2015安徽省学业水平测试数学试题及标准答案
2015年安徽高级中等学校招生考试数学试卷

2015年安徽省普通高中招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.在-4,2,-1,3这四个数中,比-2小的数是()A.-4B.2C.-1D.32.计算×的结果是()A. B.4 C. D.23.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.162×106C.1.62×108D.0.162×1094.下列几何体中,俯视图是矩形的是()5.与1+最接近的整数是()A.4B.3C.2D.16.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.57.某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分8.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADCD.∠ADE=∠ADC9.如图,矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.610.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能为()第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.-64的立方根是.12.如图,点A、B、C在☉O上,☉O的半径为9,的长为2π,则∠ACB的大小是.13.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜测x、y、z满足的关系式是.14.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是.(把所有正确结论的序号都选上)三、解答题(本大题共2小题,每小题8分,满分16分)·,其中a=-.15.先化简,再求值:--16.解不等式:>1--.17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.18.如图,平台AB高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(≈1.7)19.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.在☉O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在☉O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ长;(2)如图2,当点P在BC上移动时,求PQ长的最大值.六、解答题(本题满分12分)21.如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.七、解答题(本题满分12分)22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x取何值时,y有最大值?最大值是多少?八、解答题(本题满分14分)23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点.过点E作AB的垂线,过点F 作CD的垂线,两垂线交于点G,连结GA、GB、GC、GD、EF,若∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.答案全解全析:一、选择题1.A根据正数大于负数可排除B、D;根据两个负数比较,绝对值大的反而小可知A正确,故选A.2.B×===4,故选B.3.C1亿=108,则1.62亿=1.62×108,故选C.4.B A选项的俯视图为带圆心的圆,B选项的俯视图为矩形,C选项的俯视图为三角形,D选项的俯视图为圆,故选B.5.B∵4<5<9,∴2<<3,又∵5和4比较接近,∴与最接近的整数是2,∴与1+最接近的整数是3,故选B.6.C2013年的业务量为1.4亿件,则2014年的业务量为1.4(1+x)亿件,2015年的业务量为1.4(1+x)2亿件,故选C.7.D人数共为2+5+6+6+8+7+6=40;由题表可知,45出现的次数最多,所以众数是45分;按从大到小的顺序排列后,第20和第21个数都是45,所以中位数是45分;平均数为=44.425(分),D选项是错误的,故选D.8.D由三角形内角和等于180°,∠AED=60°,可得∠ADE=120°-∠A,由四边形内角和为360°,∠A=∠B=∠C,得∠ADC=360°-3∠A,所以∠ADE=∠ADC,故选D.评析本题考查了三角形和四边形的内角和定理,难点在于借助∠A来判断∠ADE和∠ADC 之间的数量关系,属于基础题.9.C连结EF交GH于点O,由四边形EGFH为菱形,可得EF⊥GH,OH=OG,因为四边形ABCD 为矩形,所以∠B=90°.因为AB=8,BC=4,所以AC= =4 .易证△AGE ≌△CHF,所以AG=CH,所以AO=AC=2 ;因为EO ⊥GH,∠B=90°,所以∠AOE=∠B,又因为∠OAE=∠BAC,所以△AOE ∽△ABC,所以 = =,所以AE=5,故选C. 10.A 由题图可知一元二次方程ax 2+bx+c=x 有两个不等的正实数根,即函数y=ax 2+(b-1)x+c 的图象与x 轴正半轴有两个交点,故选A.二、填空题11.答案 -4解析 (-4)3=-64,所以-64的立方根是-4. 12.答案 20°解析 连结OA 、OB,设∠AOB=n°,则∠ACB= n°. 由=2π,得n=40,故∠ACB=20°.13.答案 xy=z(只要关系式对前六项是成立的即可) 解析 ∵21×22=23,22×23=25,23×25=28,25×28=213,……, ∴x、y 、z 满足的关系式是xy=z. 14.答案 ①③④解析 ①∵c ≠0,∴a+b=ab ≠0.等式两边同时除以ab 得 +=1,∴①正确;②当a=3时,解方程3+b=3b=c,可得b=,c=,∴b+c=6,故②错误;③∵a=b=c,则2a=a 2=a,∴a=0,∴abc=0,故③正确;④∵a、b 、c 中只有两个数相等,∴a=b(若a=c,则由a+b=ab=c,得a=b=c=0,不合题意,故a ≠c,同理,b ≠c),则2a=a 2,∴a=0或a=2.∵a=0不合题意,∴a=2,则b=2,c=4,∴a+b+c=8,故④正确.三、解答题15.