光伏阵列最大功率点跟踪控制方法综述

合集下载

光伏并网控制系统的最大功率点跟踪(MPPT)方法

光伏并网控制系统的最大功率点跟踪(MPPT)方法

光伏并网控制系统的最大功率点跟踪(MPPT)方法光伏并网控制系统的最大功率点跟踪(MPPT)方法【大比特导读】最大功率点跟踪(MPPT)是光伏并网逆变器控制策略中的核心技术之一。

本文首先介绍了光伏组件的输出特性,然后具体分析了3种典型的MPPT控制方法,并总结3种方法各自的特点和不足。

摘要:最大功率点跟踪(MPPT)是光伏并网逆变器控制策略中的核心技术之一。

本文首先介绍了光伏组件的输出特性,然后具体分析了3种典型的MPPT控制方法,并总结3种方法各自的特点和不足。

关键字:光伏发电系统,最大功率点跟踪,MPPT控制方法1 引言日本福岛核电站事故之后,多国陆续宣布暂停核电建设,而太阳能是永不枯竭的清洁能源,并且更加稳定、安全。

据国家权威数据,在“十二五”期间,中国光伏发电装机容量达到2000万千瓦。

但由于光伏组件本身特性的非线性,受环境温度、日照强度、负载等因素的影响,均会使其输出最大功率点发生变化,导致光伏组件转换效率很低。

而所有光伏发电系统均希望光伏组件在相同日照、温度条件下输出尽可大的功率,这就提出了对光伏组件最大功率点跟踪(Maximum Power Point Tracking,MPPT)的问题。

本文首先讨论了光伏组件本身的P-V,I-V特性,以及温度、光照的影响;然后具体分析了几种常用的MPPT控制方法,并对3种MPPT控制方法作简单的比较。

2 光伏组件的特性A. 物理数学模型根据半导体物理学理论,太阳能组件的等效物理模型如图1所示。

其中:IPH 与日照强度成正比的光生电流;I0 光伏组件反向饱和电流,通常其数量级为10-4A;n 二极管因子;q 电子电荷, ;K 玻尔兹曼常数, J/K;T绝对温度( K);RS光伏组件等效串联电阻;RP光伏组件等效并联电阻;式(1)中参数IPH、Io、Rs、RP、n与太阳辐射强度和组件温度有关,而且确定这些参数也十分困难。

B. 温度、光照对输出特性的影响受外界因素(温度、光照强度等)影响,光伏组件输出具有明显的非线性,图2、图3分别给出其I-V特性曲线和P-V特性曲线。

光伏最大功率点跟踪原理

光伏最大功率点跟踪原理

光伏最大功率点跟踪原理光伏最大功率点跟踪(Maximum Power Point Tracking,简称MPPT)是一种用于光伏发电系统中的技术,旨在寻找并保持光伏电池组的最大功率输出。

