精品课件-工程流体力学-第3章 流体运动的基本方程(10)
合集下载
流体力学第三章课件

第三章 流体运动的基本概念和基本方程
的函数。 流体质点的其它物理量也都是 a,b,c,t 的函数。例如流体 质点( 质点(a,b,c)的温度可表为 )的温度可表为T(a,b,c,t) 二、欧拉法(空间点法,流场法) 欧拉法(空间点法,流场法) 欧拉法只着眼于流体经过流场( 欧拉法只着眼于流体经过流场(即充满运动流体质点 的空间)中各空间点时的运动情况, 的空间)中各空间点时的运动情况,而不过问这些运动情 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 然后通过综合流场中所有被研究空间点上各质点的运动要 即表征流体运动状态的物理量如速度、加速度、压强、 素(即表征流体运动状态的物理量如速度、加速度、压强、 密度等)及其变化规律,来获得整个流场的运动特征。 密度等)及其变化规律,来获得整个流场的运动特征。 在固定空间点看到的是不同流体质点的运动变化, 在固定空间点看到的是不同流体质点的运动变化,无 法像拉格朗日方法那样直接记录同一质点的时间历程。 法像拉格朗日方法那样直接记录同一质点的时间历程。
ρ = ρ ( x, y , z , t , )
T = T ( x, y , z , t ) 加速度应该是速度的全导数。注意上速度表达式中x 加速度应该是速度的全导数。注意上速度表达式中 ,y,z 是流体质点在t时刻的运动坐标 时刻的运动坐标, 是流体质点在 时刻的运动坐标,对同一质点来说它们不是独 立变量,而是时间变量t的函数 因此, 的函数。 立变量,而是时间变量 的函数。因此,根据复合函数求导法 则,并考虑到 dx dy dz =u x , =u y , =u z dt dt dt
一个速度场 8
第三章 流体运动的基本概念和基本方程
一个布满了某种物理量的空间称为场。除速度场之外, 一个布满了某种物理量的空间称为场。除速度场之外, 还有压强场。在高速流动时, 还有压强场。在高速流动时,气流的密度和温度也随流动有 变化,那就还有一个密度场和温度场。 变化,那就还有一个密度场和温度场。这都包括在流场的概 念之内。 念之内。 p = p ( x, y, z , t ),
工程流体力学课件3

四、过流断面,流量, 断面平均流速
与流束中所有流线垂直的横截面称为过流断面 (过水断面)。 元流的过流断面面积为 dA, 总流的为 A。 单位时间内通过元流或总流过流 断面的流体量称为流量。 QV m3/s ,L/s Qm kg/s
曲 面 平 面
若流体量以体积来度量:体积流量 若流体量以质量来度量:质量流量
重、难点
1.连续性方程、伯努利方程和动量方程。 2.应用三大方程联立求解工程实际问题。
第一节 描述流体运动的两种方法
• 静止流体(不论
p
• 运动理想流体
P= - pn
理想或实际流体) p
P= - pn
p :动压强 p :静压强
定义
流体的动压强
1 p ( p xx p yy p zz ) 3
G cos gdAdh cos gdAdz
对n-n, Fn 0
z
0
0
( p dp)dA pdA gdAdz 0
整理并积分,得
p z C g
z1 z2
p1
C1 C2
p2
z1
p1
z2
p2
• 非均匀流
是 否 接 近 均 匀 流 ?
流场 —— 充满运动流体的空间称为流场
描述流体运动的方法 拉格朗日法:跟踪 着眼于流体质点,跟 踪质点并描述其运动历程 欧拉法:布哨 着眼于空间点,研究质点 流经空间各固定点的运动特性
一、拉格朗日法:研究对象为流场中的各流体质 点,也即研究流场中每个流体质点的运动参数随 时间 t 的变化规律。
z
注:流体质点不能穿越流面两侧或流管 面内外流动。
流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
《工程流体力学 》课件

