湖南省2017年高考文科数学试题及答案(Word版 )

合集下载

2017年普通高等学校招生全国统一考试数学卷(湖南.文)含答案 精品

2017年普通高等学校招生全国统一考试数学卷(湖南.文)含答案 精品

2017年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.不等式2x x >的解集是( ) A .(0)-∞,B .(01),C .(1)+∞,D .(0)(1)-∞+∞ ,,2.若O E F ,,是不共线的任意三点,则以下各式中成立的是( )A .EF OF OE =+B .EF OF OE =-C .EF OF OE =-+D .EF OF OE =--3.设2:40p b ac ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p 是q的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( ) A .4122-B .2122-C .10122-D .11122-5.在(1)n x +(n ∈N *)的二次展开式中,若只有3x 的系数最大,则n =( ) A .8B .9C .10D .116.如图1,在正四棱柱1111ABCD A BC D -中,E F ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11AC 异面7.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米 B .49米 C .50米 D .51米8.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,的图象和函数2()log g x x =的图象的交点个数是( )A .1B .2C .3D .49.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )AB .12CD.210.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j=,{123}i j k ∈ 、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )图2AB C1A 1C1D1BDE FA .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y -=相切的圆的方程是 .12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = .13.若0a >,2349a =,则14log a = .14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅ , (1)b 的取值范围是 ;(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b 的值是 .15.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E F ,分别是该正方体的棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率.18.(本小题满分12分)如图3,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.19.(本小题满分13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),. (I )证明CA ,CB为常数;(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程.20.(本小题满分13分)设n S 是数列{}n a (n ∈N *)的前n 项和,1a a =,且22213n n n S na S -=+,0na ≠,234n = ,,,. (I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N *)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项. 21.(本小题满分13分) 已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. ABCQαβ P(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.2007年普通高等学校招生全国统一考试(湖南卷)数学(文史类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.B 3.A 4.B 5.C 6.D 7.C 8.C 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-=12.π613.314.(1)[2)+∞,(2)9215.3π三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=. (I )函数()f x 的最小正周期是2ππ2T ==; (II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z)时,函数()f x x 是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z ).17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯= . 所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是330.90.729P ==. 所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=. 解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=.3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=. 18.解:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ= ,所以CO α⊥, 又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=,从而BO PQ ⊥,又CO PQ ⊥, 所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥.(II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ= ,BO α⊂,所以BO β⊥. 过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥.故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =sin 30OH AO ==在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=.不妨设2AC =,则AO =1CO =.在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO =则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以AB =,(0AC = .设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z =+=⎪⎩, 取1x =,得1n =.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<> ,.所以1212cos ||||n n n n θ===AB CQαβ P OHQ故二面角B AC P --的大小为19.解:由条件知(20)F ,,设11()A x y ,,22()B x y ,.(I )当AB 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2,此时(11CA CB ==-.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=,有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++-- 22(42)411k k =--++=-. 综上所述,CA CB为常数1-.(II )解法一:设()M x y ,,则(1)CM x y =-,,11(1)CA x y =- ,, 22(1)CB x y =- ,,(10)CO =-,,由CM CA CB CO =++ 得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y+=+⎧⎨+=⎩,于是AB 的中点坐标为222x y +⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-.将1212()2yy y x x x -=--代入上式,化简得224x y -=. 当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程. 所以点M 的轨迹方程是224x y -=.解法二:同解法一得12122x x x y y y +=+⎧⎨+=⎩,……………………………………①当AB 不与x 轴垂直时,由(I ) 有212241k x x k +=-.…………………②21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.………………………③由①②③得22421k x k +=-.…………………………………………………④241ky k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,2x k y+=,将其代入⑤有2222244(2)(2)(2)1x y x yy x x yy +⨯+==++--.整理得224x y -=. 当0k =时,点M 的坐标为(20)-,,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程.故点M 的轨迹方程是224x y -=.20.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …………………………① 于是213(1)n n S S n ++=+. …………………………………………………② 由②-①得:163n n a a n ++=+.……………………………………………③ 于是2169n n a a n +++=+.……………………………………………………④ 由④-③得:26n n a a +-=.…………………………………………………⑤ 即数列2{}n n a a +-(2n ≥)是常数数列. (II )由①有2112S S +=,所以2122a a =-. 由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列.所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N *. 由题设知,1187n n b -=⨯.当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项.若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N *,从而n b 是数列{}n a 中的第167n -⨯项.(注:考生取满足36n a k =-,n k ∈N*的任一奇数,说明n b 是数列{}n a 中的第126723n a-⨯+-项即可)21.解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是 (1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.。