光伏电池的输出功率受到光照强度、温度、负载电阻等多种因素的影响,而MPPT技术能够通过实时追踪光伏电池组的工作状态,调整工作点,从而实现最大功率输出。

光伏电池的输出功率与其工作电压和工作电流有关。

在光照强度变化的情况下,光伏电池的工作电压和工作电流也会发生变化,从而影响光伏电池的输出功率。

为了实现最大功率输出,MPPT技术需要实时监测光伏电池的工作电压和工作电流,并根据这些数据来调整光伏电池组的工作状态。

MPPT技术的实现主要依赖于功率追踪算法。

常见的功率追踪算法包括传统的扫描法和现代的模型预测控制法。

传统的扫描法通过改变负载电阻的方式来扫描出光伏电池组的最大功率点。

该方法的原理较为简单,但实时性较差,且对于复杂光照条件下的功率追踪效果较差。

而模型预测控制法则是通过建立光伏电池组的数学模型,预测出最大功率点的位置,并通过控制电流或电压来实现功率跟踪。

该方法的原理更为精确,能够在复杂的光照条件下实现较好的功率追踪效果。

为了实现MPPT技术,光伏发电系统通常配备一个MPPT控制器。

该控制器能够实时监测光伏电池组的工作状态,包括光伏电池的工作电压和工作电流。

通过对这些数据的处理和分析,MPPT控制器能够确定光伏电池组的最大功率点,并通过调整光伏电池组的工作状态来实现最大功率输出。

MPPT技术的应用可以提高光伏发电系统的效率和稳定性。

通过实时跟踪光伏电池组的最大功率点,MPPT技术能够最大限度地利用光能,提高光伏发电系统的发电效率。

同时,MPPT技术还可以适应不同的光照条件,自动调整光伏电池组的工作状态,确保系统的稳定运行。

光伏最大功率点跟踪技术是一种关键的技术,能够有效提高光伏发电系统的效率和稳定性。

通过实时追踪光伏电池组的工作状态,并通过调整工作点来实现最大功率输出,MPPT技术能够最大限度地利用光能,提高光伏发电系统的发电效率。

太阳能光伏发电最大功率点跟踪技术

太阳能光伏发电最大功率点跟踪技术

二、MPPT技术的基本原理和性能检测方法
I(mA)
曲线1 曲线2
负载1
A1
A2 B1
负载2 B2
O
U(mV)
➢最大功率点A1→最大功率点B1 (条件:将系统负载特性由负载1改为负载2)
➢最大功率点B1→最大功率点A1
(条件:将系PPT技术的基本原理和性能检测方法
由上述公式推导,可得系统运行点与最大功率点的判据如下:
① G+dG>0,则UPV<UMPP,需要适当增大参考电压来达到最大
功率点;
② G+dG<0,则UPV>UMPP, 300
250
需要适当减小参考电压来达 200
输出功率(W)
到最大功率点;
150
100
③ G+dG=0,则UPV=UMPP, 50
0
由此可得
IPV dIPV G dG 0 UPV dUPV
式中,G为输出特性曲线的电导;dG为电导G的增量。由
于增量dUPV和dIPV可以分别用ΔUPV和ΔIPV来近似代替,可得:
dUPV t2 UPV t2 UPV t2 UPV t1 dIPV t2 IPV t2 IPV t2 IPV t1
dPPV 0 dU PV
最大功率点
dPPV 0 dU PV
dPPV 0 dU PV
此时系统正工作在最大功率 点处;
0 0 10 20 30 40 50 60 70 80 90 输出电压(V)
常用的最大功率点跟踪算法
光伏电池仿真模型设计
仿真结果
由此可见,光伏发电系统中的MPPT控制策略,就是先根 据实时检测光伏电池的输出功率,再经过一定的控制算法预测 当前工况下光伏电池可能的最大功率输出点,最后通过改变当 前的阻抗或电压、电流等电量等方式来满足最大功率输出的要 求。

最大功率点跟踪方法

最大功率点跟踪方法

3.5传统的最大功率点跟踪方法3.5.1 定电压跟踪法通过图3-10a 、3-10b 可知,当辐照度大于一定值并且温度变化不大时,光伏电池的输出P -U 曲线上最大功率点几乎分布于一条垂直直线的两侧附近。

定电压跟踪法正是利用这一特性。

根据实际系统设定一个恒定不变的运行电压,使系统在设定的电压下运行,从而尽可能使系统输出的功率最大。

在外界环境变化不大时,可以近似认为太阳能电池始终工作在最大功率点处[24]。

mpp U 表示光伏阵列的最大功率点电压,oc U 表示光伏阵列的开路电压,经研究发现,mpp U 和oc U 有着近似的线性关系:mpp OC U k U ≈ (3.14)式(3.14)中,k 为比例系数,取决于光伏电池的特性,一般其取值为0.8左右。

该算法结构简单,容易实现,但是由于该算法只是一种近似的MPPT 控制算法,在外界环境发生变化时,很容易偏离最大功率点。

因此,电压跟踪法常用在控制要求低,成本低廉的简易系统中[25]。

3.5.2 电导增量法根据光伏阵列的P-U 输出特性曲线可知,它是一条连续可导的单峰曲线,在最大功率点处,功率对电压的导数为零,也就是说,最大功率点的跟踪实质就是搜索满足0dP dU =条件的工作点。

