哈工大天线原理-马汉炎习题答案

合集下载

天线基础课后习题答案

天线基础课后习题答案

天线基础课后习题答案天线基础课后习题答案天线是无线通信系统中不可或缺的组成部分。

它通过接收和发射无线电波,实现了信息的传输。

天线基础课后习题是巩固对天线原理和应用的理解的重要环节。

在本文中,我将为大家提供一些天线基础课后习题的答案,帮助大家更好地理解和掌握天线技术。

1. 什么是天线的增益?如何计算天线的增益?答:天线的增益是指天线辐射功率与理想点源辐射功率之比。

天线的增益可以用以下公式计算:增益(dB)= 10 * log10(辐射功率 / 输入功率)2. 什么是天线的方向图?如何解读天线的方向图?答:天线的方向图是描述天线在不同方向上辐射或接收无线电波的图形。

它显示了天线在不同方向上的辐射或接收能力。

在方向图中,辐射或接收能力最强的方向被称为主瓣,其他方向上的能力较弱。

通过解读方向图,我们可以了解到天线的辐射或接收特性,选择合适的天线方向和位置。

3. 什么是天线的波束宽度?如何计算天线的波束宽度?答:天线的波束宽度是指天线主瓣的角度范围。

它表示了天线在水平或垂直方向上能够辐射或接收无线电波的范围。

波束宽度可以通过以下公式计算:波束宽度(度)= 2 * θ其中,θ为主瓣的半功率角,即主瓣辐射功率下降到峰值功率的一半时对应的角度。

4. 什么是天线的驻波比?如何计算天线的驻波比?答:天线的驻波比是指天线输入端的驻波电压或驻波电流的最大值与最小值之比。

它反映了天线系统的匹配性能。

驻波比越小,表示天线系统的匹配性能越好。

驻波比可以通过以下公式计算:驻波比 = (1 + |反射系数|) / (1 - |反射系数|)其中,反射系数是指反射波与入射波的比值,可以通过测量天线输入端的驻波电压或驻波电流得到。

5. 什么是天线的极化方式?有哪些常见的极化方式?答:天线的极化方式是指天线辐射或接收无线电波时电场的方向。

常见的极化方式有水平极化、垂直极化和圆极化。

水平极化指电场方向与地面平行;垂直极化指电场方向与地面垂直;圆极化指电场方向沿着圆周方向旋转。

哈工大天线原理-马汉炎习题标准答案

哈工大天线原理-马汉炎习题标准答案

哈工大天线原理-马汉炎习题答案————————————————————————————————作者:————————————————————————————————日期:第一章1-1 试用对偶原理,由电基本振子场强式(1-5)和式(1-7),写出磁基本振子的场表示式。

对偶原理的对应关系为:E e ——H mH e ——-E mJ ——J mρ——ρmμ——εε——μ 另外,由于ωεω=k ,所以有k ——k式(1-5)为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkr r e jkr r Idl j H H H 11sin 200θλϕθ式(1-7)为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 22200002ϕθθεμλθεμπE e r k jkr r Idl j E e jkr r Idl E jkr jkr r 因此,式(1-5)的对偶式为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+=-=-=--jkr m r e jkr r dl I j E E E 11sin 200θλϕθ式(1-7)的对偶式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 22200002ϕθθμελθμεπH e r k jkr r dl I j H e jkr r dl I H jkr m jkr m r 结合I m dl =jωμ0IS有磁基本振子的场表示式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkr r e jkr r IS E E E 11sin 2000θλωμϕθ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 2220000020ϕθθμελωμθμεπωμH e r k jkr r IS H e jkr r IS j H jkr jkr r 可以就此结束,也可以继续整理为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkr r e jkr r ISE E E 11sin 00002θεμλπϕθ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+=--0111sin 11cos 2222ϕθθλπθλH e r k jkr r IS H e jkr r IS j H jkr jkr r1-3 若已知电基本振子辐射电场强度大小θηλθsin 20rIl E =,天线辐射功率可按穿过以源为球心处于远区的封闭球面的功率密度的总和计算,即s S d r P S⋅=⎰∑),,(ϕθ,ϕθθd d r ds sin 2=为面积元。