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析)  精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。

2017年全国卷1高考文科数学真题及答案解析(完整版)

2017年全国卷1高考文科数学真题及答案解析(完整版)

2017年全国卷1高考文科数学真题及答案解析(完整版)
高考是人生的一大考试,成败与否,心态最为重要。

希望大家能保持一颗平常的心态,积极迎战!请大家谨记,为理想奋斗的宝贵过程其意义远远大于未知的结果。

高考频道会及时为广大考生提供[2017年全国卷1高考文科数学真题及答案解析(完整版)],更多高考分数线、高考成绩查询、高考志愿填报、高考录取查询信息等信息请关注我们网站的更新!
2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)。

(完整)2017年全国高考文科数学试题及答案-全国卷2,推荐文档

(完整)2017年全国高考文科数学试题及答案-全国卷2,推荐文档

2017年普通高等学校招生全国统一考试(全国卷2)数学(文史类)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合{1,2,3},{2,3,4}A B ==,则A B =UA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i + 3. 函数()sin(2)3f x x π=+的最小正周期为 A.4π B.2π C. π D. 2π 4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是 A. 2+∞(,) B. 22(,) C. 2(1,) D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是A. -15B.-9C. 1 D 9 8. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A. 乙可以知道两人的成绩B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25 12. 过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = 15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:(一)必考题:共60分。

2017年湖南高考真题文科数学.doc

2017年湖南高考真题文科数学.doc

精心整理文科数学2017年高三2017年全国1卷文科数学文科数学单选题(本大题共12小题,每小题____分,共____分。

) 1A.A B =B D.2.为评估一种农作物的种植效果,选了n (单位:kg A.x 1,x 2B.x 1,x 2 C.x 1,x 2D.x 1,x 23A.i(1+i)24A. B. C. D.5.已知是双曲线:的右焦点,A ,3)APF 的面积为A. B. D.6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是(????????) A BC D7.设x,y满足约束条件则z=x+y的最大值为(???????)A.0B.1C.2D.38.函数的部分图像大致为(??????)A.B.C.D.9.已知函数,则(???????)A.0,2)单调递增B.)单调递减C.y=的图像关于直线x=1对称D.y=的图像关于点(1,0)对称10.两个空白框中,可以分别填入(???????)A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知,a=2,c=,则C=(???????)A. B. C. D.12.设A,B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(???????)A. B. C. D.填空题(本大题共4小题,每小题____分,共____分。

)13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=________.14.曲线在点(1,2)处的切线方程为______________.15.已知,tanα=2,则=__________.16.已知三棱锥S?ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S?ABC的体积为9,则球O的表面积为________.题____17.记S n为等比数列(1)求的通项公式;(2)求是否成等差数列.18.,且.(1(2)若,,且四棱锥的体积为19.16经计算得,,,,其中为抽取的第个零件的尺寸,.(1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本的相关系数,.20.设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM BM,求直线AB的方程.21.已知函数=e x(e x?a)?a2x.(1)讨论的单调性;(2)若,求a的取值范围.22.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(1)若(2)若,求23.题中任选一题作答.如果多做,则按所做的第一题计分.已知函数,.(1)当时,求不等式的解集;(2的解集包含,求。

2017全国高考文科数学试题和答案解析_全国1卷

2017全国高考文科数学试题和答案解析_全国1卷

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年高考湖南文科数学

2017年高考湖南文科数学

绝密★启用前2017年普通高等学校招生全国统一考试(湖南卷)数学(文科)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()21jz-=1+i(i为虚数单位),则复数z=2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图1所示若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动人数是A.3B.4C.5D.63.设x∈R,则”x>1”是”3x>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若变量x,y满足约束条件错误!未找到引用源。