解析 原式= - - - · = - - ·=- -· =.(6分)当a=- 时, =--=-1.(8分)16.解析2x>6-(x-3),2x>6-x+3,(4分)3x>9,x>3.所以不等式的解集为x>3.(8分)四、解答题17.解析(1)△A1B1C1如图所示.(4分)(2)线段A2C2和△A2B2C2如图所示.(符合条件的△A2B2C2不唯一)(8分) 18.解析作BE⊥CD于点E,则CE=AB=12.=12.(3分)在Rt△BCE中,BE==°在Rt△BDE中,DE=BE·tan∠DBE=12·tan45°=12.(6分)∴CD=CE+DE=12+12≈32.4.∴楼房CD的高度约为32.4米.(8分)五、解答题19.解析(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A,每种结果发生的可能性相等,其中,两次传球后,球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是.(4分)(2)由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.(8分)其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这2种,所以三次传球后,球恰在A手中的概率是=.(10分)评析本题借助传球游戏考查了用列举法求随机事件的概率,关键是理解清楚题意,画出树状图,表示出事件可能发生的结果,不重复,不遗漏,属于基础题.20.解析(1)∵OP⊥PQ,PQ∥AB,∴OP⊥AB.在Rt△OPB中,OP=OB·tan∠ABC=3·tan30°=.(3分)如图,连结OQ,在Rt△OPQ中,PQ=-=-=.(5分)(2)∵PQ2=OQ2-OP2=9-OP2,∴当OP最小时,PQ最大.此时,OP⊥BC.(7分)OP=OB·sin∠ABC=3·sin30°=.∴PQ长的最大值为-=.(10分)六、解答题21.解析(1)把A(1,8),B(-4,m)分别代入y=,得k1=8,m=-2.∵A(1,8),B(-4,-2)在y=k2x+b图象上,解得k2=2,b=6.(5分)∴--(2)设直线y=2x+6与x轴交于点C,当y=0时,x=-3,∴OC=3.∴S△AOB=S△AOC+S△BOC=×3×8+×3×2=15.(8分)(3)点M在第三象限,点N在第一象限.(9分)①若x1<x2<0,点M、N在第三象限分支上,则y1>y2,不合题意;②若0<x1<x2,点M、N在第一象限分支上,则y1>y2,不合题意;③若x1<0<x2,点M在第三象限,点N在第一象限,则y1<0<y2,符合题意.(12分)七、解答题22.解析(1)设AE=a米,由题意,得AE·AD=2BE·BC,AD=BC,∴BE=a,∴AB=a.由题意,得2x+3a+2·a=80,∴a=20-x.(4分)∴y=AB·BC=a·x=-x,即y=-x2+30x(0<x<40).(8分)(2)∵y=-x2+30x=-(x-20)2+300,∴当x=20时,y有最大值,最大值是300.(12分)八、解答题23.解析(1)证明:∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC,∴△AGD≌△BGC.∴AD=BC.(5分)(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC.在△AGB和△DGC中,=,∠AGB=∠DGC,∴△AGB∽△DGC.(8分)∴=.又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.(10分)(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.图1由△AGD≌△BGC,知∠GAD=∠GBC.在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.∴∠AGB=∠AHB=90°,(12分)∴∠AGE=∠AGB=45°,∴=.又△AGD∽△EGF,∴==.(14分)(本小题解法有多种,如可按图2和图3作辅助线求解,过程略)图2图3评析本题综合考查了等腰直角三角形的性质、直角三角形斜边中线、三角形全等和相似的判定方法和性质,属于拓展探索型题,学生要有较强的基本功和综合分析问题的能力.。
2015年普通高等学校全国统一考试(安徽卷)数学(理科).doc

2015年普通高等学校全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题.................卷、草稿纸上答题无效..........。
4. 考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。
(1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+ (3)设:12,:21xp x q <<>,则p 是q 成立的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 5、已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面6、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32 7、一个四面体的三视图如图所示,则该四面体的表面积是( ) (A )13+ (B )23+ (C )122+ (D )228、C ∆AB 是边长为2的等边三角形,已知向量a r ,b r满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )(A )1b =r (B )a b ⊥r r (C )1a b ⋅=rr (D )(4)a b BC +⊥u u u r9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <10、已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-第二卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分。
2015年安徽省中考数学试卷-答案

【考点】用待定系数法求函数的解析式、分割法求面积、数形结合思想的应用,综合性较强 22.【答案】(1) y 3 x2 30x(0 x 40)
4
(2)当 x 20 时, y 有最大值,最大值是 300 平方米.
