数学数形结合PPT

合集下载

精美课件《 数与代数》PPT课件 人教版数学六上

精美课件《 数与代数》PPT课件 人教版数学六上

分子和分母同时乘或除以相 同的数(0除外),分数的 大小不变。
选一选,你会列式吗? 六(1)班有男生15人,女生20人,______________? (1)男生是女生的几分之几 (2)女生是男生的几分之几 (3)男生比女生少几分之几 (4)女生比男生多几分之几 说说你是怎么想的,
为什么这样选。
深化知识
我发现,等号右边的分 数越来越接近于1。
状元成才路
可以画个图来帮助思考。用一 个圆或一条线段来表示“1”。
11 1 1 1 1 2 4 8 16 32 64
1
2
1
1 4
64
1
1
1
16 32
8
状元成才路
可以画个图来帮助思考。用一 个圆或一条线段来表示“1”。
1
1
2
4
11 1 1 1 1 2 4 8 16 32 64
1 11 1 8 16 32 64
计算 1+1+1+1+1+1+…。 2 4 8 16 32 64
1 2
你有什么发现?
计算 1+1+1+1+1+1+…。 2 4 8 16 32 64
1 2
从图上可以看出,这些分数不断 加下去,总和就是1。
1+1+1+1+1+1+=1 2 4 8 16 32 64
1.想一想分数乘、除法应怎样计算,再计算下面各题。
(教科书P113第1题)
3×2 = 3 4 5 10
2×5 = 5 36 9
பைடு நூலகம்
7 × 18 =1 4 9
3÷ 3 = 2 10 4 5

人教版小学数学二年级上册 第6单元 用“数形结合思想”解决队列问题

人教版小学数学二年级上册 第6单元  用“数形结合思想”解决队列问题
减1的情况 5 条件变化,思路变化
提示:点击 进入题组训练
类 型 1 加1的情况
1.小朋友们排成一队领牛奶,凡凡的前面有10人, 后面有6人,这一队共有多少人领牛奶?
×××××××××× 凡凡 ×××××× 10+6+1=17(人) 答:这一队共有17人领牛奶。
4人
这一列共有9人 5+4=9(人) 9×6=54(人)
答:二(6)班共有54人在做操。
RJ 二年级上册
第14招 用“数形结合思想” 解决队列问题
学习第6单元后使用
经典例题
同学们进行体操表演,每行人数同样多,从左往右数明 明是第4个,从右往左数他是第5个,从前往后数他是第3 个,从后往前数他是第4个。一共有多少人进行体操表演?
横行有4+5-1=8(人) 竖列有3+4-1=6(人)
规范解答: 4+5-1=8(人) 3+4-1=6(人) 8×6=48(人)
竖列有(4+3-1)个人
横行有(5+2-1)个人
4+3-1=6(人) 5+2-1=6(人)
6×6=36(人)
答:进行队列表演的有36人。
类 型 3 条件变化,思路变化
5.二(6)班同学排成6列做操,每列人数同样多。兰兰
站在第2列,从前面数她排第5,她的后面还有4人。
二(6)班共有多少人在做操? 5人
3.同学们站成一排唱歌,无论是从左往右数,还是从 右往左数,天天都排第4,唱歌的有多少人?
××× 天天 ×××
4人
4人
多加了1次
4+4-1=7(人) 答:唱歌的有7人。
4.同学们进行队列表演,每行人数同样多。从前面数小
林是第4个,从后面数他是第3个,从左面数他是第5
个,从右面数他是第2个,进行队列表演的有多少人?

苏教版三年级上册数学 极速提分法 第10招 差倍问题——数形结合思想(学习第1单元后使用)

苏教版三年级上册数学 极速提分法 第10招 差倍问题——数形结合思想(学习第1单元后使用)

提示:点击 进入题组训练
用数形结合思想解决两数差以及两数的
1
2
3 倍数关系的差倍问题
用数形结合思想解决同增同减差不变的
4
差倍问题
5
6
用数形结合思想解决两数相等,一以及两数 的倍数关系的差倍问题
1.希望小学体育组篮球的个数比排球多20个,篮球的 个数是排球的3倍,篮球和排球分别有多少个?
SJ 三年级上册
第10招 差倍问题——数形结合思想
学习第1单元后使用
经典例题
白兔与灰兔一起采蘑菇,白兔比灰兔多采了180个蘑菇, 并且白兔采的蘑菇是灰兔的3倍。白兔和灰兔各采了多 少个蘑菇?
画线段图:
规范解答:
灰兔:180÷(3-1)=90(个) 白兔:90×3=270(个) 或180+90=270(个) 答:白兔采了270个蘑菇,灰兔采了90个蘑菇。
画变动后的 第一个书架: 线段图: 第二个书架:
(100+100)本 现在第一个书架:100×2÷(3-1)=100(本)
原来第一个书架:100+100=200(本) 原来第二个书架:100×3-100=200(本)
6.两袋盐的质量相等,从甲袋取出24千克,给乙袋 装入18千克,这时乙袋的质量是甲袋质量的3倍, 甲袋原有盐多少千克? 甲袋: 画变动后的线段图: 乙袋:
画线段图: 排球:
篮球:
排球:20÷(3-1)=10(个)
20

