24.2.3 圆的切线的性质和判定
圆的切线性质定理#

圆的切线的判定与性质【知识点精析】1. 直线与圆有三种位置关系,其中直线与圆只有唯一的公共点,叫直线与圆相切,这个公共点叫切点。
这条直线叫圆的切线。
2. 圆的切线的判定与性质:(1)判定:经过半径外端并且垂直于这条半径的直线是圆的切线。
判定一条直线是圆的切线需要满足以下两个条件:①经过半径外端②垂直于半径(2)圆的切线的性质:圆的切线垂直于过切点的半径。
注意:应用圆的切线性质时,需指出切线和切点,才可推出垂直的结论。
例如:已知如图,PO是∠APB的平分线,以O为圆心的圆与PA相切于点C。
3. 切线长定理:(1)切线长定义:从圆外一点向圆作切线,这点与切点的线段长叫切线长。
圆外一点向圆只能做两条切线,因此有两条切线长。
(2)切线长性质从圆外一点向圆所引的两条切线长相等,并且这点与圆心的连线平分两条切线所夹的角。
例如:从圆外一点引圆的两条切线,若两切线的夹角为60°,两切点的距离为12求圆半径(3)三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形三个顶点的距离相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到三角形三边的距离相等三角形的内心是三角形三角平分线的交点【解题方法指导】一切线长定理的计算例1. 已知如图:在Rt△ABC中,∠C=90°,点C在AC上,CD为⊙O直径,⊙O切AB于E,若BC=5,AC=12,求⊙O的半径BC2 在△ABC中,若∠C=90°,∠A=30°,AC=3,则内切圆半径为____________。
二等腰三角形在证明切线中的巧用例3、如图7-53,AB为⊙O的直径,C为⊙O上一点,AD和过C点切线互相垂直,垂足为D.word.word.求证:AC 平分∠DAB .4已知:AB 为⊙O 的直径,AC 为弦,D 为AB 上一点,过D 点作AB 的垂线DE 交AC 于F ,EF=EC 。
24.2.3+切线的判定和性质课件+2023-—2024学年人教版数学九年级上册

1.[2023眉山中考]如图,AB切⊙ O于点B,连接OA
交⊙ O于点C,BD//OA交⊙ O于点D,连接CD,
若∠OCD = 25∘ ,则∠A的度数为(
A.25∘
B.35∘
C.40∘
C )
D.45∘
第1题图
【解析】 如图,连接OB. ∵ AB切⊙ O于点B,
∴ OB ⊥ AB,∴ ∠ABO = 90∘ . ∵ BD//OA,
AE的长为(
B )
A.1
B. 2
C.2
D.2
2
第2题图
【解析】 ∵ OA是⊙ O的半径,AE是⊙ O的切线,
∴ ∠A = 90∘ . ∵ ∠AOC = 45∘ ,OA ⊥ BC,∴△ CDO和△ EAO都是等腰直角
三角形,∴ OD = CD,OA = AE. ∵ OA ⊥ BC,∴ CD =
1
BC
线,∴ ∠OPB = 90∘ . ∵ ∠ABC = 90∘ ,∴ OP//BC,
∴ ∠CBD = ∠POB = 40∘ .
8.如图,已知AB为⊙ O的直径,C为⊙ O上一点,
点D为BA的延长线上一点,连接CD.若DC与⊙ O
相切,点E为OA上一点,且∠ACD = ∠ACE.求
证:CE ⊥ AB.
证明:∵ 与⊙ 相切,
AC是⊙ O的切线,A为切点,BC经过圆心.若
∠B = 21∘ ,则∠C的度数是(
A.21∘
B.42∘
C )
C.48∘
D.69∘
第6题图
【解析】 如图,连接OA. ∵ AC是⊙ O的切线,A
为切点,∴ AC ⊥ OA,
∴ ∠OAC = 90∘ . ∵ ∠B = 21∘ ,
∴ ∠AOC = 2∠B = 2 × 21∘ = 42∘ ,
圆的切线的性质及判定定理 课件

