应变电测原理
电阻应变测试原理及温度补偿方法实验

电阻应变测试原理及温度补偿方法实验一、实验目的1.掌握电阻应变片的粘贴技术。
2.初步掌握电阻应变片的绝缘处理、防潮、接线和粘贴质量检查等基本技术。
3.了解电测应力、应变实验原理与电桥接线方法。
二、实验设备及器材 1.电阻应变片。
2.试件。
3.万用表、兆欧表。
4.电烙铁、镊子、丙酮、细砂纸、药棉等工具和材料。
5.502胶水、连接导线、704胶。
6.烘干设备。
三、电测法基本原理电阻应变测量技术(简称电测法),就是将物理量、力学量、机械量等非电量通过敏感元件转换成电量来进行测量的一种实验方法,又称非电量电测法。
将电阻应变片粘贴在构件上,当构件受力变形时应变片也随之一起变形,应变片的电阻值发生变化,通过测量电桥将电阻变化转换成电压信号,经放大处理及模/数转换,最后直接输出应变值。
电测法在工程中得到广泛应用,其主要特点: (1) 尺寸小、重量轻、安装方便,对被测构件的应力分布不产生干扰。
(2) 精度和灵敏度高,最小应变读数为1με=10。
6−(3) 测量范围广、适应性强,既能进行静态测试也能进行动态测试,频率响应范围从零到几万赫。
还可以在高、低温及高压、水中等特殊条件下进行测量。
(4) 可测量多种力学量。
采用应变片作为敏感元件制成各种传感器可测力、位移、压强、转角、速度、加速度、扭矩等。
但电测法也有局限性,其缺点是: (1) 只能测构件表面的应变,并且是有限个点,测量数据是离散的,难以得到整个应力-应变场的分布全貌。
(2)对于应力集中和应变梯度较大的部位,会引起比较大的误差。
四、电阻应变片1.工作原理 由物理学可知,金属导线的电阻为:R=A L/ρ (2 - 1)式中:ρ为导线材料电阻率;L为导线长度;A 为导线截面积。
当金属导线因受力变形引起电阻相对变化,对式(2-1)两边取对数再微分得:AALLRRd d d d −+=ρρ(2 - 2)式中:ρρd ≈ ⎟⎠⎞⎜⎝⎛+=LL AACVVCd d d ; ε=LLd ;⎟⎠⎞⎜⎝⎛−==LLDDAAd 2d 2d μC为与材料种类和加工方法相关的常数;V为体积;ε为应变;D为导线直径;μ为导线材料泊松比。
电测应变法的原理及应用

电测应变法的原理及应用1. 介绍电测应变法是一种非接触式应变测量技术,通过测量物体表面产生的电场变化来评估物体的应变状态。
本文将介绍电测应变法的原理及其在各个领域的应用。
2. 原理电测应变法基于电场对物体表面应变的敏感性。
当物体发生应变时,其表面形貌和电场分布会发生变化。
这种变化可以通过测量电容值或电势差来捕捉。
电测应变法可以通过以下步骤来实现应变的测量:1.电极安装:在待测物体的表面上安装电极,电极通常由导电性材料制成,如金属片或导电涂层。
2.电势测量:将电极与测量设备连接,通过测量电势差来确定物体表面电场变化。
这可以通过使用描点电极或传感器来实现。
3.数据处理:将测得的电势差转换为应变值。
这通常需要进行一些数学处理,如校准和线性化。
3. 应用3.1 结构工程电测应变法在结构工程中具有广泛的应用。
它可以用于监测桥梁、建筑物和其他结构的变形和变化。
通过将电极安装在结构表面,可以实时测量结构受力情况,并检测潜在的结构问题,如应变集中和疲劳破坏。
3.2 材料研究电测应变法也被广泛应用于材料研究领域。
在材料力学和材料性能测试中,电测应变法可以提供细微的变形测量,从而评估材料的强度、刚度和可靠性。
这对于开发新材料和改进现有材料的性能非常重要。
3.3 生物医学电测应变法在生物医学领域也有一些应用。
例如,它可以用于测量人体肌肉的变形和应变,对于评估运动和康复训练的效果很有帮助。
此外,电测应变法还可以用于监测人体器官的蠕动和变形,从而帮助了解器官的功能和运动方式。
