2012年甘肃省兰州市中考数学试卷及答案

合集下载

2012年甘肃省兰州市中考真题及答案-推荐下载

2012年甘肃省兰州市中考真题及答案-推荐下载
15.在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不
考虑水的阻力),直至铁块完全露出水面一定高度,下图能反映弹簧秤的读数 y (单位 N )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年中考数学试题(含答案)

2012年中考数学试题(含答案)

2012年中考数学试题A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCB10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:25x x - =________.12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos458((1)π-++-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A,B两点,且点A的坐标为(1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。

甘肃兰州2012年初中毕业生学业测试说明:数学

甘肃兰州2012年初中毕业生学业测试说明:数学

甘肃兰州2012年初中毕业生学业测试说明:数学初中毕业生学业考试的命题要根据学科课程标准,进一步减少机械记忆类试题的数量,逐步渗透以培养学生创新精神和实践能力为核心的教育理念,加强试题与社会实际和学生生活的联系,注重考查学生对知识与技能的掌握情况,特别是在具体情境中综合运用所学知识分析和解决问题的能力。

在知识技能方面,重点考查学科知识的核心内容和基本技能;在过程与方法方面,重点考查学生运用所学知识分析解决问题的能力;对情感态度价值观的考查,渗透在前两方面的考查内容中。

杜绝设置偏题、怪题,不在繁、偏以及技巧上做文章。

试题难易度比例:基础题约占70%,中等难度题约占20%,较难题约占10%。

数学Ⅰ。

命题依据:以《全日制义务教育数学课程标准》(实验稿)为命题依据。

Ⅱ。

考试范围:以九年级所学内容为主(七、八年级教学内容不单独命题)。

Ⅲ。

考试形式、答卷时间与试卷结构考试形式:闭卷笔答;答卷时间:120分钟;卷面分值:150分。

试题类型:选择题约占40%,非选择题(填空题、作图题、阅读理解题、解答题)约占60%。

Ⅳ。

考试能力要求1。

运算能力:会根据概念、公式、法则进行数、式、方程的正确运算与变形;能根据要求对简单数据进行估算;会利用计算器进行有关计算(不单独考查计算器的运算程序)。

2。

表达能力:能用语言、文字、字母、符号或图表等清楚地表达解决数学问题的过程。

3。

思维能力:会对问题或材料进行观察、比较、分析,能对其中的数学信息进行选择和处理,并能作出合理的推断或大胆的猜想。

4。

空间想象能力:能根据视图想象出实物的直观形象,并能对某些特殊几何体的图形中的点、线、面有一定的感性认识,具有初步的空间观念。

5。

分析与解决问题的能力:能阅读、理解对问题进行陈述的材料,能灵活应用所学数学知识解决相关问题。

6。

生活实践能力:能利用数学模型(函数、方程、不等式、概率等)解决一些社会生活实际问题(如:营销问题、面积问题、最短路程问题等)。

2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)

2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)

2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.2. (2012上海市12分)如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA=∠OAC 时,求t 的值.3. (2012广东广州14分)如图,抛物线233y=x x+384--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.4. (2012广东肇庆10分)已知二次函数2y mx nx p =++图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1﹤0﹤x 2,与y 轴交于点C ,O 为坐标原点,tan tan CA BO 1O C ∠-∠=. (1)求证: n 4m 0+=; (2)求m 、n 的值;(3)当p ﹥0且二次函数图象与直线y x 3=+仅有一个交点时,求二次函数的最大值.5. (2012广东珠海7分)如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.6. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.7. (2012浙江宁波12分)如图,二次函数y=ax 2+bx+c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线. (1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且PA=PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM∽△AOC(点C 与点A 对应),求点M 的坐标;②若⊙M M 的坐标.8. (2012浙江温州14分)如图,经过原点的抛物线2y x 2mx(m 0)=-+>与x 轴的另一个交点为A.过点P(1,m)作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。

兰州市中考数学试题及答案 (2).doc

兰州市中考数学试题及答案 (2).doc

本答案仅供参考,阅卷时会制定具体的评分细则和评分标准。

一、选择题:本大题共15小题,每小题4分,共60分.题号123456789101112131415答案C C B C B C B B A D A D B D C二、填空题:本大题共5小题,每小题4分,共20分.16. 17.2 18.8<≤1019.≤≤ 20.三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分6分)解:∵∴ ------------------------------3分原式=÷=·=∴原式= --------------------6分(注:直接将方程的根代入计算也可)22. (本小题满分6分)解:由题意可知可得,在中, ------------------------1分在中, ----------------------2分得 --------------------------------------3分∴ ----------------------------------------4分∴ -----------------------------5分答:楼梯用地板的长度增加米。