【解析】解:(1)设 AE a ,由题意得 AE AD 2BE BC , AD BC ,
【考点】列函数关系式解应用题、利用二次函数的性质求最值
23.【答案】解:(1)证明: CE 是 AB 的垂直平分线,GA GB . 同理 CD GC ,
在 △AGD 和△BGC 中, GA GB , AGD BGC , GD GC
△AGD △BGC , AD BC
【考点】同底数幂的运算、推理能力
14.【答案】①③④
【解析】对于①,当 c ab≠0 时, a≠0 且 b≠0 ,则由 a b ab 得 a b 1,即 1 1 1 ,①正确;对于
ab ab
ab
②,当 n 3 时,由 a b ab ,即 3 b 3b ,得 b 3 ,则 c ab 9 ,所以 b c 6 ,②错误;对于③,当 a b c
为 AE//CF ,所以四边形 AECF 为平行四边形,连接 EF 交直线 AC 于点 O ,因为四边形 EGFH 是菱形,所
以 AE CE ,设 AE CE=x ,则在 RtBCE 中,由勾股定理得 EB2 +BC2 EC2 ,即 8 x2 42 x2 ,解得
x 5 ,即 AE 5 ,故选 C. 【考点】菱形的性质、勾股定理. 10.【答案】A 【解析】设 P(xP,yP ) , Q(xQ , yQ ) ,则由图易得当 x xP 或 x xQ 时, y1 y2 ;当 xP x xQ 时, y1 y2 ,
2015年普通高等学校招生全国统一考试数学理试题精品解析(安徽卷)

2015年高考安徽卷理数试题解析(精编版)(解析版)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效............................ 4. 考试结束,务必将试卷和答题卡一并上交.参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+. 标准差222121[()()()]n s x x x x x x n =-+-++-L ,其中121()n x x x x n=+++L . 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(1)设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .(2)下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+(3)设:12,:21xp x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=(5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面(6)若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准 差为( )(A )8 (B )15 (C )16 (D )32(7)一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )23+(C )122+ (D )22(8)C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )(A )1b =r (B )a b ⊥r r (C )1a b ⋅=r r (D )()4C a b +⊥B u u u r r r(9)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <(10)已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π= 时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<-(C )()()()202f f f -<< (D )()()()202f f f <<-第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)371()x x +的展开式中5x 的系数是 .(用数字填写答案)(12)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 . 【答案】6 【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈(13)执行如图所示的程序框图(算法流程图),输出的n 为 .(14)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .(15)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的 是 .(写出所有正确条件的编号)① 3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.与最值;函数零点问题考查时,要经常性使用零点存在性定理.三. 解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的 指定区域内.(16)(本小题满分12分)在ABC ∆中,3,6,324A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长.