篮球:10×3=30(个)或10+20=30(个)
2.学校合唱组的女同学人数是男同学的4倍,女同学 人数比男同学多39人。合唱组男同学、女同学各有 多少人?
男同学:
画线段图: 女同学:
39 人 男同学:39÷(4-1)=13(人) 女同学:13×4=52(人)或13+39=52(人)

数形结合知识点

数形结合知识点

数形结合知识点数形结合是指数学中数与图形的结合,通过运用数学知识解决与图形和空间有关的问题。

在数形结合中,数与图形的关系相互补充,相互依存,共同呈现出独特的数学魅力。

一、数形结合的基本概念数形结合是数学中的一个重要概念,它主要包括以下几个方面的内容:1.几何图形与数量关系:通过几何图形可以了解到其中的数量关系,例如平行线的性质、多边形的各种角度关系等。

通过数学思维和分析方法可以研究这些数量关系,从而更好地理解和应用几何图形。

2.数学模型与几何形状相结合:数学模型是指利用数学方法来模拟和解决实际问题的过程。

而几何形状则是模型的基础,通过数学建模和分析,可以将问题转化为几何形状的关系,进而获得问题的解答。

3.平面几何与立体几何的结合:在数形结合中,平面几何和立体几何的知识相互交叉、相互渗透。

例如在计算一个立体图形的体积时,需要运用到平面几何中的面积计算公式,而在分析一个平面图形的特征时,也需要考虑到其所在平面的空间性质。

4.空间想象与数学推理的结合:数形结合还要求我们能够在思维中准确地理解和想象几何图形的形状、大小和位置。

在这个过程中,我们需要结合空间想象能力和数学推理能力来分析和解决问题。

二、数形结合的应用领域数形结合的知识点在数学学科的多个领域都有广泛的应用,下面以几个典型的应用领域来介绍:1.建筑设计与规划:建筑设计中需要考虑到空间形状、比例、尺寸等因素,这些都需要通过数形结合的方法进行分析和解决。

例如,设计师在确定建筑物的尺寸和布局时,常常需要运用到数学几何的知识。

2.工程测量与绘图:在进行工程测量与绘图时,需要准确地测量和绘制各种几何形状,例如房屋平面图、道路工程图等。

在这个过程中,运用到的就是数形结合的方法。

3.地理与地貌研究:地理和地貌研究中需要考虑到地球表面的形状、地貌特征等因素,而这些都可以通过数学几何的知识进行研究和分析。

4.数据可视化与分析:在进行数据可视化与分析时,常常需要利用图表来呈现数据的分布和关系。

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。

冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)

冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)
(1)旅客最多可免费携带多少千 克行李? 30千克
(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,