【名师点评】 (1)圆的圆心;②经过切点;③垂直于切 线.用其中的某两点作条件,便能推出第三点.
(2)若题目条件中有圆的切线,可考虑连接圆心和切点,则得 垂直关系.
【名师点评】 (1)判断圆的切线的常用方法: ①和圆只有一个公共点的直线是圆的切线; ②到圆心距离等于半径的直线是圆的切线; ③过圆的半径的外端且与半径垂直的直线是圆的切线. (2)判断一条直线是圆的切线时,常用辅助线的作法: ①如果已知这条直线与圆有公共点,则连接圆心与这个公共 点,设法证明连接所得到的半径与这条直线垂直,简记为“连 半径,证垂直”; ②若题目未说明这条直线与圆有公共点,则过圆心作这条直
考点突破
考点一 圆的切线的判定 例1 如图所示,在△ABC 中,已知 AB=AC,以 AB 为直径 的⊙O 交 BC 于点 D,DE⊥AC 于点 E. 求证:DE 是⊙O 的切线.
【证明】 连接 OD 和 AD,如图所示. ∵AB 是⊙O 的直径,∴AD⊥BC. 又∵AB=AC,∴BD=CD. ∵AO=OB,∴OD∥AC. ∵DE⊥AC,∴DE⊥OD, ∴DE 是⊙O 的切线.
线的垂线,得垂线段,再证明这条垂线段的长等于半径,简
记“作垂直,证半径”.
考点二 圆的切线的性质 例2 如图,AB 和 BC 分别与圆 O 相切于点 D,C,AC 经过圆 心 O,且 BC=2OC.求证:AC=2AD.
【证明】 连接 OD.因为 AB 和 BC 分别与圆 O 相切于点 D,C, 所以∠ADO=∠ACB=90°. 又因为∠A=∠A, 所以 Rt△ADO∽Rt△ACB. 所以OBCD=AACD. 又 BC=2OC=2OD,
圆的切线的性质及判定定理
1.直线与圆的位置关系
直线与圆有两___个_公共点,称直线与圆相交;直线与圆只有一__个__
圆的切线的判定与性质

O
.
∵直线l切⊙O于点A,
∴OA⊥l
几何符号表达:
圆的切线和圆只有一个公共点。
1
圆心到切线的距离等于半径。
2
圆的切线垂直于过切点的半径。
3Leabharlann 切线的性质4归纳
5
小试牛刀:
如图,AB是⊙O的直径,直线l1、l2是⊙O的切线,A、B是切点,直线l1、l2有怎样的位置关系?
下雨天快速转动雨伞时飞出的水滴,以及在砂轮上打磨工件飞出的火星,均沿着圆的切线的方向飞出. 1. 当你在下雨天快速转动雨伞时,水滴顺着伞的什么方向飞出去的? 2. 砂轮打磨零件时,溅出火星沿着砂轮的什么方向飞出去的? 生活中的数学
思考?
改变切线判定定理的题设与结论 如果直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?
2、如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E。 求证:PE是⊙O的切线。
O
A
B
C
E
P
练一练
有交点,连半径,证垂直
如图CB是⊙O的切线,C是切点,OB交⊙O于D, ∠B=30°, OB =6cm,求BC
C
O
B
D
〖例3〗
解:连接OC
∵ CB切⊙O于C,
连接OC (交点C已给出)
过O作OE⊥AC 于E(交点E未给出)
O
B
A
C
O
A
B
C
D
E
练一练
1、如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交。 求证:AB是⊙O的切线。
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件

证明:连接OC, ∵CD是⊙O的切线,
∴OC⊥CD. 又∵AD⊥CD,
∴OC//AD. 由此得 ∠ACO=∠CAD.
D C
∵OC=OA.
∴ ∠CAO=∠ACO.
A
O
B
∴ ∠CAD=∠CAO.
故AC平分∠DAB.
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
24.2.2 圆的切线的性质和 判定定理
O
r
l
A MB
l
.O
回顾:
直线与圆的
位置关系
相交
相切
相离
图形
公共点个数 公共点名称 直线名称 圆心到直线距
离d与半径r的
关系
Or
d
l
A
B
2个 交点
割线
d<r
Or d
l A
1个 切点 切线
d= r
Or d
l
没有
d> r
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
AM O
反证法
证明:假设l与OA不垂直,
作OM⊥ l于M 因“垂线段最短”, 故OA>OM, 即圆心到直线的距离小于半径. 这与“直线l是圆O的切线”矛盾. 故直线l与圆O一定垂直.
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
切线的性质定理:圆的切 线垂直于过切点的半径。
O
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
如图,AB、AC分别切⊙O于B、C,若
∠A=600,点P是圆上异于B、C的一动点,
人教版九年级数学上册24.2.3《切线的判定和性质》教学设计