考虑光伏电池的瞬时输出功率为:P UI = (3.15)将上式两边对光伏电池输出电压U 求导,则dP dI I U dU dU=+ (3.16) 当0dP dU =时,光伏电池的输出功率达到最大。

则可以推导出工作点位于最大功率点时需满足以下关系:dI I dU U=- (3.17) 即当光伏电池阵列工作在最大功率点时,需满足(3.17)式。

电导增量法的优点是与太阳能电池组件特性及参数无关,因而能够适应光照强度快速变化的情况,而且该方法的电压波动小,并具有较高的控制精度;其缺点是该方法实现起来复杂,并且容易受到其他信号的干扰而出现误动作。

一般情况下dI 和dU 值取的很小,那么就需要光伏阵列输出电压、输出电流等参数的采样精度很高,而传感器的采样精度有限,所以必然会存在误差,另外,电导增量法存在振荡问题。

光伏发电系统中的最大功率点跟踪

光伏发电系统中的最大功率点跟踪

光伏发电系统中的最大功率点跟踪摘要:所谓MPPT(最大功率点跟踪),即是指控制器能够实时侦测太阳能电池板的发电电压,并追踪最高电压电流值(VI),使得光伏组件工作在最大功率点输出状态下,实现光伏逆变器的最大功率输入,提高阳光的利用率。

光伏电池输出特性具有明显的非线性,受到外部环境包括日照强度、温度、负载以及本身技术指标如输出阻抗等影响,只有在某一电压下才能输出最大功率,这时光伏阵列的工作点就达到了输出功率电压曲线的最高点,称之为最大功率点。

由于目前光伏电池的光电转换效率比较低,为了有效利用光伏电池,对光伏发电进行最大功率跟踪(MaximumPowerPointTracking ,简称MPPT)显得非常重要。

太阳能光伏并网发电系统太阳能电池原理太阳能电池由硅半导体PN 结构成,在硅半寻体中从硅原子的价电子层中分离出一个电子需要一定的能量,该能量称为硅的禁带宽度(在室温下硅的禁带宽度为1.12eV ),当一定强度的光照射到硅半导体时,能量大于硅的禁带宽度的光子将使硅半导体中的价电子受到激发而成为自由电子,从而在半导体内形成光生电子-空穴对,这些电子-空穴对由于热运动会向各个方向扩散。

当这些电子、空穴扩散到PN 结边界时在内建电场作用下,在N 区的电子-空穴会进入P 区,而在P 区的电子则在电场作用下进入N 区,从而在PN 结的两侧产生正负电荷的积累,使P 型层带正电,N 型层带负电,因此在PN 结上产生了电动势。

这个现像被称为“光生伏特效应”。

R光照图错误!文档中没有指定样式的文字。

.1光伏电池原理太阳能电池特性目前光伏系统中使用的电池多为硅太阳电池,包括单晶硅、多晶硅以及多晶硅薄膜电池,这些硅电池的输出具有强烈的非线性特性,他们的输出受太阳光照强度、环境温度以及负载的影响,如图错误!文档中没有指定样式的文字。