3.4 汽车工程在汽车工程中,电测应变法被广泛应用于车身结构的优化和安全性评估。
通过安装电极在车身表面,可以测量不同部分的应变,从而优化设计并评估车身在碰撞等情况下的性能。
3.5 航空航天电测应变法在航空航天领域也有重要的应用。
它可以用于监测航空发动机的叶片变形和应变,从而评估叶片受力和疲劳破坏情况。
此外,电测应变法还可以用于监测飞行器和太空探测器的结构变形,对于确保飞行器的安全和可靠性非常重要。
应变计的原理

应变计的原理应变计是一种用于测量物体受力情况的仪器,它能够精确地测量物体在受力作用下产生的应变量,从而帮助我们了解物体的力学性能。
应变计的原理主要基于金属材料的电阻变化和应变之间的关系,通过测量电阻的变化来确定物体受力情况。
下面我们将详细介绍应变计的原理及其工作原理。
首先,应变计的原理基于金属材料的电阻随应变而变化。
当一个金属材料受到外力作用时,其内部会产生应变,从而导致材料的电阻发生变化。
这种电阻的变化与应变之间存在着一定的线性关系,即当物体受到的应变增加时,其电阻也会相应地发生变化。
应变计利用这种原理来测量物体受力时的应变量,从而间接地了解物体所受的力的大小和方向。
其次,应变计的工作原理是利用电桥测量法来检测电阻的变化。
应变计通常由一个或多个金属应变片组成,当物体受到外力作用时,应变片会产生相应的应变,从而导致电阻的变化。
应变计内部连接有一个电桥电路,通过调节电桥电路中的电阻,使得电桥平衡,即电桥两端的电压为零。
当物体受到外力作用时,应变片的电阻发生变化,导致电桥失去平衡,从而产生一个微小的电压信号。
通过测量这个微小的电压信号,就可以确定物体受力时的应变量。
最后,应变计的原理还包括了温度补偿和线性化处理。
由于金属材料的电阻随温度的变化而变化,因此在实际应用中需要对应变计进行温度补偿,以确保测量结果的准确性。
另外,由于应变与电阻之间的关系并非完全线性,因此还需要对测量结果进行线性化处理,以消除非线性误差。
总之,应变计的原理主要基于金属材料的电阻随应变而变化,并利用电桥测量法来检测电阻的变化,从而间接地测量物体受力时的应变量。
同时,还需要进行温度补偿和线性化处理,以确保测量结果的准确性。
通过应变计,我们能够更加准确地了解物体受力情况,为工程设计和科学研究提供重要的参考数据。
电阻应变测量原理

电阻应变测量原理
电阻应变测量原理是通过利用电阻在载荷作用下产生的变化来测量物体的应变。
其原理基于电阻材料在受到应力引起形变后,电阻值会发生相应的变化。
具体而言,电阻应变测量原理可以分为配电式和全桥式测量两种。
配电式电阻应变测量原理基于电阻应变材料的电阻值与其长度成正比的关系。
当应变材料受到外力作用而产生应变时,其长度会发生变化。
由于电阻材料的电阻与其长度成正比,因此材料的电阻值也会发生改变。
通过测量电阻的变化,就可以推断出物体所受到的应变。
全桥式电阻应变测量原理则是通过构建一个电桥电路来测量电阻的变化。
这类电桥电路通常由四个电阻构成,其中一个电阻是电阻应变材料。
当应变材料受到外力作用产生应变时,其电阻值发生变化,破坏了电桥平衡条件。
通过调节其他电阻的阻值,使得电桥重新平衡,通过测量调节电阻的变化,就能得到物体所受到的应变。
总的来说,电阻应变测量原理是利用电阻材料在受到应力引起形变后,其电阻值会发生变化的特性来测量物体的应变。
无论是配电式还是全桥式,都是基于电阻的变化来推断出物体所受到的应变。
应变计的原理

应变计的原理应变计是一种用于测量物体受力时变形情况的仪器,它通过测量物体受力时的形变来反映受力情况,是工程领域中常用的一种测试工具。
应变计的原理是基于材料的应变-应力关系,通过测量材料的应变来推断受力情况。
下面将详细介绍应变计的原理及其相关知识。