人教版九年级数学上册24.2.3《切线的判定和性质》教学设计一. 教材分析人教版九年级数学上册24.2.3《切线的判定和性质》这一节主要介绍了直线与圆的位置关系,特别是圆的切线。
学生将学习如何判定一条直线是否为圆的切线,以及切线与圆的性质。
教材通过丰富的例题和练习题,帮助学生理解和掌握切线的相关知识。
二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、圆等基本几何图形有一定的了解。
但是,对于切线的判定和性质,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,逐步引导他们理解和掌握切线的判定和性质。
三. 教学目标1.知识与技能目标:使学生理解切线的定义,学会判定一条直线是否为圆的切线,掌握切线的性质。
2.过程与方法目标:通过观察、分析、推理等数学活动,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:切线的定义,判定一条直线是否为圆的切线,切线的性质。
2.难点:理解并掌握切线的判定定理,以及如何运用到实际问题中。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察、分析和推理,让学生在实际情境中理解切线的定义和性质。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲,培养学生解决问题的能力。
3.合作学习法:学生进行小组讨论,鼓励学生互相交流、分享,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作精美的课件,展示切线的定义、判定和性质。
2.练习题:准备一些有关切线的练习题,以便在课堂上进行操练和巩固。
3.教学道具:准备一些圆形模型和直线模型,以便在课堂上进行直观展示。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆形物体,如篮球、乒乓球等,引导学生观察这些圆形物体上的切线。
然后提出问题:“你们认为,什么是切线?切线有哪些特点?”2.呈现(10分钟)介绍切线的定义,通过动画演示切线的形成过程,让学生直观地理解切线的定义。
圆的切线性质与判定

圆的切线性质与判定圆是平面上具有特殊性质的图形,它有着多种有趣的性质与判定方法。
其中,圆的切线性质是一项重要的研究内容,具有广泛的应用价值。
本文将从圆的切线的定义开始,逐步介绍圆的切线的性质与判定方法。
一、圆的切线定义切线是一条直线,与圆的某一点相切,且与圆在该点处的切点处于圆的内部。
切点即为切线与圆的交点,切线与半径的夹角为直角。
圆的切线是圆与切点处切线共线的直线。
二、圆的切线性质1. 切线与半径的关系在圆上,以切点为顶点的切线与半径垂直。
2. 切线长度圆的切线长度等于切点到圆心的距离的两倍。
3. 切线的唯一性一个圆上的切线最多只能有两条,并且与该圆在切点处共线。
4. 外切线与内切线若一条直线与圆有且仅有一个公共切点,则称该直线为圆的外切线;若一条直线与圆有两个公共切点,则称该直线为圆的内切线。
5. 切线相交性质若两条切线与圆的切点不同,则这两条切线相交于圆的外部;若两条切线与圆的切点相同,则这两条切线相交于圆的内部。
三、圆的切线判定方法1. 分析法根据切线的定义,通过分析问题中的圆与切点的位置关系,可以判断出切线的存在与否。
2. 考察斜率法假设切点的坐标为(x1, y1),圆心的坐标为(a, b),可以根据斜率公式计算切线的斜率,若斜率存在且符合条件,则该直线为圆的切线。
3. 使用代数方程法对于已知的圆方程和直线方程,可以通过联立方程求解的方式来得到切线方程。
通过判断解的情况,可以判定直线与圆的关系。
四、应用举例1. 圆的切线应用于建筑设计中,可以帮助确定柱体或钟表的刚性支撑结构。
2. 在地理测量学中,圆的切线可以用于研究山脉的坡度和高度。
3. 圆的切线应用于计算机图形学中,用于控制曲线与圆弧的形状和运动轨迹。
总结:圆的切线性质与判定是一个重要且有趣的数学问题,它具有广泛的应用领域。
通过切线的定义和性质,我们可以了解切线在圆上的位置关系和特点。
掌握圆的切线判定方法,可以应用于实际问题的求解和分析中。
人教版数学九年级上册24.2.3切线长定理课件(共26张PPT)

