结构图。

(2) 求系统的传递函数。

1-8求下列矩阵的特征矢量: (1)⎪⎭⎫ ⎝⎛---=2112A(2)⎪⎪⎭⎫ ⎝⎛--=5610A(3)⎪⎪⎭⎫ ⎝⎛---=6712203010A (4)⎪⎪⎪⎭⎫⎝⎛---=544101121A第二章习题:2-3 已知矩阵⎪⎪⎪⎭⎫⎝⎛-=452100010A 试用拉氏反变换法求At e 。

(与例2-3,例2-7的结果验证)2-4 用三种方法计算以下矩阵指数函数At e 。

(1)⎥⎦⎤⎢⎣⎡-=0410A (2)⎥⎦⎤⎢⎣⎡=1411A 2-5 下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A 阵。

(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Φt tt t t sin cos 0cos sin 0001)( (2)⎥⎦⎤⎢⎣⎡-=Φ--tteet 220)1(2/11)( (3) ⎥⎦⎤⎢⎣⎡----=Φ--------tttttt tt eeee e e e e t 22222222)( (4) ⎥⎦⎤⎢⎣⎡++-+-+=Φ----)(2/1)()(4/1)(2/1)(3333tttt ttt t e ee e e e e e t2-6 求下列状态空间表达式的解.x=u x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡100010[]x 01=γ初始状态x(0)=⎥⎦⎤⎢⎣⎡11,输入u(t)是单位阶跃函数。

现代控制理论课后习题答案Word版

现代控制理论课后习题答案Word版

绪论为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。

根据老师要求,本次任务分组化,责任到个人。

我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。

2.题解详略得当,老师要求的步骤必须写上。

3.遇到一题多解,要尽量写出多种方法。

本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。

我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。

在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。

本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正!2014年6月2日第一章 控制系统的状态空间表达式1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••6543211654321111111126543210000010000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。

现代控制理论课后习题答案

现代控制理论课后习题答案

现代控制理论课后习题答案第⼀章习题1.2求下列多项式矩阵()s D 和()s N 的两个不同的gcrd:()2223(),()1232s s s s s s s s s ??++== ? ?+-??D N 解:()()22232321s s s s s s s++ =++ ? ?D S N S ; ()3r 2,1,2E -:223381s s s s s s ??++ ?-- ? ???;()3r 2,3,3E :223051s s s s s ??++ ?- ? ???;()3r 1,3,2E s --:01051s s ?? ?- ? ;()3r 2,1,5E s -:01001s ?? ?;()3r 3,1,1E -:01000s ?? ? ? ???;()1r 2,3E :01000s ?? ? ? ???;()1r 1,2E :00100s ?? ?;所以⼀个gcrd 为001s ??;取任⼀单模矩阵预制相乘即可得另⼀个gcrd 。

1.9 求转移矩阵t A e (1)已知1141??=A ,根据拉⽒反变换求解转移矩阵tA e 。

(2) 已知412102113-?? ?= ? ?-??A ,根据C-H 有限项展开法求解转移矩阵t A e 。

解:(1)11()41s s s --??-= ?--??I A1110.50.50.250.2511(3)(1)(3)(1)13131()4141110.50.5(3)(1)(3)(1)(3)(1)3131s s s s s s s s s s s s s s s s s s s s s s s --+---+-+??-+-+ ? ?-=== ? ?---+ ?-+ ? ?-+-+-+-+?I A 3311330.5e 0.5e 0.25e 0.25e e ()e e 0.5e 0.5e t t t t t t tt t s ------??+-??=-= ??? ?-+?A L I A (2)由2412()12(1)(3)0113λλλλλλ--?? ?=--=--= ? ?--??A I -,得1,233,1λλ== 对1,23λ=,可以计算1,2()2rank λ=A I -,所以该特征值的⼏何重数为1。

《现代控制理论》第三版_.习题答案

《现代控制理论》第三版_.习题答案

K1
0 0 K1
K p
B 0 0 0 0 0
K1
T
K p
C 1 0 0 0 0 0;
1-3.

1-29
机械系统。M1
M
受外力
2
作用 f1 f2作用,求M1 M 2运动速度输出的
状态空间表达式。
解:微分方程 M1 y1 f1 K1(c1 c2 ) B1( y1 y2 )
M 2 y2 f2 K2c2 B2 y2 K1(c1 c2 ) B1( y1 y2 )
第一章 作业
参考答案
1-1. 求模拟结构图,并建立其状态空间 表达式。 解:状态方程:
x1 x2
x2
Kb J2
x3
x3
1 J1
x5 K p x6 x3 x4
Kp J1
x3
1 J1
x4
1 J1
x5
Kp J1
x6
x4 Kn x3 x5 K1(x6 x3 ) K1x3 K1x6
x 6
设状态变量 x = c1 c2 y1 y2 T
y y1 y2 T ,u f1 f2 T
令 x1 c1, x2 c2, x3 y1, x4 y2
x1 x3 x2 x4
x3
K1 M1
x1
K1 M1
x2
B1 M1
x3
B1 M1
x4
1 M1
f1
x4
K1 M2
x1
K1 K2 M2
第二章 作业
参考答案
2-4. 用三种方法计算eAt (定义法,约 当标准型,拉氏反变换,凯莱哈密顿)
(1)
A
0 4
1 0
直接法(不提倡使用,除非针对一些特