.2所示是在恒度温度下,不同光照强度时太阳能硅电池的输出特性。

(温度为25℃)图错误!文档中没有指定样式的文字。

光伏发电系统最大功率点的跟踪方法研究

光伏发电系统最大功率点的跟踪方法研究
C T 电 ; 大 功 率 点 追 踪 ;算 法 最
中 图 分 类 号 :T M61 5 文 献 标 识 码 :A 文 章 编 号 :1 7 — 5 ( 0 9) 6 0 7 2 6 2 0 47 2 0 0 —0 8 —0
当今 社 会 能 源 日益 紧 张 , 境 污 染 日趋 严 重 , 阳 能 以 其 环 太 清 洁 无污 染 取 之不 尽 用 之 不 竭 的特 点 , 来 越 受到 全 世 界 的 关 越 注。 光伏 电池 的输 出为 非 线性 特 性 , 出功 率 受 工作 电压 、 照 输 光 强度、 负荷 状 态 和 环 境 温 度 等 因素 的影 响 , 阳 能 电池 输 出 的 太 最 大功 率 点 时刻 都 在 变化 。 所 以在 实 际 应 用 中 , 用 最 大 功 率 利
点跟 踪 技 术 提高 对 太 阳 能 的利 用 效 率 。 最 大 功 率 跟 踪 控 制 ( -h xm m p w rpit MP temai u o e on t c ig是 一 种 光伏 阵列 功率 点控 制 方 式 。 过 实 时检 测 光 伏 r kn ) a 通 阵 列 的 输 出功 率 , 用 一 定 的 控 制 算 法 , 断 调 节 系 统 的 工 采 不 作 状 态 , 跟 踪 光 伏 阵 列 的 最 大 功 率 点 , 现 系 统 的 最 大 功 来 实
合法。

工作 时 , 隔 一 定 的 时 间 用较 小 的步 长 改 变 太 阳能 电池 的输 出 每 电压 , 向可 以是 增 加 也 可 以是 减 少 , 检 测 功 率 变 化 方 向 , 方 并 来 确 定 寻 优 方 向 , 果 输 出 功 率 增 加 , 么 继 续 按 照 上 一 周 期 的 如 那 方 向继 续 “ 扰 ” 否则 改 变其 扰 动 方 向 。其 算 法 流 程如 图 2所 干 , 示 , ( ) ( ) 光伏 阵列 的 当前 输 出 电压 、 出 电流 ,(_ ) U k、 k为 I 输 P k 1为 上 一 周 期 的采 样 值 。 由于 始 终 有 “ 扰动 ” 存 在 , 的 系统 工 作 点 无 法 稳定 运 行 在 最 大 功 率 点 上 , 能 在 最 大 功 率 点 附 近振 荡 运 行 , 只 而振 荡 的 幅值 则 由步 长决 定 。 然 而 扰 动 步 长 如 果 过 大 , 在 最 大 功率 点 附 近 则 的振 荡就 比较 大 , 应 的功 率 损 失较 大 , 相 但跟 踪 的速 度 快 : 反 相

第五章:最大功率点跟踪控制讲解

第五章:最大功率点跟踪控制讲解

最大功率点跟踪(MPPT)maximum power point tracking
图1 输出功率曲线与负载 在光伏发电系统中,当光照强
在一定的光照强度和环境温度下, 电阻不同时,光伏电池可以有不 同的输出电压。但是只有在某一输 出电压值时,光伏阵列的输出功率才能达
到最大值,这时光伏阵列的工作点就达到了
图4-A中五条曲线的MPP趋势与图3-A中的MPP趋势相反;这是由于图 4-A的实测条件下,随着光照增强同时温度也在增加,使得PV组件的 开路电压UOC随温度升高而降低所致。
恒电压控制的原理详述
当忽略温度效应时,硅 型光伏阵列的输出特性
光伏阵列在不同光照强度 下的最大功率输出点 a‘,b’,c‘,d’和e‘总 是近似在某一个恒定的电 压值附近。
第五章 光伏阵列最大功率点跟踪
1.自动追光系统可 以使电池板始终正 对太阳
2.最大功率点跟踪 是通过改变负载电 阻大小来影响输出 功率. 自动追光系统与最大功率点跟踪不同:
不同照度下和不同温度下光伏阵列的伏安特性曲线
太阳能电池板伏安特性曲线
光伏阵列输出特性具有非线性特征,并且其输出受 环境(主要包括日照强度,温度)和负载情况影响。
CVT方法的应用前景
采用CVT代替MPPT控制,由于其良好的 可靠性和稳定性,目前在光伏系统中仍被较 多使用。随着光伏发电系统中数字信号处理 技术的应用,CVT方法逐渐被新方法取代。
5.2.最大功率点跟踪控制
5.4 现代最大功率点跟踪方法
与上页论述差不多,可作 为参考
在接入光伏发电系统之后,由 汇编语言的控制,对电路实行 最大功率跟踪控制。设定一定 得占空比,测量目前功率p0, 并加入扰动产生电流电压变化, 利用电压电流传感器测得此时 的u1,i1,并计算出p1=u1*i1。 对p0,p1,进行比较,若p1大 于p0,则说明扰动是让系统向 其最大功率输出方向变动,则 继续这种扰动,反之,则改变 扰动方式,通过MPPT控制,送 出这时的控制信号,再对比这 次扰动前后的功率值,循环进 行下去,直至系统功率值在某 一点左右变化为止。