天线原理试题

天线原理试题

天线原理试题1. 电磁波传播的原理电磁波是一种由变化的电场和磁场组成的波动现象。

当电流通过导体时,会产生电磁辐射,即电磁波。

天线利用这种辐射的特性进行信号的接收和发送。

2. 天线的基本构造天线通常由金属材料制成,具有一定的长度和形状。

常见的天线结构包括直线天线、环形天线和抛物面天线等。

天线的形状和长度会影响其接收和发送的频率范围。

3. 天线的工作原理天线的工作原理基于电磁感应和辐射的原理。

当电磁波经过天线时,会激发天线中的电场和磁场,并将其转化为电流。

这些电流可以通过连接的电路来接收或发送信号。

4. 天线的接收和发送信号天线作为接收器时,接收到的无线信号会通过天线的导线传输到接收器电路中,进而转化为可识别的信号。

天线作为发送器时,电流将被输入到天线导线中,并被转化为电磁波进行传输。

5. 天线的增益和方向性天线的增益是指天线向特定方向上的信号接收或发送能力。

通过设计特定形状和长度的天线,可以增强特定频率范围的信号接收或发送能力。

天线的方向性则指的是天线在接收或发送信号时的主要辐射方向。

6. 天线的应用领域天线广泛应用于无线通信、广播、雷达等领域。

不同类型的天线适用于不同的应用场景,如扩大无线信号覆盖范围、实现远距离通信或定向传输等。

7. 天线的优化与调整为了提高天线的性能,可以采用不同的技术来优化和调整天线的参数,如改变天线的形状、长度和材料等。

通过精确的设计和调整,可以使天线在特定频率范围内的信号接收和发送效果更好。

8. 天线的局限性和挑战天线的性能受到多种因素的影响,如传播环境、材料损耗、多径效应等。

在特殊的环境中,天线的性能可能会受到限制,需要通过合适的设计和技术手段来克服这些挑战。

天线原理与设计习题集解答_第8_11章

天线原理与设计习题集解答_第8_11章

E
j e j r (1 cos ) ES e j sin ( x cos y sin ) dxdy 2 r S
(8-4) 试利用等效原理推证惠更斯面元的辐射场表达式。 (P188)
第九章 平面口径的绕射
(9-1) 从口径天线的一般远场公式如何得到矩形和圆形平面口径天线的远场表达式? 解:由惠更斯远场公式
口径场为均匀同相分布
E ys E0
①E 面和 H 面方向图函数 惠更斯矩形面元的辐射公式为
0:
dEH A(1 cos ) E0 e j ysin dxdy
90 : dEE A(1 cos ) E0e j xsin dxdy
Dy Dx 2 2 sin u x E AE ( 1 cos ) dy e j xsin dx AE0 (1 cos ) S 0 H ux Dy D x 2 2 Dy Dx 2 2 sin u y E E AE0 (1 cos ) dx e j ysin dy AE0 (1 cos ) S uy Dx Dy 2 2
3
(9-5) 设有一长度为 Dx,宽为 Dy 的矩形口径,如图所示。若口径场为均匀同相分 布,要求: ①导出 E 面和 H 面方向图函数; ②若口径较大,即 Dx 和 Dy 远大于波长时导出 2 0.5E 和 2 0.5 H 的表达式。
提示:惠更斯矩形面元的辐射场公式为
j ( x cos y sin ) sin dxdy dE A sin (1 cos ) E sy ( x, y )e j ( x cos y sin ) sin dxdy dE A cos (1 cos ) E sy ( x, y )e

天线原理与设计习题集解答_第2章

天线原理与设计习题集解答_第2章
D
2 120 f H ( ) 120 (5.657)2 |30o 12.292 Rr 312.4
(2-7) 如图 9 所示,有一半波振子组成的四元天线阵,阵元间距 d= /4,各阵元 电流幅度相同,相位依次递减 90°,试确定最大辐射方向,并计算天线阵的方
向性系数。
(2-1) 由以波腹电流为参考的辐射电阻公式:Rr
15