用数形结合的思想,找准需要研究的三角形,利用正弦、余弦定理进行解题.(17)(本小题满分12分)已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).(18)(本小题满分12分)设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=L ,证明14n T n≥.(19)(本小题满分13分) 如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F.(Ⅰ)证明:1//EF B C ;(Ⅱ)求二面角11E A D B --余弦值.【答案】(Ⅰ)1//EF B C ;(Ⅱ)6. 【解析】(20)(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为 ()0b ,,点M 在线段AB 上,满足2BM MA =,直线O M 的斜率为510. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程. 【答案】(I )55;(II )221459x y +=. 【解析】试题分析:(I )由题设条件,可得点M 的坐标为21(,)33a b ,利用OM k =,从而2b a =,进而得,2a c b ===,算出5c e a ==.(II )由题设条件和(I )的计算结果知,直线AB 的方程1y b+=,得出点N 的坐标为1,)22b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则(21)(本小题满分13分)设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.。
2015年度安徽学业水平测试参考卷

2015年度安徽学业水平测试参考卷(一)单项选择题(本大题共15小题,每小题2分,共30分。
每小题只有一个选项符合题意,错选、多选则该小题不得分)2014年4月15日,中国第30次南极科学考察队取得丰硕成果,乘坐“雪龙”号凯旋。
读“雪龙号航行线路图”,完成1~2题。
1.科考队返回国内时,昼最长的是( )A.上海B.佛里曼特尔C.中山站D.泰山站2.此次科考过程中,“雪龙”号成功战胜了风大浪高、被称为“魔鬼西风带”的海域。
该海域位于图中( )A.甲B.乙C.丙D.丁2013年7~8月,合肥遭遇了罕见的高温干旱天气,合肥郊区农民拉起了黑色尼龙网来给蔬菜“降温”。
读图完成3~4题。
3.造成合肥此次罕见高温干旱天气的主要天气系统是( )A.冷锋B.暖锋C.气旋D.反气旋4.合肥郊区农民给蔬菜“降温”的基本原理,是黑色尼龙网可以( )A.削弱太阳辐射B.增强地面辐射C.削弱大气辐射D.增强大气逆辐射下图为安徽大别山某景点的花岗岩(岩浆岩)景观“将军岩”,形态逼真,令人叫绝。
读图完成5~6题。
5.花岗岩( )A.常保存有古生物化石B.由岩浆冷却凝固形成C.经变质可转变为沉积岩D.由堆积、固结而形成6.塑造“将军脸”的主要外力作用是( )A.岩浆活动B.风化侵蚀C.变质作用D.冰川作用读“新西兰农业地域类型分布示意图”,完成7~8题。
7.新西兰畜牧业的特点是( )①商品率高②集约化程度高③机械化程度高④紧邻大城市周边A.①②③B.①②④C.①③④D.②③④8.新西兰乳肉畜牧业发达的优势自然条件主要是( )A.太阳光照充足B.地形多山地C.海岸线曲折漫长D.气候温和湿润2010年第六次全国人口普查数据显示,中国人口的地理分布正在发生深刻变化。
读“2000-2010年中国常住人口增长幅度分布图”,完成9~10题。
9.我国东部沿海地区的人口增长模式类型为( )A.原始型B.传统型C.现代型D.传统型向现代型的过渡阶段10.中西部六省市人口负增长对当地带来的影响有( )A.人均收入增加,经济发展迅速B.人地关系恶化,不宜人类居住C.留守儿童增加,社会更加稳定D.环境压力减小,人地矛盾缓解读“城市地域结构模式图”,完成11~12题。
2015年安徽省中考数学试卷-答案

FCH EAG, FHG EGH ,所以 AGE GHF ,所以 △AGE △GHF(AAS) ,所以 AE CF ,又因
为 AE//CF ,所以四边形 AECF 为平行四边形,连接 EF 交直线 AC 于点 O ,因为四边形 EGFH 是菱形,所
以 AE CE ,设 AE CE=x ,则在 RtBCE 中,由勾股定理得 EB2 +BC2 EC2 ,即 8 x2 42 x2 ,解得
8/8
由 △AGD △BDC ,知 GAD GBC
在 △GAM 和△HBM 中,
GAD GBC , GMA HMB
AGB AHB 90
AGE 1 AGB 45 , AG 2
2
EG
又 △AGD∽△EGF
7/8
AD AG 2 EF EG
【考点】三角形的相似全等的判定和性质,考查考生的综合分析能力.
PQ OQ2OP2 32 ( 3)2 6 (2) PQ2 OQ2 OP2 9 OP2
5/8
当 OP 最小时, PQ 最大,此时 OP BC . OP OB sin ABC 3 sin 30 3
2
PQ 长的最大值为 9 ( 3)2 3 3
2
2
【考点】圆的性质、勾股定理 21.【答案】(1) k2 2 , b 6
y ax2 (b 1)x c y2 y1 0 ,观察各选项得,只有 A 选项符合,故选 A.