-------------------------------6分23.(本小题满分8分)解:(1)作法参考:方法1:作,在射线上截取,连接;方法2:作,在射线上截取,连接;方法3:作,过点作,垂足为;方法4:作,过点作,垂足为;方法5:分别以、为圆心,、的长为半径画弧,两弧交于点,连接、.--------------------------------------2分(注:作法合理均可得分)∴为所求做的图形. ----------------------------------------3分(作图略)(2)等腰三角形--------------------------------------------------4分H∵是沿折叠而成∴≌∴ ---------------5分∵是矩形∴∥∴ ----------------------6分∴ ------------------------------------------------7分∴是等腰三角形 --------------------------------------------8分24.(本小题满分8分)解:(1) 第二组的频率为 -----------------------------1分(人),这次共抽取了名学生的一分钟跳绳测试成绩 ----2分 (2)第一组人数为(人) --------------------------------3分第三组人数为人 --------------------------------------------4分第四组人数为人-------------------------------------------5分这次测试的优秀率为------------6分(3)成绩为次的学生至少有人 --------------------------8分25.(本小题满分10分)解:(1)由得,即 ------2分分别过点和点向轴和轴作垂线,两垂线相交于点,则是直角三角形.在中,∴双曲线的对径为. ------------4分(2)若双曲线的对径是,即== ---------------5分过点作轴, 则是等腰直角三角形.∴点坐标为 -----------------6分则 ----------------------7分(3)若双曲线与它的其中一条对称轴相交于、两点,则线段的长称为双曲线的对径. ---------------10分26.(本小题满分10分)解:(1)相切. --------------------------------------1分理由如下: -----------------------------------------2分∵,∴.∵∴.∴.∵,∴ .∴(用三角形全等也可得到)相切 -------------------------4分(2)由题意可得∴------------------ 5分∴ ------------------------------------------------ 6分∴(另:用射影定理直接得到也可)∴ . ----------------------------------------------7分(3)∵, ----------------------8分∵,∴.解之,得 (负值舍去)∴ ------------------------------------------9分∵∴∴. ------------------------------ 10分27.(本小题满分10分), ----1分∵抛物线与轴有两个交点,∴ --------2分则 ---------3分-------4分---------6分∵∴ ----------------------- 7分---------- 8分∴ ---------------------------------9分∵---------------------------------------10分28.(本小题满分12分)解:(1)∵抛物线经过(0,4),∴ ----------1分∵顶点在直线上∴,-------------------2分∴所求函数关系式为: ------------------------------3分(2)在中,,,∴∵四边形是菱形∴∴、两点的坐标分别是、. -------------------------4分当时,当时,∴点和点都在所求抛物线上. ----------------------------5分(3)设与对称轴交于点,则为所求的点 -------------------------6分设直线对应的函数关系式为则,解得:∴ ----------------------7分当时,∴P(,), -------------------8分(4)∥∴∽∴即得 ----------------------------9分设对称轴交轴于点F,则∵(--------------10分存在最大值.由∴当时,S取得最大值为. --------------------------11分此时点的坐标为(0,). -------------------------------12分。

2012年甘肃省兰州市中考真题及谜底

2012年甘肃省兰州市中考真题及谜底
2012 年兰州市初中毕业生学业考试
数 学(A)
注意事项: 1.全卷共 150 分,考试时间 120 分钟. 2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡上. 3.考务务必将答案直接填(涂)写在答题卡的相应位置上.
参考公式:二次函数顶点坐标公式:(-
b 4ac b2 ,)
4.抛物线 y 2x2 1的对称轴是( )
(A)直线 x 1 (B)直线 x 1
(C) y 轴
2
(D)直线 x 2
5.一个长方体的左视图、俯视图及相关数据如
图所示,则其主视图的面积为( )
(A)6 (B)8 (C)12 (D)24
6.如果一个扇形的弧长等于它的半径,那么此
扇形称为“等边扇形”,则半径为 2 的“等边扇形”的面积为( )
(A) π (B)1 (C)2 (D) 2 π 3
2
7.抛物线 y (x 2)2 3 可以由抛物线 y x2 平移得到,则下列平移过程正确的是(
) (A)先向左平移 2 个单位,再向上平移 3 个单位 (B)先向左平移 2 个单位,再向下平移 3 个单位 (C)先向右平移 2 个单位,再向下平移 3 个单位
2a 4a
一、选择题:本大题共 15 小题,每小题 4 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的.
1. sin 60° 的相反数是( )
(A) 1 (B) 3 (C) 3 (D) 2
2
3
2.近视眼镜的度数 y (度)与镜片焦距 x(m) 成反比例.已知 400 度近视眼镜片的焦距为
0.25m ,则 y 与 x 的函数关系式为( )
(A) y 400 (B) y 1 (C) y 10知两圆的直径分别为 2cm 和 4cm,圆心距为 3cm,则这两个圆的位置关系是(