首先,应变计的工作原理是基于胡克定律。
胡克定律是指在弹性变形范围内,应变与应力成正比。
这意味着当物体受到外力作用时,会产生相应的应变,而应变计就是利用这一原理来测量物体受力时的应变情况。
应变计通常是将金属或半导体材料制成细长形状,并粘贴或固定在被测物体表面,当被测物体受力时,应变计也会产生相应的应变,通过测量应变计的电阻值变化来间接反映受力情况。
其次,应变计的原理还涉及应变测量方法。
应变计可以通过电阻应变测量法、电容应变测量法、光学应变测量法等多种方式来实现应变测量。
其中,电阻应变测量法是应变计中应用最为广泛的一种方法。
它利用应变计材料的电阻随应变而发生变化的特性,通过测量电阻值的变化来间接反映物体受力时的应变情况。
而电容应变测量法则是利用应变导致电容器介电常数变化的原理来测量应变。
光学应变测量法则是利用应变导致光学性质发生变化的原理来测量应变。
这些方法各有优缺点,可以根据具体需求选择合适的应变测量方法。
此外,应变计的原理还涉及应变计的精度和灵敏度。
应变计的精度和灵敏度是衡量其性能优劣的重要指标。
精度是指应变计输出值与实际值之间的误差程度,而灵敏度则是指应变计对应变的检测能力。
一般来说,精度越高、灵敏度越大的应变计可以提供更为准确的受力信息,因此在实际应用中需要根据具体需求选择合适的应变计。
总之,应变计是一种通过测量物体受力时的应变情况来反映受力情况的仪器,其原理基于材料的应变-应力关系。
通过应变计的应变测量方法、精度和灵敏度等指标的选择,可以实现对物体受力情况的准确测量。
应变计在工程领域中具有广泛的应用,对于工程设计、结构分析、材料研究等方面起着重要作用。
应变测量原理

应变测量原理
应变测量原理是测量物体在受力作用下产生的形变或变形的方法之一。
它是通过测量物体的应变来获得受力大小的一种手段。
应变是物体在受到外力作用后发生的长度、形状、体积等尺寸的变化。
不同的材料在受到外力作用后,会产生不同的应变形式。
一般来说,应变可以分为线性应变和剪切应变两种形式。
在应变测量中,常用的原理包括电阻应变原理、光学应变原理、声学应变原理和电容应变原理等。
电阻应变原理是利用材料受到外力作用后其电阻值发生变化的特性进行测量的方法。
这种方法利用了材料的电阻与其长度、截面积等参数之间的关系,通过测量电阻的变化来推算出应变的大小。
光学应变原理是利用材料在受力作用下产生的光学参数变化来测量应变的方法。
通过将光线传递到受力物体上,再将光线传递到光电探测器上,测量光线的强度变化,从而推算出应变的大小。
声学应变原理是利用材料在受力作用下产生的声波传播速度变化来测量应变的方法。
这种方法是通过测量声波在材料中传播的时间来间接推算出应变的大小。
电容应变原理是利用材料受到外力作用后其电容值发生变化的特性进行测量的方法。
这种方法利用了材料的电容与其长度、
截面积等参数之间的关系,通过测量电容的变化来推算出应变的大小。
以上所述的原理只是应变测量中的几种常见方法,实际上还有许多其他原理和方法可以用于测量应变。
不同的应变测量方法适用于不同的应变范围、精度要求和环境条件等因素。
在实际应用中,选择合适的应变测量原理及方法是十分重要的。
电测法的基本原理

R1 + ∆R1 R4 + ∆R4 )−( ) E (式 7) R1 + R2 + ∆R1 + ∆R2 R3 + R4 + ∆R3 + ∆R4
由式 6 和式 7 可以解出电桥电压的变化量 ∆U DB ,当 ∆R / R << 1 , ∆U DB 可简化为
∆U DB =
∆R3 ∆R ∆R2 ∆R a b ( 1− )E − ( 4 − )E 2 2 R2 R3 (1 + a ) R1 (1 + b) R4
∆U DB =
E EK ∆R1 / R1 = ε1 4 4
( 图2)
R4
2.