【考点】一次函数与二次函数的图象与性质
第Ⅱ卷
二、填空题 11.【答案】-4 【解析】因为 (4)3 64 ,所以 64 的立方根为 4 .
2/8
【考点】立方根的概念
12.【答案】20°
【解析】连接 AO , BO ,则由弧长公式得 AOB 2 ,则 ACB 1 AOB 20. .
安徽省2015年中考数学真题试题(含扫描答案)

中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2015年安徽省初中毕业学业考试数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请你“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.在-4,2,-1,3这四个数中,比-2小的数是A.-4 B .2 C .-1 D .32.计算8×2的结果是A .10B .4C . 6D .23.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为A .1.62×104B .1.62×106C .1.62×108D .0.162×1094.下列几何体中,俯视图是矩形的是5.与1+5最接近的整数是A .4B .3C .2D .16.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是 A .1.4(1+x )=4.5 B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5D .1.4(1+x )+1.4(1+x )2=4.5 7成绩(分) 35 39 42 44 45 48 50 人数(人)2566876根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分8.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有 A .∠ADE =20° B.∠ADE =30°C .∠ADE = 1 2∠ADCD .∠ADE = 13∠ADC9.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是A .2 5B .3 5C .5D .610.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax2+(b -1)x +c 的图象可能是二、填空题(本大题共4小题,每小题5分,满分20分)A E BCF D GH第9题图11.-64的立方根是 ▲ .12.如图,点A 、B 、C 在半径为9的⊙O 上,AB ⌒的长为π2, 则∠ACB 的大小是 ▲ .13.按一定规律排列的一列数:23,24,25,25,25,25,…,若x 、y 、z表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 ▲ . 14.已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则 1 a + 1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 ▲ (把所有正确结论的序号都选上). 三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2 a ―1 +1 1―a · 1 a ,其中a =- 1 2.16.解不等式: x 3>1- x -36.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 3,使A 2B 2=C 3B 2.18.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).第18题图AB Cl 第17题图AOCB第12题图五、(本大题共2小题,每小题10分,满分20分)19.A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率; (2)求三次传球后,球恰在A 手中的概率.20.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值.六、(本题满分12分)21.如图,已知反比例函数y = k 1x与一次函数y =k 2x +b 的图象交于点A (1,8)、B (-4,m ).(1)求k 1、k 2、b 的值;(2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是比例函数y = k 1x图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于 哪个象限,并简要说明理由.七、(本题满分12分)22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2. (1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围;(2)x 为何值时,y 有最大值?最大值是多少?八、(本题满分14分)23.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求 ADEF 的值.AA BBC CP P Q Q OO第20题图1 第20题图2第22题图第23题图1第21题图。
安徽省2015年初中毕业学业考试数学试题(附答案)