现代控制理论1-8三习题库

现代控制理论1-8三习题库
精选文档
信息工程学院 现代控制理论 课程习题清单
3 学分,48 学 课程归属
学分、学时

(系、专业) 自动化系
授课专业 年级
自动化大三
总章节或
总单元
6
授课周数
16
教师教龄
2
命题教师
课程负责人
教学副院长
签名
签名
签名
课程目标:
自动控制领域的科学研究方法,已经由最早的经典控制中以输入输出模型为主,发展为
现今的现代控制中以状态空间模型为主。因而,“现代控制理论”是从事自动化专业必备的
复习题
2. 若已知系统的模拟结构图,如何建立其状态空间表达式? 3. 求下列矩阵的特征矢量
1 -1 0
A
4. (判断)状态变量的选取具有非惟一性。 5. (判断)系统状态变量的个数不是惟一的,可任意选取。 6. (判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输
U(s) +
K1
+
KpsK1 +
1
- Kps K1
s
-
-
J1s
Kn s
Kb (s)
J2s2
练习题
图1-27系统方块结构图
2. 有电路如图所示,设输入为 ,输出为 ,试自选状态变量并列写出其状
态空间表达式。
R1
u1
u C1
R2
uC2
u2
3. 有电路如图 1-28 所示。以电压 u(t) 为输入量,求以电感中的电流和电
3 均为标量。
d
u
3
2
1
+
y
+
x3 1/s x3 +

《现代控制理论》第3版课后习题答案

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••6543211654321111111126543210000010000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

L1L2U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息工程学院现代控制理论课程习题清单正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。

重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。

要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。

难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。

预习题1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别?2.状态、状态空间的概念?3.状态方程规形式有何特点?4.状态变量和状态矢量的定义?5.怎样建立状态空间模型?6.怎样从状态空间表达式求传递函数?复习题1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式2.若已知系统的模拟结构图,如何建立其状态空间表达式?3.求下列矩阵的特征矢量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2510221-1A4.(判断)状态变量的选取具有非惟一性。

5.(判断)系统状态变量的个数不是惟一的,可任意选取。

6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输出关系的系统,表达为状态空间描述。

7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定常系统中应用,也可以在时变系统中应用.8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为模态阵。

9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集合。

这些信息对于确定系统______(过去,未来)的行为是充分且必要的。

10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时,则称这样的系统为______(线性定常,线性时变)系统。

如果这些元素中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系统。

11.线性变换不改变系统的______特征值,状态变量)。

12.线性变换不改变系统的______(状态空间,传递函数矩阵)。

13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对角阵,雅可比阵)。

14.状态变量是确定系统状态的______(最小,最大)一组变量。

15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性)空间,称之为______(传递函数,状态空间)。

2⎣⎦2 301 312x x⎡=⎥⎢⎥⎢-⎦⎣试将下列状态方程化为约当标准形。

2 31 1x x=⎥⎢⎥⎢⎦⎣已知系统的状态空间表达式为[]12y=x)(3)1(2)(2)1(3)2(k u k u k y k y k y ++=++++试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为⎥⎦⎤⎢⎣⎡=11b25. 某机械位移系统,物体在外力作用下产生位移,当位移微小变动时,系统的动态方程为:其中为物体质量,为弹性系数,为外力。

1) 求取以、为状态变量,以=为输入,为输出的状态方程和传递函数;2) 判断参数,对系统能控性和能观性有何影响。

26. 考虑以下系统的传递函数:656)()(2+++=s s s s U s Y 试求该系统状态空间表达式的能控标准形和可观测标准形。

27. 考虑下列单输入单输出系统:u y y yy 66116=+++ 试求该系统状态空间表达式的对角线标准形。

28. 考虑由下式定义的系统:Cxy Bu Ax x=+=式中]11[,213421=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=C B A ,--试将该系统的状态空间表达式变换为能控标准形。

29. 考虑由下式定义的系统:Cxy Bu Ax x=+=式中]011[,10030021101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=C B A ,--试求其传递函数Y(s)/U(s)。

30. 考虑下列矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001100001000010A 试求矩阵A 的特征值λ1,λ2,λ3 和λ4。