三角形外心、内心的区别:
名称
外心
内心
图形
性质
三角形的外心到三角形三个 三角形的内心到三角形
顶点的距离相等
三条边的距离相等
位置 外心不一定在三角形内部 内心一定OC=90°+
1 2
∠A
例2 如图, △ABC的内切圆⊙O与BC,CA, AB
分别相交于点D , E , F ,且AB=9,BC =14,
CA =13,求AF,BD,CE的长.
解:设AF=x,则AE=x,
A
CD=CE=AC-AE=13-x,
E
BD=BF=AB-AF=9-x.
F
由BD+CD=BC,可得
(13-x)+(9-x)=14.解得,x=4. B
D
C
因此,AF=4,BD=5,CE=9.
随堂练习 1.如图,△ABC的内切圆⊙O与BC,CA,AB分 别相切于点D,E,F,且AB=11cm,BC=14cm, CA=13cm,则AF的长为( C ) A.3cm B.4cm C.5cm D.9cm
解:∵ 点O是△ABC的内心,
∴∠OBC= 1 ∠ABC= 1 ×50°=25°,
2
2
∴∠OCB= 1 ∠ACB = 1×75°=37.5° ,
2
2
∴∠BOC=180°-25°-37.5°=117.5° B
A O
C
【选自教材P100 练习 第2题】
5. △ABC的内切圆半径为r, △ABC的周长为l,求△ABC的
2.如图,点O是△ABC的内心,若∠BAC=86°, 则∠BOC=( C ) A.172° B.130° C.133° D.100°
3.如图,已知VP、VQ为⊙T的切线,P,Q为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城关中学九年级数学学练稿
班级 姓名________
第 周 星期
设计者
执教者
课 题
24.2.3 圆的切线的性质和判定
审 核
数学组
学习目标:1、掌握切线的判定定理并会运用定理解决相关问题。
2、会过圆上一点画圆的切线 学习重点:切线的判定定理;难点:切线的判定 学习过程 一、自学导航
阅读课本P95-96 并完成以下各题。
1.切线的判定定理:经过半径的 并且 的直线是圆的切线。
2.判断一条直线是否为圆的切线,现已有 种方法,分别是那几种? 3.切线的性质定理:圆的切线 的半径。
二、互动冲浪
1、如图,AB 是⊙O 的直径,∠ABT =45°,AT =AB ,求证:AT 是⊙O 的切线。
2、如图,点D 是∠AOB 的平分线OC 上任意一点,过D 作DE ⊥OB 于E ,以DE 为半径作⊙D , 判断⊙D 与OA 的位置关系,并证明你的结论
三、当堂检测
1、下面关于判定切线的一些说法:①与直径垂直的直线是圆的切线;②到圆心的距离等于半径的直线是圆的切线 ;③与圆有唯一公共点的直线是圆的切线;④经过半径外端的直线是圆的切线; ⑤经过半径外端且垂直于这条半径的直线是圆的切线,其中正确的是( ) A ①②③ B②③⑤ C ②④⑤ D③④⑤
A
B
C
E O
D A O B
T
p
O
B
C
A
2、如图,已知PA是⊙O 的切线,A是切点,PC是过圆心的 一条割线,点B,C是它与⊙O 的交点,且PA=8, PB=4,则⊙O 的半径为 。
3、如图:在△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 交于点D ,过D 作DF ⊥BC ,交AB 的延长线于E ,垂足为F 。
求证:直线DE 是⊙O 的切线
四、学练感悟
1、本节课都学习了什么内容?
2、还有哪些不懂?
3、学习切线的判定与性质应注意什么?
4、做错的题目有: 原因:__________________________________ 五、课后作业
提示:1.在证明圆的切线问题时,常作两种辅助线:若已知一直线经过圆上一点,则连接这点和圆心得半径,证明该直线与半径垂直;若不知直线与圆有无公共点,则过圆心作直线的垂线,证明垂线段等于圆的半径。
2.已知一条直线是圆的切线时,常作辅助线为连接圆心与切点,得半径,那么半径垂直于这条切线。
1、如图,已知AB 是⊙O 的直径,AC 为弦,且平分BAD ∠,AD CD ⊥
,垂足为D . 求证:CD 是⊙O 的切线;
2、如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠CAD =∠ABC ,判断直线AD 与⊙O 的位置关系,并说明理由。
A
O
B
C
D。