安徽省2015年初中毕业学业考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在-4,2,-1,3这四个数中,比-2小的数是()A.-4 B.2 C.-1 D.3答案:A 【解析】本题考查实数的大小比较,难度较小.正数>0>负数,两负数比较大小,绝对值大的反而小,因为|-4|=4>2=|-2|,所以-4<-2,故选A.2.计算的结果是()A.B.4 C.D.2答案:B 【解析】本题考查二次根式的运算,难度较小.,故选B.3.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.162×106C.1.62×108D.0.162×109答案:C 【解析】本题考查科学记数法,难度较小.1.62亿=162000000=1.62×108,故选C.【易错提醒】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.4.下列几何体中,俯视图是矩形的是()A B C D答案:B 【解析】本题考查几何体的俯视图,难度较小.选项A中的圆锥体的俯视图为圆及圆心,A错误;选项B中的圆柱体的俯视图为矩形,B正确;选项C中的三棱柱的俯视图为三角形,C错误;选项D中的球体的俯视图为圆,D错误.综上所述,故选B.5.与最接近的整数是()A.4 B.3 C.2 D.1答案:B 【解析】本题考查实数的估算,难度较小.因为,所以,与整数3最接近,故选B.6.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5答案:C 【解析】本题考查一元二次方程的实际应用,难度中等.由题意得2014年的快递业务量为1.4(1+x)亿元,则2015年的快递业务量为1.4(1+x)2=4.5亿元,故选C.7.某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分答案:D 【解析】本题考查统计表中众数、中位数、平均数的概念,难度中等.由表格中的数据得该班一共有2+5+6+6+8+7+6=40名同学,A正确;成绩为45分的人数最多,所以众数为45,B正确;将成绩按从小到大的顺序重新排列,位于最中间的两个数据为45,45,所以中位数为45,C正确;该班学生这次考试成绩的平均数为,D错误,故选D.8.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.D.答案:D 【解析】本题考查三角形与四边形的内角和定理,难度中等.设∠A=∠B =∠C=x,则在四边形ABCD中,∠ADC=360°-∠A-∠B-∠C=360°-3x,在三角形AED中,∠ADE=180°-∠AED-∠A=120°-x,所以,故选D.9.如图,矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G,H在对角线AC上,若四边形EGFH是菱形,则AE的长是()A.B.C.5 D.6答案:C 【解析】本题考查菱形的性质、勾股定理,难度中等.连接AF,CE,因为四边形EGFH是菱形,所以FH∥GE且FH=GE,又因为CD∥AB,所以∠FCH=∠EAG,∠FHG=∠EGH,所以∠AGE=∠CHF,所以△AGE≌△CHF(AAS),所以AE=CF,又因为AE∥CF,所以四边形AECF为平行四边形.连接EF交直线AC于点O,因为四边形EGFH 是菱形,所以线段EF⊥AC,且EO=FO,则在△EFC中,CF=CE,所以平行四边形AECF 为菱形,所以AE=CE.设AE=CE=x,则在Rt△BCE中,由勾股定理得EB2+BC2=EC2,即(8-x)2+42=x2,解得x=5,即AE=5,故选C.10.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y =ax2+(b-1)x+c的图象可能为()A B C D答案:A 【解析】本题考查一次函数与二次函数的图象与性质,难度较大.设P(x P,y P),Q(x Q,y Q),则由图易得当x<x P或x>x Q时,y1<y2;当x P<x<x Q时,y1>y2,所以当x<x P或x>x Q时,y=ax2+(b-1)x+c=y2-y1>0;当x P<x<x Q时,y=ax2+(b-1)x+c=y2-y1<0,观察各选项得,只有A选项符合,故选A.第Ⅱ卷(非选择题共110分)二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.-64的立方根是_________.答案:-4 【解析】本题考查立方根的概念,难度较小.因为(-4)3=-64,所以-64的立方根为-4.12.如图,点A,B,C在⊙O上,⊙O的半径为9,的长为2π,则∠ACB的大小是_________.答案:20°【解析】本题考查弧长的计算公式、同弧所对的圆周角与圆心角的关系,难度较小.连接AO,BO,则由弧长公式得,则.13.按一定规律排列的一列数:21,22,23,25,28,213,……,若x,y,z表示这列数中的连续三个数,猜测x,y,z满足的关系式是_________.答案:xy=z(只要关系式对前六项是成立的即可)【解析】本题考查同底数幂的运算、推理能力,难度中等.因为21×22=23;22×23=25;23×25=28;……;所以x,y,z 满足的关系式可以为xy=z.14.已知实数a,b,c满足a+b=ab=c,有下列结论:①若c≠0,则;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a,b,c中只有两个数相等,则a+b+c=8.