则z=2x-y的最小值为A.-1B.0C.1D.25.执行如图2所示的程序框图,如果输入n=3,则输出的S=A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6.若双曲线22221x y a b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为A.3B.54C.43D.537.若实数a,b 满足12a b+=ab 的最小值为B.2 D.4 8.设函数()ln(1)ln(1)f x x x =+--,则()f x 是A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数9.已知点A ,B ,C 在圆221y χ+=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||PA PB PC ++的最大值为A.6B.7C.8D.910.某工件的三视图如图3所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件的利用率为(材料的利用率= 新工件的体积/原工件的体积)A.89πB.827πC.)3241πD.)381π二.填空题:本大题共5小题,每小题5分,共25分11.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A⋃(C B⋃)=________12.在直角坐标系xOyz中,以坐标原点为极点,x轴的正半轴建立极坐标系,若曲线C的极坐标方程为ρ=3sinθ,则曲线C的直角坐标方程为______13.若直线3x-4y+5=0与圆x²+y²=r²(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=___________.14.若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是___________15.已知w>0,在函数y=2sin wx余y=2 cos wx 的图像的交点,距离最短的两个交点的距离为则w=________.三、解答题:本大题共6小题,共75分。

2017年全国高考文科数学试题及答案-全国卷1

2017年全国高考文科数学试题及答案-全国卷1

2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4 5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 8..函数sin21cos x y x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2017年高考文科数学试题及答案(Word 版)
(考试时间:120分钟 试卷满分:150分)
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目
要求的。

1.已知集合A={}|2x x <,B={}|320x x ->,则 A .A B=3|2x x ⎧⎫<⎨⎬⎩

B .A B =∅
C .A
B 3|2x x ⎧
⎫=<⎨⎬⎩

D .A
B=R
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
3.下列各式的运算结果为纯虚数的是 A .i(1+i)2
B .i 2(1-i)
C .(1+i)2
D .i(1+i)
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .1
4 B .
π
8
C .
12
D .π 4
5.已知F 是双曲线C :x 2
-2
3
y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF
的面积为 A .13
B .1
2
C .2
3
D .3 2
6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是
7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪
-≥⎨⎪≥⎩
则z=x+y 的最大值为
A .0
B .1
C .2
D .3
8..函数sin21cos x
y x
=
-的部分图像大致为
9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增
B .()f x 在(0,2)单调递减
C .y=()f x 的图像关于直线x=1对称
D .y=()f x 的图像关于点(1,0)对称
10.如图是为了求出满足321000n n ->的最小偶数n ,那么在

两个空白框中,可以分别填入
A .A>1000和n=n+1
B .A>1000和n=n+2
C .A ≤1000和n=n+1
D .A ≤1000和n=n+2
11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

已知sin sin (sin cos )0B A C C +-=,a=2,,
则C= A .
π12
B .
π6
C .
π4
D .
π3
12.设A 、B 是椭圆C :22
13x y m
+=长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围

A .(0,1][9,)+∞
B .[9,)+∞
C .(0,1][4,)+∞
D .[4,)+∞
二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a=(–1,2),b=(m ,1).若向量a+b 与a 垂直,则m=______________. 14.曲线2
1
y x x
=+
在点(1,2)处的切线方程为_________________________. 15.已知π(0)2
a ∈,,tan α=2,则π
cos ()4α-=__________。

16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。

若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)
记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;
(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列。

18.(12分)
如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8
3
,求该四棱锥的侧面积. 19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序
9
10
11
12
13
14
15
16
零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得16119.9716i i x x ===∑,16162
2211
11()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,16
2
1
(8.5)
18.439i i =-≈∑,16
1
()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,
1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅
的相关系数()()
n
i
i
x x y y r --=

0.09≈.
20.(12分)
设A ,B 为曲线C :y=2
4
x 上两点,A 与B 的横坐标之和为4.
(1)求直线AB 的斜率;
(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 21.(12分)
已知函数()f x =e x (e x ﹣a)﹣a 2
x .
(1)讨论()f x 的单调性;
(2)若()0f x ≥,求a 的取值范围.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为3cos ,
sin ,
x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为
4,
1,x a t t y t =+⎧⎨
=-⎩
(为参数). (1)若a=−1,求C 与l 的交点坐标;
(2)若C 上的点到l
a. 23.[选修4—5:不等式选讲](10分)
已知函数f (x )=–x 2
+ax+4,g (x )=│x+1│+│x –1│. (1)当a=1时,求不等式f (x )≥g (x )的解集;
(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.
参考答案:
选择题:
1.A
2.B
3.C
4.B
5.D
6.A
7.D
8.C
9.C 10.D 11.B 12.A 填空题
13. 2 14. y = x+1 15. 10
10
3 16. 36π 解答题。

相关文档
最新文档