0
1 cos[ (1 cos )] 1 cos[ (1 cos )] d [ (1 cos )] 15 d [ (1 cos )] 0 (1 cos ) (1 cos )
若全波振子的效率为 a 0.5 ,求其最大增益的分贝数和 / 3 时的方向性系 数。 解:(1) 求增益(即最大辐射方向上的方向性系数与效率的积) 全波振子半长度为 l / 2 ,则 cos( cos ) 1 f ( ) , f max f ( ) | / 2 2 , Rr 199 sin
解: 一个全波振子可以看作是一个共轴半波振子二元阵。 已知二元阵的垂直间距 H / 0.5 ,平行间距 d / 0 。 (1) 二元阵总场方向图函数 f T ( , ) fT ( , ) f 0 ( , ) f a ( , ) 式中,单元方向图函数为 f 0 ( , )
cos( cos / 2) sin H 二元阵因子为 f a ( , ) 2cos( cos ) 2cos( cos / 2) 2

fT ( , )
2 cos2 ( cos / 2) cos( cos ) 1 sin sin
cos( l cos ) cos l , 并代入 l / 2 也可得到这个结果。 sin

天线原理与设计习题集解答_第2章

天线原理与设计习题集解答_第2章

a
Pr R r Pin Rin Rr Rr 4 D D 3 2.4 Rin RR RL 5
G a D
(2-4) 有一长为 2 的全波振子天线( 2 ),试采用二元阵的方法进行分析。要 求:(1) 导出其方向图函数; (2) 采用方向图相乘原理画出其 E 面和 H 面方向图; (3) 查表计算其辐射阻抗并计算方向性系数。

2 0.1256 ( rad )
0.0258 1 j 322.7(1 j Z Z0 ) 323 j256 () 0.1256
(2) 求 Zin (由 P33 (2.35)式求出)
Z in
Rr 198 ctg l jZ 0 j 323 1.376 573 j 445 () 2 sin l 0.435
2 120 f max 120 4 D 2.41 Rr 199
G A D 0.5 2.41 1.205
(0.8dB)
cos( cos ) 1 2 3 (2) 当 / 3 时, f ( ) 3 ,则 3 sin 3
D 120 f 2 ( ) 120 4 | / 3 0.804 Rr 199 3
注: 把全波振子拆分为两个半波振子组成的二元阵, 就可以方便地利用书上 P369 的“半波振子的互阻抗表”及已知的半波振子辐射阻抗值,计算全波振子的辐射 阻抗及方向性系数。 (2-5) 有一对称振子天线,全长 2 40m ,振子截面半径为 =1m ,工作波长
=50m,求该天线的平均特性阻抗和输入阻抗。
(1) xz 平面和 H 面方向性函数
■xz 平面( 0 )内

天线原理与设计习题集解答-第2章

天线原理与设计习题集解答-第2章

第二章 天线的阻抗(2-1) 由以波腹电流为参考的辐射电阻公式:22030(,)sin r R d f d d ππϕθϕθθϕπ=⎰⎰计算对称半波天线的辐射电阻。

(提示:利用积分201cos ln(2)(2)xdx C Ci x πππ-=+-⎰,式中,0.577, 023.0)2(-=πCi )解:半波振子天线的辐射方向图函数为 cos(cos )2(,)sin f πθθϕθ=, 则 2222000cos (cos )301cos(cos )2sin 60(cos )sin 2(1cos )r R d d d ππππθπθϕθθθπθθ+==--⎰⎰⎰ 011130()[1cos(cos )](cos )21cos 1cos d ππθθθθ=+++-⎰01cos(cos )1cos(cos )15[](cos )1cos 1cos d ππθπθθθθ++=++-⎰01cos[(1cos )]1cos[(1cos )]15(cos )1cos 1cos d ππθπθθθθ-+--=++-⎰1cos[(1cos )]15[(1cos )](1cos )d ππθπθπθ-+=++⎰01cos[(1cos )]15[(1cos )](1cos )d ππθπθπθ--+--⎰201cos 215xdx xπ-=⨯⎰30[ln(2)(2)]C Ci ππ=+- 73.1()=Ω(2-2) 利用下式求全波振子的方向性系数rR f D ),(120),(2ϕθϕθ=, θβθβϕθsin cos )cos cos(),( -=f 若全波振子的效率为5.0=a η,求其最大增益的分贝数和3/πθ=时的方向性系数。