光伏发电中MPPT控制方法综述

光伏发电中MPPT控制方法综述

光伏发电中MPPT控制方法综述在光伏发电系统里,为了能充分利用光伏发电功率,最大功率点跟踪(MPPT)起着无法替代的作用。

本文将进行具体的分析,以供参考。

标签:光伏发电;MPPT;控制;应用1、前言光伏產业是当今世界上增速最快的行业之一。

为了实现环境和能源的可持续发展,光伏发电已成为很多国家发展新能源的重点,光伏发电将是未来主要的能量来源。

为了充分利用太阳能源,通过最大功率点跟踪(MPPT)的控制方法来使能量最大化以逐渐成为发展趋势。

2、常见的MPPT控制方法2.1 扰动观测法扰动观测法是最大功率跟踪算法中使用最广泛的一种算法,基本思想是:首先增加或减小光伏电池板的输出电压(或电流),然后观测光伏电池输出功率的变化,根据功率变化再连续改变电压(或电流)的幅值,使光伏电池输出功率最终工作于最大功率点。

扰动观察法由于简单易行而被广泛用于MPPT控制中,但随着研究的深入,该方法存在的不足之处逐渐显现出来,即存在震荡和误判的问题。

在实际应用过程中,由于检测精度和计算速度的限制,电压扰动的步长一般是一个定值,在这种情况下,就会产生震荡。

当步长越小时,震荡就越小,跟踪的速度就越慢。

要想达到理想的状态,就要在速度和精度做权衡考虑。

在扰动观察算法运行过程中,当工作电压达到最大功率点附近时,由于步长恒定,有些情况下,工作电压会跨过最大功率点,改变扰动方向后,工作电压再一次反向跨过最大功率点,如此往复循环,即出现了震荡,即扰动观察法的震荡问题。