七年级上册数学-数形结合——数轴压轴题

七年级上册数学-数形结合——数轴压轴题

第6讲数形结合——数轴压轴题【板块一】数轴上的行程问题方法技巧此类问题一般已知起点、路程(距离)、速度,在运动后满足一定距离条件,求点运动后所表示的数.一般较为简单的问题可用算术方法先求运动时间,再求运动路程,从而得点表示的数,此类问题一般有多种情况,注意分类讨论,但这里建议采用设未知数,用绝对值表示数轴上两点间的距离的方法列式计算,一来比较简洁通用,二来不易掉解,这类问题也可能交换部分题设和结论反过来求,方法反之亦然.【例1】如图,数轴上A,B两点所对应的数分别为-8,4,A,B两点各自以一定的速度同时运动,且点A运动速度为2个单位/秒.(1)若A,B两点相向而行,在原点处相遇,求点B运动的速度(2)若A,B两点从开始位置上同时按照(1)中的速度向数轴正方向运动,多少秒钟后,A,B与原点距离相等?【例2】如图,A,B分别为数轴上的两点,点A对应的数为-10,点B对应的数90.现有一电子蚂蚁P 从A出发,以3个单位/秒的速度向右运动,同时另一只电子妈蚁Q恰好从B点出发,以5个单位/秒的速度向左运动,求经过多长时间两只电子妈蚁在数轴上相距20个单位?针对练习11.已知,在一条东西向的双轨铁路上理面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD =4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向东方向为正方向面数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速维续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且│a+8│与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,同再行驶多少秒钟,两列火车的车头A,C相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟内,他的位置P到两列火车头A,C的距离和加上到两列火车超B,D的距离和是一个不变的值(即P A+PB+PC+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.【板块二】数轴上的和差倍分问题方法技巧此类问题一般由一些已知点和未知点(或者已知点运动形成未知点)构成,它们的距离满足一定数量关系,如和差倍分等,根据条件计算未知点表示的数,此类问题一般可采用设未知数,用绝对值表示出数轴上两点间的距离,再根据距离之间的数量关系列方程计算的方法.【例3】如图,数轴上点A,B表示的数分别为-10和10,C为数轴上一点(1)若AC+BC=28,求C点表示的数;(2)若2AC=3BC,求C点表示的数.【例4】如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+3|+(b+3a)2=0,设P从A点出发以3个单位每秒向右运动,点Q同时从B点出发以2个单位每秒向左运动,当AP+BQ=2PQ时,求运动时间.OA【分析】设时间为t秒,由绝对值和平方的非负性先求出A、B两点表示的数,然后用含t的式子表示出P、Q两点表示的数,进而表示出AP、BQ、和PQ,根据AP+BQ=2PQ建立方程求解.针对练习21.数轴上,A 、B 两点表示的数分别为-4和3.(1)点C 在数轴上,点C 到A 、B 两点的距离之和为11,求点C 在数轴上所对应的数;(2)若A 点、B 点同时沿数轴向正方向运动,A 点的速度是B 点速度的2倍,且3秒后,2OA =OB ,求点B 的速度.【板块三】数轴上的动点定值问题方法技巧 设参计算法设动点表示的数(若是行程问题一般设运动时间),从而表示出线段长(两点间的距离),计算可解. 【例5】如图,在数轴上A 、B 、C 三点表示的数分别为-10、10、50,A 、B 、C 三点同时运动,点A 以1个单位每秒的速度向左运动,点B 、C 分别以2个单位、5个单位每秒的速度向右运动,请问:BC -AB 的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.CBA例6 如图,数轴上A 、B 两点所对应的数分别为-8、4, A 、B 两点分别以2个单位/秒和1个单位/秒的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发也向数轴负方向运动,且 C 点总在A 、B 两点之间,并在运动过程中始终有BC AC =12,设运动t 秒钟后,点A 、B 、C 运动后的对应点分别为A 1、B 1、C 1 下列两个结论:①AA 1+BB 1的值不变;②CC 1AA 1的值不变 ,请选择正确的结论,并求其值.例7 如图,点A 在数轴上表示的数为-10,C 、D 为数轴上两个动点,点D 在点C 的右边,且CD =16,M 为AD 中点,N 为AC 的中点,当C 、D 运动时, M 、N 两点的距离即M N 的长是否改变?若不变求出其值;若变化说明理由.DMN﹣10A C针对练习31. 如图,已知数轴上有A 、B 、C 三个点,他们表示的数分别为是18,8,-10 (1)填空:AB = ,BC =A CB 188﹣10(2)若点A 以每秒1个单位长度的速度向右运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向左运动,试探索:BC -AB 的值是否随着时间t 的变化而变化?请说明理由;(3)现有动点P ,Q 都从A 点出发,点P ,以每秒1个单位长度的速度向终点C 移动;当点P 移动到B 点时,点Q 才从A 出发,并以每秒3个单位的速度向左移动,且当点P 到达C 点时,点Q 就停止移动,设点P ,移动的时间为t 秒,试用含t 的代数式表示P ,Q 两点间的距离。

初中数学竞赛第二十一讲数形结合(含解答)

初中数学竞赛第二十一讲数形结合(含解答)