其中正确的是_________(把所有正确结论的序号都选上).答案:①③④【解析】本题考查推理能力,难度较大.对于①,当c=ab≠0时,a≠0且b≠0,则由a+b=ab得,即,①正确;对于②,当a=3时,由a+b=ab,即3+b=3b得,则,所以b+c=6,②错误;对于③,当a=b=c时,由a+b=c得2a=a,所以a=b=c=0,abc=0,③正确;对于④,当a=c≠b时,由a+b=c得b=0,则由ab=c得c=0=a,与题意不符;当b=c≠a时,由a+b=c得a =0,则由ab=c得c=0=b,与题意不符;当a=b≠c时,由a+b=ab得2a=a2,解得a =0或a=2,当a=0时,由ab=c得c=0=a=b,与题意不符,当a=2时,c=ab=4,所以a+b+c=8,④正确.综上所述,正确结论的序号为①③④.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分8分)先化简,再求值:,其中.答案:本题考查分式的化简与求值,难度较小.解:.(6分)当时,.(8分)16.(本小题满分8分)解不等式:.答案:本题考查一元一次不等式的解法,难度较小.解:2x>6-(x-3),2x>6-x+3,(4分)3x>9,x>3.所以不等式的解集为x>3.(8分)17.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.答案:本题考查轴对称图形与图形的平移,难度中等.解:(1)△A1B1C1如图所示.(4分)(2)线段A2C2和△A2B2C2如图所示.(符合条件的△A2B2C2不唯一)(8分)18.(本小题满分8分)如图,平台AB高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.答案:本题考查三角函数的应用,考查考生的分析能力与计算能力,难度中等.解:作BE⊥CD于点E,则CE=AB=12.在Rt△BCE中,.(3分)在Rt△BDE中,.(6分)∴.所以楼房CD的高度约为32.4米.(8分)19.(本小题满分10分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C 两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.答案:本题考查利用树状图求概率,难度中等.解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C →A,每种结果发生的可能性相等,球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是.(4分)(2)由树状图可知三次传球的所有结果有8种,每种结果发生的可能性相等.(8分)其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这2种,所以三次传球后,球恰在A手中的概率是.(10分)20.(本小题满分10分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP ⊥PQ.(1)如图1,当PQ∥AB时,求PQ长;(2)如图2,当点P在BC上移动时,求PQ长的最大值.答案:本题考查圆的性质、勾股定理,难度中等.解:(1)∵OP⊥PQ,PQ∥AB,∴OP⊥AB.在Rt△OPB中,.(3分)如图,连接OQ,在Rt△OPQ中,.(5分)(2)∵PQ2=OQ2-OP2=9-OP2,∴当OP最小时,PQ最大.此时,OP⊥BC.(7分).∴PQ长的最大值为.(10分)21.(本小题满分12分)如图,已知反比例函数与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数图象上的两点,且x1<x2,y1<y2,指出点M,N各位于哪个象限,并简要说明理由.答案:本题考查用待定系数法求函数的解析式、分割法求面积、数形结合思想的应用,综合性较强,难度较大.解:(1)把A(1,8),B(-4,m)分别代入得k1=8,m=-2.∵A(1,8),B(-4,-2)在y=k2x+b的图象上,∴,解得k2=2,b=6.(5分)(2)设直线y=2x+6与x轴交于点C,当y=0时,x=-3,∴OC=3,∴S△AOB=S△AOC+S△BOC.(8分)(3)点M在第三象限,点N在第一象限.(9分)①若x1<x2<0,点M,N在第三象限分支上,则y1>y2,不合题意;②若0<x1<x2,点M,N在第一象限分支上,则y1>y2,不合题意;③若x1<0<x2,点M在第三象限,点N在第一象限,则y1<0<y2,符合题意.(12分)22.(本小题满分12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数关系式,并注明变量x的取值范围;(2)x取何值时,y有最大值?最大值是多少?答案:本题考查列函数关系式解应用题、利用二次函数的性质求最值,考查考生的阅读理解能力,难度较大.解:(1)设AE=a,由题意得AE·AD=2BE·BC,AD=BC,∴,.由题意得,∴,(4分)∴,即.(8分)(2)∵,∴当x=20时,y有最大值,最大值是300平方米.(12分)23.(本小题满分14分)如图1,在四边形ABCD中,点E,F分别是AB,CD的中点.过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接GA,GB,GC,GD,EF,若∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD,BC所在直线互相垂直,求的值.