甘肃省兰州市中考数学(A卷)试题(含答案)

甘肃省兰州市中考数学(A卷)试题(含答案)

2 2 x 1) 3 的图象的顶点坐标是 3.二次函数 y (
A. (1,3) B. ( 1 ,3) C. (1, 3 ) D. ( 1 , 3 ) 4.⊙O1 的半径为 1cm,⊙O2 的半径为 4cm,圆心距 O1O2=3cm,这两圆的位置关系是 A.相交 B.内切 C.外切 D.内含 5.当 x 0 时,函数 y A.第四象限 C.第二象限 6.下列命题中是假命题的是 A.平行四边形的对边相等 C.矩形的对边平行且相等 B.菱形的四条边相等 D.等腰梯形的对边相等
第 13y
x
14.圆锥底面圆的半径为 3cm,其侧面展开图是半圆,则圆锥母线长为 A.3cm B.6cm C.9cm D.12cm 15.如图 ,动点 P 从点 A 出发,沿线段 AB 运动至点 B 后,立即按原路返回,点 P 在运动 过程中速度不变, 则以点 B 为圆心, 线段 BP 长为半径的圆的面积 S 与点 P 的运动时间 t S A P
8.用配方法解方程 x 2 2 x 1 0 时,配方后所得的方程为
2 A. (x 1) 0 2 B. (x 1) 0 2 C. (x 1) 2 2 D. (x 1) 2
9.△ABC 中, a 、 b 、 c 分别是∠A、∠B、∠C 的对边,如果 a 2 b 2 c 2 ,那么下列结论正确 的是 A. c sinA= a B. b cosB= c C. a tanA= b D. c tanB= b 10.据调查,2011 年 5 月兰州市的房价均价为 7600 元/m2,2013 年同期将达到 8200 元/m2, 假设这两年兰州市房价的平均增长率为 x ,根据题意,所列方程为 A. 7600(1 x%) 2 8200 C. 7600(1 x) 2 8200 B. 7600(1 x%) 2 8200