第二十一讲 数形结合【趣题引路】你曾听说过蚂蚁回家的故事吗?事情是这样的:如图,D 是三角形ABC•的边AB 上一点,其上有一只小蚂蚁,它首先从D 点沿平行于BC 的方向爬行到AC 边上的E 点;•再从E 点沿平行于AB 方向爬到BC 边上的F 点;再从F 点沿平行于AC 的方向爬行到AB 边上的G 点……,这样每从一边爬到另一边算爬一次,•那么这只蚂蚁是否可经有限次回到原出发点D?如果可经最少n 次回到D 点,那么n 的值等于多少?•加上什么条件就可以求得蚂蚁回家的总路线的长?解析 (1)若D 是AB 中点,则n=3;(2)若D 不是AB 中点,可证明6次后蚂蚁回到出发点D,如图,•因蚂蚁行走路线都是与△ABC 各边平行的,所以 AD AE BF BG CH CK AM BD EC FC GA AH BK BM ======, ∴AD BD AM BM BD BM ++=.即AB AB BD BM= ∴BD=BM,即M 与D 重合,n=6.当第(1)种情况时,蚂蚁回家的总路线长是△ABC 各边和的一半,•只要知道△ABC 各边长即可求解;当第(2)种情况时,只要知道△ABC 各边长和AD 、DG 或AE 、EH 等即可求解.请读者计算一下.点评数与形是一个不可分割的整体,数体现形的大小,形状,•而形又是抽象的数量关系形象化,数形结合能使我们容易把握问题的实质.【知识延伸】例 求函数y=21x ++2(4)4x -+的最小值. 解析 构造如图所示的两个直角三角形,即Rt △PAC,Rt △PBD,使AC=1,BD=2,PC=x,PD=4-x,求最小值可转化为:在L 上求一点P,使PA+PB 最小.取点A 关于L 的对称点A ′连结A ′B,则A ′B 与L 的交点即为所求P 点,故PA+PB 的最小值即是线段A ′B 在Rt △A ′EB 中,A ′B=2234+, 故函数y 的最小值为 5. 点评此题若用代数方法来解很麻烦,通过对函数形式观察,发现:21x +可以看成是以x 、•1为直角边的三角形的斜边,2(4)4x -+可以看成是以(4-x),2为直角边的斜边,•此题可归纳为求两个直角三角形斜边的和的最小值,于是可构造图形来解决.【好题妙解】佳题新题品味例1 在直径为AB 的半圆内,划出一块三角形区域,使三角形的一边为AB,•顶点C 在半圆周上,其他两边分别为6和8.现在建造一个内接于△ABC 的矩形水池DEFN,其中,DE 在AB 上,如图21-3的设计方案是使AC=8,BC=6.(1)求△ABC 中AB 边上的高h;(2)设DN=x,当x 取何值时,水池DEFN 的面积最大?(3)实际施工时,发现AB 上距B 点1.85m 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树?解析 (1)运用勾股定理和面积公式可求得h=4.8;(2)∵△CNF ∽△CAB,∴h DN NF h AB -=. ∴NF=10(4.8)4.8x -. 则S DEFN =x ·104.8·(4.8-x)=104.8-(x 2-4.8x). 故当x=2.4时,S DEFN 最大;(3)当S DEFN 最大,x=2.4时,F 为BC 中点,在Rt △FEB 中,EF=2.4,BF=3.∴BE=22BF EF +=229 2.4-=1.8.∵BM=1.85,∴BM>EB.故大树位于欲修建的水池边上,应重新设计方案.∵x=2.4时,DE=5,∴AD=3.2.点评本例应用二次函数的性质求解,并综合了相似三角形,圆等几何知识.•题目设计新颖,有较强的创新特色.例2正数x,y,z满足22222225,39,316.yx xyyzz xz x⎧++=⎪⎪⎪+=⎨⎪⎪++=⎪⎩试求xy+2yz+3xz的值.解析如图21-4,构造一直角三角形PQR,由条件可知:△PQR内有一点,使OQ=z,OP=3y,OR=x,则S△PQR=S△OPR+S△OPQ+S△OQR.即12×3×4=12×x×3ysin150º+12·3y+12·z·x·sin120º,∴6=43xy+23yz+34xy.∴xy+2yz+3xz=243.点评此题条件复杂,若想通过代数方法求解,势必十分困难,通过观察,利用余弦定理构造图形却使问题变得较容易.例3 已知方程│x│=ax+1有一负根而没有正根,求实数a的取值范围.解析如图21-5,方程│x│=ax+1的根就是函数y1=│x│和y2=ax+1的图象交点的横坐标.方程只有负根而没有正根,就是过点(0,1)的直线y1=x+1只与直线y=-x(•x≤0)相交而不与直线y=x(x≥0)相交.在同一坐标系中作出y1=│x│与y2=ax+1•的图象,观察图象知,-1≤-1a<0,∴a≥1.全能训练A级1.函数y=21ax bx c++(a>0),无论x取任何实数,函数总有意义的条件是_______.2.已知边长为a的正方形,内接一个边长为b的正方形,求证:b<a b .3.已知a、b、x、y都是正数,且a2+b2=x2+y2=ax+by=1,求证:a2+y2=b2+x2=1,且ab=xy.1.b 2-4ac>0.2.提示:如图,由题意可得221()2x y a xy a b +=⎧⎪⎨=-⎪⎩ 构造方程,由△≥0即得结论.3.构造出以1为直径的圆内接四边形ABCD,如图,使AB=a,AD=b,BC=y,DC=x,•由托勒密定理知ax+by=AC ·BD=1,而BD=1.∴AC=1即圆的直径.∴四边形ABCD 为矩形.故可得a=x,b=y.∴a 2+y 2=b 2+x 2=1,且ab=xy.B 级1.已知正数a 、b 、c 、A 、B 、C 满足:a+A=b+B=c+C=10.求证:a ·B+b ·C+c ·A<100.•2.已知正数a 、b,且a+b=1,求证:(a+2)2+(b+2)2≥252.1.提示:构造等边△DEF如图,使DE=a+A,EF=c+C,FD=B+b,由S1+S2+S3<S△DEF可得结论.2.提示:如图,构造点P(-2,-2),Q(a,b),则不等式左边是PQ2,Q是线段AB上的点,AB的中点为C,则可求得PC=52,由PQ≥PC可得结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选课件
6
从坐标系中的一个点说起……
点A到y轴的
距离为 x
点A到x轴的距离为 y
C
OB
点的坐标 数
精选课件
线段的长 形
7
点A到y轴的
距离为 x C
O
点A到x轴的距离为 y
B
点的坐标 数