当日照,温度等外界条件发生变化时,光伏阵列的特性缺陷也会跟着发生变化。

而扰动算法却无法察觉到,算法还认为是在一条曲线上进行扰动观察,此时就会出现扰动方向误判的情况,即扰动观测法的误判问题。

定步长的扰动观测法存在震荡和误判的问题,使系统不能准确的跟踪到最大功率点,造成了能量损失,因此需要对上述定步长的扰动观测法进行改进。

其中,基于变步长的扰动观测法可以在减小震荡的同时,使系统更快的跟踪到最大功率点;基于功率预测的扰动观测法可以解决外部环境剧烈变化时所产生的误判现象;基于滞环比较的扰动观测法在最大功率点跟踪过程中的震荡和误判这两方面均有较好的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Survey of Maximum Power Point Tracking Techniques for Photovoltaic Array
ZH OU L in, WU Jian, LI Qiu - hua, GUO Ke ( St at e Key L aborat ory of T ransmission & Dist ribut ion Equipm ent and Pow er Sy st em Saf et y and New T echnolo gy, Chongqing Univer sit y, Cho ng qing 400044, China)
阵列更高转换效率的方法, 研究人员在这两方面一 直都在努力。 1. 1 基于优化数学模型的 MP PT 控制方法 这类方法是以建立优化的数学模型为出发点 , 构造求解方法及光伏阵列特性曲线 , 从而得出光伏 阵列的最大功率输出, 所以光伏电池的等效电路模 型及各种参数的正确性是需要着重考虑的。 1. 1. 1 开路电压比例系数法 从光伏阵列的外特性可知 , 当光伏阵列的开路 电压 U OC 在不同的光强和温度下发生改变时 , 光伏 阵列的最大功率点电压 U MPP 也近似地随之 成比例 变化。由此可 以得出光伏阵列 的最大功率点 电压 UM PP 和光伏阵列的开路电压 U OC 之间存在着近似的 线性关系 , 即 UM PP U k 1 U OC 。 ( 1) 式中 , k 1 为比例常数且 < 1; U MP P 与 U OC 的单位一致 即可。虽然这种方法原理简单 , 但是对于不同的阵 列 k 1 有不同的取值, 文献 [ 8 - 11] 给出的数值为 01 71 ~ 0 1 80。 UOC 可以通过将光伏阵列和负载断开来测
第 34 卷 第 6 期 2008 年 6月





H igh V olt ag e Engineering
V ol . 34 N o. 6 J une 2008
# 1145 #
光伏阵列最大功率点跟踪控制方法综述


林, 武
剑, 栗秋华, 郭

( 重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆 400044)
基金资助项目 : 重庆市自然科学基金 ( CST C2007BB6170) 。 Project Support ed by N at ural Science Fou ndat ion of Chongqing ( C STC2007BB6170) .
由于光伏电池的输出电压和输出电流随着日照 强度和电池结温的变化具有强烈的非线性 , 因此在 特定的工作环境下存在着一个唯一的最大功率输出 点 ( M PP) 。在实际的应用系统中 , 自然光的辐射强 度及大气的透光率均处于动态变化中, 为了在同样 的日照强度和电池结温下获得尽可能多的电能, 就 存在着一个最大功率输出点跟踪 ( M PP T ) 的问题。 本文按照控制理论的出发点以及 M PPT 控制 方法的发展过程, 对常用的 M PP T 控制方法进行了 分类总结并分析比较了各种方法的优缺点。
[ 6, 7]
图1
不同光照强度下光伏阵列的输出特性
Fig. 1 Irradiance characteristics of PV array
图2 Fig. 2
不同电池结温下光伏阵列的输出特性 Temperature characteristics of PV array
[ 12]
也是获得光伏
得 , 这样即可以计算出最大功率点电压 UM PP 。 采用开路电压比例系数法不会产生在最大功率 点附近的振荡, 并且结构简单, 可以用廉价的模拟电 路实现。但由于( 1) 式是一个近似的公式 , 所以光伏 阵列并不是工作在真正的最大功率点上, 同时由于测 量 UOC 要将负载侧断开, 所以存在瞬时的功率损失。 1. 1. 2 短路电流比例系数法 从光伏阵列的外特性还可以看出, 当光伏阵列 的短路电流 I SC 在不同的光强和温度下发生改变时, 光伏阵列的最大功率点电流 I M PP 也近似的随之成比 例变化。由此可以得出光伏阵列的最大功率点电流 I MP P 和光伏阵列的短路电流 I SC 之间存在着近似的 线性关系, 即 I M PP U k 2 I SC 。 ( 2) 式中 , k 2 为比例常数且 < 1; UMP P 与 I SC 的单位一致即 可。对于不 同的光 伏阵列 k 2 有不同的 取值, 文献 [ 8] 给出的数值为 01 86。 短路电流比例系数法存在和开路电压比例系数 法同样的缺点, 即由于 ( 2) 式是一个近似的公式, 所 以光伏阵列并不是工作在真正的最大功率点上。另 外测量 I SC 要比测量 UOC 复杂, 通常需要在逆变器中
Abstract: It is necessary to tr ack the max imum po wer point ( M PP) o f t he PV arr ay rapidly and accur ately and it can incr ease the output pow er of photo vo ltaic ar ray . T his ar ticle summarizes the methods of M ax imum Po wer Po int T racking ( M P PT ) , including the Per turb - and - observat ion M ethod and Incr emental Conductance M et ho d and po ints o ut the limitations and notes of tho se two methods. T his pa per divides a number o f different techniques for M PP T of PV ar ray s into fo ur g ro ups by the co nt rol theo ry and dev elo pment pr ocess of M P PT , analyses their mer its and demer its and co mpar es methods w ith others. T he main aspects o f t he M P PT techniques to be taken int o co nsid er ation ar e highlighted in t he subsequent subsectio n. Finally , some feasible thoughts w ith new technolog ies for so l v ing pro blem are discussed and its st udy dir ect ion in the future is also lo oked ahead. It is also indicated that M PPT in the sing le- stage inv erter for PV systems has beco me a ho t research area at home and abr oad. Key words: maximum pow er po int tracking ( M P PT ) ; max imum po wer po int ( M PP ) ; photo vo ltaic ( PV ) arr ay; photo vo ltaic pow er g ener atio n; per turb - and - observat ion; incr emental co nductance
0