答案:本题考查三角形的相似全等的判定和性质,考查考生的综合分析能力,难度较大.解:(1)证明:∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC,∴△AGD≌△BGC,∴AD=BC.(5分)(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DG C.在△AGB和△DGC中,,∠AGB=∠DGC,∴△AGB∽△DGC,(8分)∴.又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.(10分)(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC,知∠GAD=∠GBC.在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.∴∠AGB=∠AHB=90°(12分)∴,∴.又△AGD∽△EGF,∴.(14分)(本小题解法有多种,如可按图2和图3作辅助线求解,过程略)综评:本套试卷命题符合《课程标准》的要求,试卷内容、形式及试卷结构与考纲吻合,试题难度稍有增加,考查综合性问题力度增大,实际应用题型增多,全卷考查考生数学实际应用的有第6,7,18,22题,这些问题都要求考生能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法.第23题(压轴题)要求考生能将多边形问题转化为三角形问题进行研究,体现了“化归”的数学思想;同时要求考生能够合理运用图形变换,正确添加辅助线,体现出创新思维.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年安徽省普通高中学业水平测试
数 学
本试卷分为第I 卷和第I I卷两部分,第I 卷为选择题,共2页;第II 卷为非选择题,共4页。
全卷共25小题,满分100分。
考试时间为90分钟。
第I 卷(选择题 共54分)
一、选择题(本大题共18小题,每小题3分,满分54分。
每小题4个选项中,只有1个选项符合题目要求。
)
1.已知集合},5,2,1,0{},3,2,1{
==N M 则N M 等于 A.{1,2} B.{0,2} C.{2,5} D. {3,5}
2.下列几何体中,主(正)视图为三角形的是
3. 210sin 等于
A. 23 B. 23- C.21 D.2
1- 4. 函数)1lg()(+=x x f 的定义域为
A. ),0(∞+ B.
[),0∞+ C.),1(∞+- D.[),1∞+-
5. 执行如图所示程序框图,输出结果是
A. 3 B. 5 C.7 D .9
6. 已知)2,6(),5,3(--=-=b a ,则b a •等于
A .36- B. 10- C.8- D.6
7.下列四个函数图象,其中为R 上的单调函数的是
8. 如果实数y x ,满足0,0>>y x ,且2=+y x ,那么xy 的最大值是
A. 21 B .1 C.2
3 D. 1 9. 已知直线0:,0:21=-=+y x l y x l ,则直线21l l 与的位置关系是
A.垂直
B. 平行 C. 重合 D.相交但不垂直
10. 某校有2000名学生,其中高一年级有700人,高二年级有600人。
为了解学生对防震减灾知识的掌握情况,学校用分册抽样的方法抽取20名学生召开座谈会,则应抽取高三年级学生的人数为
A. 5 B .6 C. 7 D. 8
11. 不等式组⎪⎩
⎪⎨⎧≤-+≥≥04,0,0y x y x 所表示的平面区域的面积等于 A . 4 B.8 C. 12 D. 16
12. 右图是一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的中位数为
A. 10 B.11 C. 12 D . 13
13. 已知圆C 的圆心坐标是(0,0),且经过点(1,1),则圆C 的方程是
A . 122=+y x B. 1)1()1(22=-+-y x
C. 222=+y x D. 2)1()1(22=-+-y x
14. 某校有第一、第二两个食堂,三名同学等可能地选择一个食堂就餐,则他们恰好都选择第一食堂的概率为
A. 81 B . 41 C. 83 D.2
1 15. 函数)0(5)(2>-+=x x x x f 的零点所在区间为
A.)21,0( B. )1,21( C. )23,1( D.)2,2
3( 16. 下列命题正确的是
A.如果一个平面内有无数条直线与另一个平面平行,则这两个平面平行
B.如果两个平面垂直于同一个平面,那么这两个平面平行
C . 如果一条直线与平面内的一条直线平行,则该直线与此平面平行
D.如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
17. 将函数)0(sin )(>=ωωx x f 的图象向右平移4π 个单位,所得图象经过点⎪⎭
⎫ ⎝⎛0,43π,则ω的最小值是 A. 1 B. 2 C. 3 D. 4
18. 在股票交易过程中,经常用两种曲线来描述价格变化情况,一种是即时价格曲线)(x f y =,另一种是平均价格曲线)(x g y =。
如3)2(=f 表示股票开始交易后2小时的即时价格为3元;3)2(=g 表示2小时内的平均价格为3元,下四个图中,实线表示)(x f y =的图象,虚线表示)(x g y =的图象,其中正确的是。