半桥测量 电桥中相邻两个桥臂参与机械变形的电阻片(R1.R2),其它两个桥
臂 不 参 加 机 械 变 形 ( 如 图 3) , 这 时 电 桥 输 出 电 压 为 :
∆U DB =
E ∆R1 ∆R2 EK ( − )= (ε 1 − ε 2 ) 4 R1 R2 4
电阻仪是测量应变的专用仪器, 电阻仪的输出电压 U DB 是用应变值 ε 仪 直接显示的。 与电阻片的灵敏系数 K 相对应,电阻仪也有一个灵敏系数 Κ 仪 ,当 Κ 仪 =K 时, ε 仪 = ε 即电阻仪的读数 ε 仪 值不必修正,否则,需要按下式进行修正。
Κ 仪 ε 仪 = Kε
梁上由抽样标定测得,标定梁为纯弯曲梁或等强度梁。对于电阻片来说,式 5 可写成
∆R = kε R
式中 k 为电阻应变片的灵敏系数。 k 值在电阻应变片出厂时由厂方标明, k 值一般为 2.0 左右。
二、
测量电路及其工作原理
1. 测量电路 测量电路的作用是将电阻片感受的电阻变化率 ∆R / R 变换成电压变化输出,再 经放大电路放大。测量电路有多种,最常使用的就是惠斯登电桥电路,它有四个桥 臂 R1,R2,R3,R4 顺序地接在 A,B,C,D 之间(如下图) 。电桥的对角点 AC 接 电源 E,另一对角 BD 为电桥的输出端,其输出电压为 UDB ,可证明输出电压:
应变计的工作原理

应变计的工作原理
应变计是一种用于测量物体形变或受力变化的设备,它通过受力或形变引起的电阻、电容、感应电动势或电感等物理量的变化来检测和测量被测物体的形变或受力。
根据测量原理的不同,应变计可以分为电阻式、电容式、感应式和电感式等不同类型。
电阻式应变计是最常用的一种应变计。
它基于金属导体的电阻随形变而发生变化的原理。
当金属导体受到拉伸、压缩或扭转等形变时,导体长度和截面积都会发生变化,从而导致导体的电阻发生变化。
通过将电阻应变计粘贴在被测物体上,可以将其形变传递给应变计,使其电阻值发生变化。
通过测量电阻值的变化,可以获得被测物体的形变信息。
电容式应变计利用电容随形变而改变的原理来测量被测物体的形变。
它由两个平行的电极构成,中间填充着可形变的介质。
当被测物体受到形变时,填充在电容器中的介质形变程度不同,导致电容的大小发生变化。
通过测量电容的变化,可以得到被测物体的形变信息。
感应式应变计则基于电路中感应电动势的变化来测量形变。
当被测物体受到形变时,感应电动势的大小和方向发生变化。
通过测量感应电动势的变化,可以得到被测物体的形变信息。
电感式应变计则利用电感随形变而发生变化的原理来测量形变。
当被测物体受到形变时,电感的大小和特性会发生变化。
通过测量电感的变化,可以得到被测物体的形变信息。
综上所述,应变计通过测量材料电阻、电容、感应电动势或电感等物理量的变化,来间接测量被测物体的形变或受力。
每种类型的应变计都具有不同的测量原理和适用范围,根据具体的应用需求选择合适的类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1 R3 − R2 R4 = U ( R1 + R2 )( R3 + R4 )
当输出电压∆U=0时, 时 当输出电压 即电桥平衡。 即电桥平衡。得电桥 平衡条件为 平衡条件为
R1 R3 = R2 R4
6
R1 → R1 + ∆R1
R2 → R 2 + ∆R2
R3 → R 3 + ∆R3
R4 → R 4 + ∆R4
(a) )
(b) ) (a) ) (b) )
ε ds = ε 1 − ε 2 + ε 3 − ε 4 ε ds = ε 1 − ε 3 + ε 4 − ε 2
11 ⑵半桥测量 工作片为两个桥臂, 工作片为两个桥臂, R1R2电 阻 片 规 格 相 同 ,R3R4 由 电 阻 应变仪提供 R1=R2=R,△R3=△R4=0 △ △
一、单向应力状态
已知该点处的主应力方向, 已知该点处的主应力方向, 则在该点沿主应力方向粘贴一应变片, 则在该点沿主应力方向粘贴一应变片, 沿主应力方向粘贴一应变片 测得主应变ε后 测得主应变 后
σ=Eε
16 纯弯曲矩形截面梁,设已知材料的弹性模量为E, 例1-1 纯弯曲矩形截面梁,设已知材料的弹性模量为 , 泊松比为µ,承受弯矩 ; 泊松比为 ,承受弯矩M; 要求测定梁的最大弯曲正应力。 要求测定梁的最大弯曲正应力。 试确定布片和接线方案,并建立计算公式。 试确定布片和接线方案,并建立计算公式。
2
当
l → ∆l R → ∆R
§1 电测法的基本原理 l R→ A
一、电阻应变片
由电学知识: 由电学知识:
转换
机机机 电机 显显
3
电阻应变片(简称为应变片或电阻片 电阻应变片 简称为应变片或电阻片): 简称为应变片或电阻片 丝绕式和箔式。 丝绕式和箔式。
∆R ∆l 在一定范围内: ∝ =ε 在一定范围内: R l ∆R = K ⋅ε K:灵敏系数 灵敏系数 R
13 例1:如图所示, :如图所示, 求εds 方案: 解: (1) 由布片方案: ) 由布片方案
ε1 = ε1N + ε1t
ε 2 = ε 2t
(2)由接线方案 由接线方案 由接线
ε1t = ε 2t
ε ds = ε1 − ε 2
= ε 1N
14 ⒉自补 例2:如图所示的贴 如图所示的贴 片接线方式。 片接线方式。求εds
1
电测法的基本原理
实验应力分析:
用实验分析方法确定构件在受力情况下的应力状 态的学科.