解:(1) 求增益(即最大辐射方向上的方向性系数与效率的积)全波振子半长度为/2l λ=,则cos(cos )1()sin f πθθθ+=,max /2()|2f f θπθ===,199r R =Ω2max 1201204 2.41199r f D R ⨯===0.5 2.41 1.205A G D η=⋅=⨯= (0.8)(2) 当3/πθ=时,cos(cos )13()sin 3f ππθπ+==2/3120()1204|0.8041993r f D R θπθ===⨯=(2-3) 某天线以输入端电流为参考的辐射电阻和损耗电阻分别为Ω=4r R 和Ω=1L R ,天线方向性系数3,求天线的输入电阻in R 和增益G 。

天线习题解答(作业0)

天线习题解答(作业0)

电波与天线习题答案(作业)第1章练习题答案1-6 试求长度为2l = 0.75λ 的对称振子子午面的若干个方向的方向性函数值(小数点后至少要保留3位有效数字),并按极坐标描点的方法绘出其子午面方向性图。

解: ︒==⨯=13543832ππλλβl 对称振子子午面的归一化方向性函数为θθθθθsin )12(1)cos 135cos(2sin )135cos 1()135cos()cos 135cos()(++︒=-︒-︒=οF 1-6题表 对称振子子午面归一化方向性函数值(方向性图的形状为“∞”形,方向性图略)1-10 已知一臂长度为l = λ /3的对称振子以馈电点电流I in 做参照的辐射电阻为R ∑ in = 186.7 Ω,假设对称振子上的电流I (z ) 呈纯驻波正弦分布。

试求:(1) 指出对称振子上是否存在电流波腹点?(2) 如果存在波腹电流I M ,求以它做参照的辐射电阻R ∑ 。

解:由于4λ>l ,故存在电流波腹点。

电流波腹点的位置与馈电点之间的距离为124340λλλλ=-=-=l z (1) 以波腹电流做参照的辐射电阻为)(14032sin 7.186)(sin 22in Ωπ=⎪⎭⎫ ⎝⎛⨯⨯==λλβ∑∑l R R (2)1-13 对于1-10题中给出的对称振子,试求:(1) 以波腹电流I M 做参照的有效长度l eM ;(2) 以馈电点电流I in 做参照的有效长度l ein ;(3)分别通过f max ,l eM 和l ein 3个参数计算这个对称振子的方向性系数D 。

解:以波腹点电流I M 做参照的有效长度为ππππ2332cos 1)]cos(1[eM λλλλβλ=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯-=-=l l (1)三种方法计算方向性系数:93.16.187)32(30)(30 93.1140330)(30 93.11405.11201203)120sin(235.1120cos 1)]cos(1[ 2in 2in 2222max in in max ====⨯===⨯===︒===︒-=-=∑∑∑ββλλβR l D R l D R f D I I l l l f e eM M eM e ,,,ππ(2) 结果相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1-1 试用对偶原理,由电基本振子场强式(1-5)和式(1-7),写出磁基本振子的场表示式。

对偶原理的对应关系为:E e ——H mH e ——-E mJ ——J mρ——ρmμ——εε——μ 另外,由于ωεω=k ,所以有k ——k式(1-5)为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkr r e jkr r Idl j H H H 11sin 200θλϕθ式(1-7)为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 22200002ϕθθεμλθεμπE e r k jkr r Idl j E e jkr r Idl E jkr jkr r 因此,式(1-5)的对偶式为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+=-=-=--jkr m r e jkr r dl I j E E E 11sin 200θλϕθ式(1-7)的对偶式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 22200002ϕθθμελθμεπH e r k jkr r dl I j H e jkr r dl I H jkr m jkr m r结合I m dl =jωμ0IS有磁基本振子的场表示式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkr r e jkr r IS E E E 11sin 2000θλωμϕθ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+=--0111sin 211cos 2220000020ϕθθμελωμθμεπωμH e r k jkr r IS H e jkr r IS j H jkr jkr r 可以就此结束,也可以继续整理为⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+===-jkr r e jkr r ISE E E 11sin 00002θεμλπϕθ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+=--0111sin 11cos 2222ϕθθλπθλH e r k jkr r IS H e jkr r IS j H jkr jkr r1-3 若已知电基本振子辐射电场强度大小θηλθsin 20rIl E =,天线辐射功率可按穿过以源为球心处于远区的封闭球面的功率密度的总和计算,即s S d r P S⋅=⎰∑),,(ϕθ,ϕθθd d r ds sin 2=为面积元。