2012年兰州市中考数学试题及答案解析

2012年兰州市中考数学试题及答案解析

2012年兰州市中考数学试题一、单项选择题(每小题4分,共60分)1.sin60°的相反数是【】A.-12B.-33C.-32D.-222.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为【】A.y=400x B.y=14x C.y=100x D.y=1400x3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是【】A.相交B.外切C.外离D.内含4.抛物线y=-2x2+1的对称轴是【】A.直线x=12B.直线x=-12C.y轴D.直线x=25.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为【】A.6 B.8 C.12 D.246.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为【】A.πB.1 C.2 D. 2 37.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是【】A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是【】A.0.2 B.0.3 C.0.4 D.0.59.在反比例函数y=kx(k<0)的图象上有两点(-1,y1),(-14,y2),则y1-y2的值是【】A.负数B.非正数C.正数D.不能确定10.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为x m,则可列方程为【】A.x(x-10)=200 B.2x+2(x-10)=200C.x(x+10)=200 D.2x+2(x+10)=20011.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a、b的大小关系为【】A.a>b B.a<b C.a=b D.不能确定12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF 是直角三角形时,t(s)的值为【】A.74B.1 C.74或1 D.74或1或9413.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是【】A.k<-3 B.k>-3 C.k<3 D.k>315.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是【】A.B.C.D.二、填空题(每小题4分,共20分)16.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.17.如图,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.19.如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是.20.如图,M为双曲线y=3x上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.三、解答题(本大题8小题,共70分)21.已知x是一元二次方程x2-2x+1=0的根,求代数式x-33x2-6x÷⎝⎛⎭⎫x+2-5x-2的值.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4m,∠θ1=40°,∠θ2=36°,求楼梯占用地板增加的长度(计算结果精确到0.01m,参考数据:tan40°=0.839,tan36°=0.727).23.如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法);(2)折叠后重合部分是什么图形?说明理由.24.5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4∶17∶15.结合统计图回答下列问题:(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?25.如图,定义:若双曲线y=kx(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=kx(k>0)的对径.(1)求双曲线y=1x的对径;(2)若双曲线y=kx(k>0)的对径是102,求k的值;(3)仿照上述定义,定义双曲线y=kx(k<0)的对径.26.如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连接DE 、OE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)若tan C =52,DE =2,求AD 的长.27.若x 1、x 2是关于一元二次方程ax 2+bx +c (a ≠0)的两个根,则方程的两个根x 1、x 2和系数a 、b 、c 有如下关系:x 1+x 2=- b a ,x 1•x 2= ca.把它称为一元二次方程根与系数关系定理.如果设二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的两个交点为A (x 1,0),B (x 2,0).利用根与系数关系定理可以得到A 、B 连个交点间的距离为:AB =|x 1-x 2|=212214)(x x x x -+=a c a b 42-⎪⎭⎫⎝⎛-=224a ac b -=||42a ac b -. 参考以上定理和结论,解答下列问题:设二次函数y =ax 2+bx +c (a >0)的图象与x 轴的两个交点A (x 1,0)、B (x 2,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求b 2-4ac 的值; (2)当△ABC 为等边三角形时,求b 2-4ac 的值.28.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(-3,0)、(0,4),抛物线y = 23x 2+bx +c 经过点B ,且顶点在直线x=52上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t 的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.2012年甘肃省兰州市中考数学试卷参考答案与试题解析一、单项选择题(每小题4分,共60分).1.sin60°的相反数是( )A.B.C.D.考点:特殊角的三角函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年6月甘肃省兰州市中考数学试卷一.选择题(共15小题)1.sin60°的相反数是()A.B.C.D.2.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A.B.C.D.y=3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是() A.相交B.外切C.外离D.内含4.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C. y轴D.直线x=25.(2009•烟台)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A. 6 B. 8 C. 12 D. 246.(2010•常德)如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为()A.πB. 1 C. 2 D.7.(2011•滨州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是() A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.(2012•兰州)用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A. 0.2 B. 0.3 C. 0.4 D. 0.59.在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是() A.负数B.非正数C.正数D.不能确定10.(2011•吉林)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为()A. x(x﹣10)=200 B. 2x+2(x﹣10)=200 C. x(x+10)=200 D. 2x+2(x+10)=20011.(2012•兰州)已知二次函数y=a(x+1)2﹣b(a≠0)有最小值,则a,b的大小关系为()A. a>b B. a<b C. a=b D.不能确定12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为()A.B. 1 C.或1 D.或1或13.(2012•兰州)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为()A. 130°B. 120°C. 110°D. 100°14.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A. k<﹣3 B. k>﹣3 C. k<3 D. k>315.(2007•烟台)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.二.填空题(共5小题)16.(2006•柳州)如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是_________.17.(2011•孝感)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为_________.18.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是_________.19.(2012•兰州)如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是_________.20.(2012•兰州)如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为_________.三.解答题(共8小题)21.(2012•兰州)已知x是一元二次方程x2﹣2x+1=0的根,求代数式的值.22.(2012•兰州)在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4米,∠θ1=40°,∠θ2=36°,楼梯占用地板的长度增加率多少米?(计算结果精确到0.01米,参考数据:tan40°=0.839,tan36°=0.727)23.(2012•兰州)如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)(2)折叠后重合部分是什么图形?说明理由.24.(2012•兰州)5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?25.(2012•兰州)如图,定义:若双曲线y=(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB 的长度为双曲线y=(k>0)的对径.(1)求双曲线y=的对径.(2)若双曲线y=(k>0)的对径是10,求k的值.(3)仿照上述定义,定义双曲线y=(k<0)的对径.26.(2012•兰州)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)若tanC=,DE=2,求AD的长.27.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.28.(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x 轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.答案与评分标准一.选择题(共15小题)1.sin60°的相反数是()A.B.C.D.考点:特殊角的三角函数值。

分析:根据特殊角的三角函数值和相反数的定义解答即可.解答:解:∵sin60°=,∴sin60°的相反数是﹣,故选C.点评:本题考查特殊角的三角函数值和相反数的定义,要求学生牢记并熟练运用.2.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A.B.C.D.y=考点:根据实际问题列反比例函数关系式。

专题:应用题。

分析:设出反比例函数解析式,把(0.25,400)代入即可求解.解答:解:设y=,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=.故选C.点评:反比例函数的一般形式为y=(k是常数,且k≠0),常用待定系数法求解函数解析式.3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是() A.相交B.外切C.外离D.内含考点:圆与圆的位置关系。

分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.解答:解:由题意知,两圆圆心距d=3>R﹣r=2且d=3<R+r=6,故两圆相交.故选A.点评:本题主要考查两圆之间的位置关系,两圆外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).4.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C. y轴D.直线x=2考点:二次函数的性质。

分析:已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.解答:解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.点评:主要考查了求抛物线的顶点坐标与对称轴的方法.5.(2009•烟台)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A. 6 B. 8 C. 12 D. 24考点:由三视图判断几何体。

分析:找到主视图中原几何体的长与高让它们相乘即可.解答:解:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选B.点评:解决本题的关键是根据所给的左视图和俯视图得到主视图的各边长.6.(2010•常德)如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为()A.πB. 1 C. 2 D.考点:扇形面积的计算;弧长的计算。

相关文档
最新文档