再求变换矩阵P ,使得),,,(diag 43211λλλλ=-AP P31. 试建立图示电路的状态空间表达式。

32. 试建立图示电路的状态空间表达式。

33. 试建立图示系统的状态空间表达式。

34. 已知系统的微分方程,试列写出状态空间表达式。

u y y y=++ 42 35. 已知系统的微分方程,试列写出状态空间表达式。

3u 35y +=++u y y36. 已知系统的微分方程,试列写出状态空间表达式。

3u35y =++y y37. 设系统的微分方程为u y y y 3685y ......=+++,求系统的状态空间表达式。

38. 设系统的状态空间表达式为u x x x X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100235100010321.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=32121123x x x y求系统的传递函数。

39. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。

)3s )(1s (s 43s )s (G +++=40. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。

132)s (G 32+++=s s s 41. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。

14s 5s 10)s (G 23+++=s 42. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。

)3s ()2s (s 1s )s (G 2+++=43. 试求图示机械系统的传递函数矩阵。

44. 已知系统的状态空间表达式为试求系统的传递函数矩阵。

u ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=21103201x x []x 11=y第三章(单元):控制系统状态空间表达式的解本章节(单元)教学目标:正确理解线性定常系统的自由运动和受控运动概念,熟练掌握矩阵指数的计算方法,掌握离散时间系统状态方程求解方法。

重点容:状态转移矩阵的定义、性质和计算方法,状态方程的求解公式;线性定常系统状态方程的求解方法预习题1.线性定常连续系统在输入为零时,由初始状态引起的运动称为运动2.线性定常续系统状态方程的解由哪两个部分组成?3.线性变换的基本性质包括哪两个不变性?复习题1.写出线性定常连续系统齐次状态方程解的矩阵指数表达式2.写出线性定常连续系统非齐次状态方程解的矩阵指数表达式3.系统的状态变量与输入之间的关系用一组一阶微分方程来描述的数学模型称之为__________。

4.线定定常连续系统状态方程的解由两部分相加组成,一部分是________________________,第二部分是____________________。

5.对于任意时刻t,系统的输出不仅和t有关,而且与t时刻以前的累积有关,这类系统称为__________。

练习题1.试求下列矩阵对应的状态转移矩阵。

⎥⎦⎤⎢⎣⎡-=11A2.试求下列矩阵对应的状态转移矩阵。

⎥⎦⎤⎢⎣⎡-=41A3.已知线性定常系统的状态空间表达式,求单位阶跃输入时状态方程的解。

u⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=1321xx ⎥⎦⎤⎢⎣⎡=1)0(x4.已知线性定常系统的状态空间表达式,求单位阶跃输入时状态方程的解和输出响应。

u⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=12651xx ⎥⎦⎤⎢⎣⎡=11)0(x[]xy21=(1,0 y=01⎣22(t te ---⎦2⎣⎣[]⎥⎦⎤⎢⎣⎡=211xxqy16.试证明如下系统ucbaxxxxxx⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32132118612164120不论a,b,c取何值都不能控。

17.已知两个系统1S和2S的状态方程和输出方程分别为1S:1111431uxx⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=[]1112xy=2S:2222uxx+-=22xy=若两个系统按如图P3.6所示的方法串联,设串联后的系统为S。

1) 求图示串联系统S的状态方程和输出方程。

2) 分析系统1S,2S和串联后系统S的可控性、可观测性。

18.确定使下列系统为状态完全能控和状态完全能观的待定常数iiβα和[]11,11,1)1(21-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=CbAαα19.已知传递矩阵为()()()()()⎥⎦⎤⎢⎣⎡+++++=5442132ssssssG试求该系统的最小实现。

20.将下列状态方程化为能控标准形uxx⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=11432121.设系统的传递函数是182710)()(23++++=sssassusy(1)当a取何值时,系统将是不完全能控或不完全能观的?21用雅普诺夫第一方法判定下列系统在平衡状态的稳定性。

21x x =--利用雅普诺夫第二方法判断下列系统是否为大围渐近稳定:21(1x x =--试用雅普诺夫第二方法判断其在平衡状态的稳定性试用克拉索夫斯基定理判断下列系统是否是大围渐近稳定的。

212x x x =-试用雅普诺夫稳定性定理判断下列系统在平衡状态的稳定性。

试用克拉索夫斯基定理确定使下列系统212x x x =-第二法确定下列系统原点的稳定性。

试确定系统在平衡状态处大围渐进稳定的条件。

22(1x a=-+试确定平衡状态的稳定性。

01⎢⎣01⎢⎣2331x x x x ==--试确定线性状态反馈控制律,使闭环极点都是⎢⎣00⎢⎣1⎢⎣1[]=10y x[] y=1010⎣,使下列性能指标22试求最优控制使下列指标取极值并求最优轨线。

t 使下列指标取极值,并求出最优轨线。

,x u = 2(1)(1)x +212T u dt =⎰2ft f t u =+⎰试确定最优控制()u t ,使下列性能指标2⎣⎦2⎣⎦20u ⎡⎤+⎣⎦ 试分别研究有无最优控制使下列性能指标。

相关文档
最新文档