试计算该电基本振子的辐射功率和辐射电阻。

【解】首先求辐射功率22222000240sin 2sin 24012401⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==⎰⎰⎰∑λπϕθθλθηππππθIl d d r r Il dsE P S 辐射电阻为 222802⎪⎭⎫ ⎝⎛==∑λπl I P R注意:此题应用到了34sin 03=⎰θθπd1-5 若已知电基本振子辐射场公式θηλθsin 20rIl E =,试利用方向性系数的定义求其方向性系数。

【解】方向性系数的定义为:在相同辐射功率、相同距离条件下,天线在某辐射方向上的功率密度S max (或场强E max 的平方),与无方向性天线在该方向上的功率密度S 0(或场强E 0的平方)之比。

首先求辐射功率22222000240sin 2sin 24012401⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==⎰⎰⎰∑λπϕθθλθηππππθIl d d r r Il dsE P S 令该辐射功率为604240220220r E r E P =⨯=∑ππ 其中E 0是无方向性天线的辐射场强。

因此,可以求得22202400⎪⎭⎫ ⎝⎛=r Il E λπ 所以方向性系数5.1202max ==E E D1-6 设小电流环电流为I ,环面积S 。

求小电流环天线的辐射功率和辐射电阻表示式。

若1m 长导线绕成小圆环,波源频率为1MHz ,求其辐射电阻值。

电小环的辐射场幅度为:θηλπϕsin 2rIS E = 首先求辐射功率 2242220022160sin sin 24012401⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==⎰⎰⎰∑λπϕθθλθηπππππϕIS d d r r IS dsE P S 辐射电阻为42423202λπS I P R ==∑ 当圆环周长为1m 时,其面积为2m 41π=S ,波源频率为1MHz 时,波长为λ=300m 。

所以,辐射电阻为R Σ=2.4×10-8 Ω。

1-7 试证明电基本振子远区辐射场幅值E θ与辐射功率P Σ之间的关系为rP E θθsin 49.9∑≈ 【证明】电基本振子远区辐射场幅值θλπθηλθsin 60sin 20rIl r Il E == 根据题目1-3可知电基本振子辐射功率为2240⎪⎭⎫ ⎝⎛=∑λπIl P , 所以πλ40∑=P Il代入到E θ表达式中可以得到:r P r Il E θππθλπθsin 4060sin 60⨯⨯==∑ 所以有:rP E θθsin 49.9∑≈1-9 试求证方向性系数的另一种定义:在最大辐射方向上远区同一点具有相同电场强度的条件下,无方向天线的辐射功率比有方向性天线辐射功率增大的倍数,记为max 0E E P P D =∑∑= 【证明】方向性系数的定义为:相同辐射功率、相同距离条件下,天线在某辐射方向上的功率密度S max (或场强E max 的平方),与无方向性天线在该方向上的功率密度S 0(或场强E 0的平方)之比。

假设有方向性天线的辐射功率为P Σ,最大辐射方向的辐射场为E max ,无方向性天线的辐射功率为P Σ0,辐射场大小为E 0,则有如下关系:22004240r E P ππ⨯=∑=>202060rP E ∑= 如果有方向性天线的方向性系数为D ,则根据定义,当其辐射功率为P Σ时,有 22max 60r D P E ∑= 所以,当有E max =E 0时,则有0max 0E E P P D =∑∑=1-11 一个电基本振子和一个小电流环同时放置在坐标原点,如图示,若S I l I 212λπ=,试证明远区任意点的辐射场均是圆极化的。

【证明】如图示的电基本振子和小电流环的辐射场分别为: jkr e rl I j E -=θηλθsin 201 jkr e rS I E -=θηλπϕsin 022 令A S I l I ==212λπ 则远区任一点辐射场为:jkr e r A a r A j a E -⎪⎭⎫ ⎝⎛+=θηλθηλϕθsin 2sin 200 这是一个右旋圆极化的电磁波。