随着经济的发展和社会的进步, 能源需求日益 增长 , 常规能源越来越供不应求。同时 , 常规能源的 大量使用造成了世界范围内的 环境污染和生 态恶 化, 因此新能源的开发和应用成为当今世界发展的 必然趋势。太阳能是一种十分具有潜力的新能源 , 光伏发电是当前利用太阳能的主要方式之一。虽然 光伏发电与常规发电相比有技术条件的限制, 如投 资成本高、 系统运行的随机性等, 但由于它利用的是 可再生的太阳能 , 而且作为清洁能源无大气和放射 性污染, 因此其具有良好的发展前景




第 34 卷第 6 期
# 1147 #
添加开关来周期性的短路光伏阵列从而测得 I SC 。 1. 1. 3 电流扫描法 电流扫描法通过对光伏阵列电流的扫描波形来 获得光伏阵列的 I- U 特性曲线 , 与此同时, 光伏阵列 在最大功率点的工作电压可以 通过其特性曲 线获 得
1
光伏阵列最大功率点跟踪控制方法
光伏电池是一种非线性的直流源, 图 1 和图 2 分别给出了某光伏阵列不同光照强度和不同电池结 温下光伏阵列输出的 特性曲线。由 图 1 和图 2 可 知 , 当外界自然条件改变时 , 光伏阵列的输出特性将
# 1146 #
June 2008
H ig h
Volt age Engineering
要 : 光伏发电系统的运行需要快速准确地进行最大功 率点跟踪 ( M P PT ) , 但目前很多 最大功率点 跟踪方法 跟 踪不 够准确 , 从而导致了光伏系统的功率损失 , 为此综述 了光伏 阵列最 大功率 点跟踪 的各种 方法 , 包括日 益成熟、 改进 和优化策略较多的扰动观察法和电导增量法 , 并总结 了两种方法应用的局限性和 需要注意的 问题。从最大 功 率点跟踪的控制原理和发展历程出发 , 归纳了基 于优化数学模型、 扰动自寻优、 智能处理 方法及输出 端控制等 4 类 方法 , 分别说明了各种跟踪控制方法的优点和不 足之处 , 并 指出具 体选择 方法时 需要统 筹考虑跟 踪方法 实现的 难 易程度、 经济成本、 传感器类型、 跟踪速度与精度的协调以 及应用领域等各种因素。最后探 讨了最大 功率点跟踪 控 制方法的发展思路 , 对该领域今后的研究方向做 了展望 , 指 出单级 式光伏 逆变系 统中的 最大功率 点跟踪 己成为 国 内外光伏领域的一个研究热点。 关键词 : 最大功率点跟踪 ; 最大功率点 ; 光伏阵列 ; 光伏发电 ; 扰动观察法 ; 电导增量法 中图分类号 : T M 615 文献标志码 : A 文章编 号 : 1003 - 6520( 2008) 06 - 1145 -10
相关文档
最新文档