面积

精选课件
8
例:无论m为何实数,直线y=x+2m与y=-x+4的
交点不可能在( C )
A. 第一象限 B. 第二象限
C. 第三象限
D. 第四象限
y
O
x
y=-x+4
精选课件
9
例:如图,如果士所在位置的坐标为(-1,-2), 相所在位置的坐标
为 (2,- 2) 那么,马可以走的位置的坐标为
.
D

C
A(-4,-1) B(-2,-1) C(-1,0) D(-1,2)
A B 士帅 相
精选课件
10
二、以数解形
(1)利用数轴、坐标系把几何问题代数化(在高 中我们还将学到用“向量”把几何问题代数化);
数形结合思想 初中数学
数无形时不直观 形无数时难入微
精选课件
1
数学思想方法的三个层次:
数学一般方法
配方法、换元法、
待定系数法、判别 式法、割补法等
数学思想 和方法
逻辑思维方法
分析法、综合法、 归纳法、反证法等
数学思想方法
函数和方程思想、分
类讨论思想、数形结 合思想、化归思想等
精选课件
2
2015福建中考
运算 解三角形
坐标系
线段、角、 面积…
点的运动轨迹
精选课件
13
掌握、运用一些基本图形解决问题
要有意识地强化对基本图形的运用,不断地运用这 些基本图形去发现、描述问题、理解、记忆结果。
双垂图
一线三等角
精选课件
14
后语但不用多!) 不断反思,才能真正促进基本能力和思想 方法的提升(走心!!!).
能力与主要数学思想组块考查情况分析
关于数形结合思想的考查,对全体考生的区分都比较显著,这部分试题 得满分的人数较少,通过对数形结合的考查,能够有效地区分各个水平考生 的数学素养的高低。
精选课件
3
反复练习,不一定能保证基础知识与基本 技能的落实(要做但不用多!)
不断反思,才能真正促进基本能力和思想 方法的提升(走心!!!)
(2)利用面积、距离、角度等几何量来解决几何 问题,例如:利用勾股定理证明直角、利用三角 函数研究角的大小、利用线段比例证明相似等.
精选课件
11
基本图形
平面 几何 图形
直线形 圆
三角形 四边形
关系
运 动
三角形 相似变换
全等变换
平移 旋转 轴对称
精选课件
12
基本图形
平面 几何 图形
直线形 圆
三角形 四边形
精选课件
15
精选课件
4
学生面对利用“数形结合”问题时的困惑:
数学语言、数量关系
数 形
几何图形、位置关系
精选课件
5
一、以形助数
(1)利用相关的几何图形帮助记忆代数公式, 例如:完全平方公式与平方差公式;
(2)利用数轴及平面直角坐标系将一些代数 表达式赋予几何意义,通过构造几何图形,进 而帮助求解相关的代数问题,或者简化相关的 代数运算。
相关文档
最新文档