作用: 作用: 1. 验证 ห้องสมุดไป่ตู้证.
2. 解决工程实际问题 解决工程实际问题. 3. 发展理论。 发展理论。 实验应力分析的方法: 实验应力分析的方法 电测法; 射线法; 电测法 光测法 ; 涂层法 ; X射线法 比拟法 ; 全息法 射线法
( 由布片方案: 解: 1) 由布片方案:
ε1=ε1N+ε1t ε2=-µε1N+ε2t ε1t=ε2t
(2)由接线方案
εds=ε1-ε2 =ε1N+ε1t-(-µε1N+ε2t) =(1+µ)ε1N
15
§2 应变测量和应力计算
求解→确定布片和接线方案。 求解 确定布片和接线方案。 确定布片和接线方案
U ∆R1 ∆R2 kU ∆U = ( − )= (ε1 − ε 2 ) 4 R R 4
应变仪读数公式: 应变仪读数公式:
εds=ε1-ε2
12
三、温度补偿(另补、自补) 温度补偿(另补、自补)
⒈另补 R1是承受外力的应变片,被称为工作片, 是承受外力的应变片,被称为工作片, R2是不受力的应变片,被称为温度补偿片。 是不受力的应变片,被称为温度补偿片。
17 解: (1)由布片方案: )由布片方案: ε1=εW+εt (2)由接线方案 由接线方案 εds=ε1-ε2 =εW+εt-(-εW+εt) =2εW ε2=-εW+εt
εW =
ε ds
2
1 σ W = Eε W = Eε ds 2
则电桥的输出电压为
∆U = U
( R1 + ∆R1 )( R3 + ∆R3 ) − ( R2 + ∆R2 )( R4 + ∆R4 ) ( R1 + ∆R1 + R2 + ∆R2 )( R3 + ∆R3 + R4 + ∆R4 )
∆R1 ∆R2 ∆R3 ∆R4 ∆U = CU ( − + − ) R1 R2 R3 R4
4
二、电阻应变仪及测量原理
应变仪的基本电路是惠斯登电桥电路
U I1 = R1 + R2
I2 = U R3 + R4
U ab
R1 U = I 1 R1 = R1 + R2
R4 U R3 + R4
U ad =
5 B、D端的输出电压为 、 端的输出电压为
∆U = U ab − U ad =
R1 R4 U− U R1 + R2 R2 + R4
8
∆R1 = Kε 1 R
∆R2 = Kε 2 R
∆R4 ∆R3 = Kε 4 = Kε 3 R R
输出电压为
UK ∆U = (ε 1 − ε 2 + ε 3 − ε 4 ) 4
桥路中,电源电压有影响,怎样消除呢? 桥路中,电源电压有影响,怎样消除呢?
9 用如图所示的电路:测量桥; 用如图所示的电路:测量桥;读数桥 并使: 并使:
∆U 读 = ∆U 测
UK ε ds = 4
刻度标定: 刻度标定: ∆U 读
4∆U 应变仪的读数 ε ds = UK UK ∆U = (ε 1 − ε 2 + ε 3 − ε 4 ) 4
ε ds = ε1 − ε 2 + ε 3 − ε 4
应变仪读数公式。 应变仪读数公式。
10 公式的记忆:相邻的符号相异、相对的符号相同 公式的记忆:相邻的符号相异、相对的符号相同 符号相异 符号
R1 R2 R3 R4 C= = 2 ( R1 + R2 ) ( R3 + R4 ) 2
7 讨论: 讨论:
⑴全桥测量: 全桥测量:
工作片为四桥臂, 工作片为四桥臂,电阻片 规格相同 电桥的输出电压为
∆R1 ∆R2 ∆R3 ∆R4 ∆U = CU ( − + − ) R1 R2 R3 R4
U ∆R1 ∆R2 ∆R3 ∆R4 ) − + − ∆U = ( 4 R R R R