1-13 设收发两天线相距r ,处于极化匹配和阻抗匹配的最佳状态,且最大方向对准。

若工作波长为λ,发射天线输入功率P tin ,发射和接收天线增益系数分别为G t 、G r ,试证明接收功率为r t tin r G G P r P 2max 4⎪⎭⎫ ⎝⎛=πλ 【证明】满足题设三条件的情况下,根据天线增益的定义,可以得到发射天线在接收天线处产生的辐射场的最大功率密度为 t tin G r P S 2max 4π= 接收天线的有效面积为r e G S πλ42= 因此接收天线得到的最大接收功率为r t tin e r G G P r S S P 2max max 4⎪⎭⎫ ⎝⎛=⨯=πλ1-15 若干扰均匀分布于空间并从所有方向传到接收点,利用定向接收天线可以增大有用信号功率和外部干扰功率之比,试证明这一比值和天线的方向性系数成正比。

【证明】设定向接收天线的方向性函数为F(θ,φ),方向性系数为D ,则有如下关系:⎰⎰=ππϕθθϕθπ2002sin ),(4d d F D设干扰的平均功率流密度大小S n 为常数,一个以接收点为中心的,半径为r 的球面Σ包围了接收点,则接收点处天线接收到的功率P n 为不同方向面积微元通过的被接收的干扰的积分:Dr S d d F r S d d r F S dsF S P n n n n n 2200222200224sin ),(sin ),(),(πϕθθϕθϕθθϕθϕθππππ====⎰⎰⎰⎰⎰∑设天线接收到的有用功率为P s ,则有用功率与干扰功率之比为s=P s /P n ∝D 。

第二章2-1 设对称振子臂长l分别为λ/2,λ/4,λ/8,若电流为正弦分布,试简绘对称振子上的电流分布。

2-2 用尝试法确定半波振子、全波振子E 面主瓣宽度。

半波振子的方向性函数为θθπθsin cos 2cos )(⎪⎭⎫ ⎝⎛=F 可以看出,该函数关于θ=0和θ=π/2对称,并且当θ=π/2时,F (θ)有最大值1,因此计算θ=π/4~π/2之间的值即可。

经过计算,当θ=51°时,F (θ)=0.708,因此,可以得到主瓣宽度为HPBW=2×(90-51)=78°全波振子的方向性函数为θθπθsin cos 2cos )(2⎪⎭⎫⎝⎛=F 可以看出,该函数关于θ=0和θ=π/2对称,并且当θ=π/2时,F (θ)有最大值1,因此计算θ=π/4~π/2之间的值即可。

经过计算,当θ=66.1°时,F (θ)=0.707,因此,可以得到主瓣宽度为HPBW=2×(90-66.1)=47.8°2-3 试利用公式(1-51),求半波振子、全波振子的方向性系数。

【解】公式(1-51)为∑=R f D 2max120 对于对称振子,f max =1-cos kl2-4试利用公式(1-85),分别求解半波振子和全波振子的有效面积。

【解】有效面积的公式为G S e πλ42=2-5 试利用公式(2-24)或(2-25),求半波振子、全波振子的有效长度。

【解】公式(2-24)是采取以归算电流为输入电流计算的有效长度2tan kll e πλ= 公式(2-25)是采用了归算电流为波腹电流计算的有效长度302∑=DR l e πλ2-6 已知对称振子臂长l=35cm,振子臂导线半径a=8.625mm,若工作波长λ=1.5m,试计算该对称振子的输入阻抗的近似值。

已知对称振子臂长l=35cm,a=8.625mm,λ=1.5m,则有:①利用公式(2-29)求得Z0A=120×(ln2l/a-1)=120×[ln(2×350/8.625)-1]=408Ω,刚好介于图2-9的340和460之间。

②l/λ=0.233,根据图2-9的(a)和(b)可以分别查得:Z in=70+j0Ω,需要注意:这里的数字读取得很粗略。

还有一种方法:利用公式(2-32)进行计算。

首先计算l/(2a)=20.3,l/λ=0.233,并利用公式(2-29)求得Z0A=120(ln2l/a-1)=120×(ln2×350/8.625-1)=408Ω;查图2-8,得n=1.05查图2-5,RΣm=70Ωβ=n2π/λ=2.1×π/λ利用公式(2-31)求得αA=0.753/λ,然后代入公式(2-32),最终求得Z in=69.4-21.4Ω。

相关文档
最新文档