1
动量守恒定律的原理
从动量的守恒角度出发,深刻理解动量守恒定律的实际含义。
2
螺旋桨叶片受力分析方法
通过螺旋桨叶片受力分析的实例,解析动量守恒定律在实际问题中的应用。
3
旋转流体给出经典范例。
能量守恒定律
1 什么是能量守恒定律?
解析能量守恒定律的定义及其基本特性,令人信服地说明其重要性。
第二章:质量守恒定律
详细介绍质量守恒定律的深刻含义和应用范围, 以及流体连续性方程的应用实例。
第四章:能量守恒定律
归纳总结能量守恒定律的核心表述和基本特征, 以及流体能量方程的求解方法。
流体力学基础
1
流体的基本概念
定义流体和非流体的区别,详细介绍流体的基本性质和特征。
2
流场参数
分类介绍各项流场参数的定义、特征和计算方法,重点阐述雷诺数的作用。
概述水力发电站的基本构造和 设备,重点描述流场参数的计 算方法和水力器件的工作原理。
油气管道压力调节方 法
介绍油气管道压力发生变化的 原因和影响,以及调节压力的 方法与流体力学的联系。
结论和要点
结论1
质量守恒定律的意义及其在实际 问题中的应用。
结论2
动量守恒定律的实际含义,以及 其在涡轮和桨叶设计中的应用。
2 如何求解能量守恒定律?
采用实例解析法,将复杂的能量守恒定律应用问题简单化。
3 如何避免能量损失?
从能量损失的根源出发,提出避免能量损失的有效途径。
应用举例
机翼气动力设计
阐述机翼气动力设计的重要性 及其与流体力学的联系,以及 之前学到的动量守恒定律和能 量守恒定律在机翼气动力设计 中的应用。
水力发电站设计
结论3
工程流体力学(3)PPT课件

授课:XXX
14
工程上可将问题简化:
2021/3/9
授课:XXX
15
将翼展z方向看成无限长,三维问题简化
成二维处理。
2021/3/9
授课:XXX
16
§2 流线和流管
一、迹线
定义:流体质点运动的轨迹线。
2021/3/9
授课:XXX
17
二、流线
定义:
是表示某一瞬时流体各点流动趋势
的曲线,曲线上任一点的切线方向与该 点的流速方向重合。
1.边界随流团一起运动,其形状、大小随 时间变化。
2.边界上无质量交换, 即无流入也无流出。
系统
V
3.在系统边界上,受到 外界作用在系统边界上 的力。
系统边界
2021/3/9
授课:XXX
4
二、欧拉法 以流体质点流经流场中各空间点的
运动即以流场作为描述对象,研究流动 的方法。
它不直接追究质点的运动过程, 而是以充满运动液体质点的空间——流 场为对象。研究各时刻质点在流场中的 变化规律。
质点
du u u x u y u z dt t x t y t z t
导数:
2021/3/9
u t
u u v x 授课:XXX
u y
wu z
ax
8
同理
axd du t u tu u xv u yw u z
ayd dv t v tu v xv y vw v z
azd dw t w tu w xv w yw w z
dNNuNvNwN dt t x y z
N可是矢量也可是标量。
N ——当地变化率(局部变化率)
t
uNvNwN ——迁移变化率
工程流体力学-第三章

三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
流体动力学基础(工程流体力学).ppt课件

dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程
工程流体力学--第三章--流体动力学基础

当地加速度和迁移加速度的理解,现举例说明这两个加速
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
化(增加或减少),则管道中每一点上流体质点的速
2021/3/7
10
图 3-1 中间有收缩形的变截面管道内的流动
2021/3/7
11
度将相应发生变化(增大或减少),从而产生了当地加速 度。
应该注意,流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点,流体质点不断流过空间
点,空间点上的速度指流体质点正好流过此空间点时的速
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
段微小距离时的速度变化率,于是可按复合函数的求导法
则,分别将式(3-4)中三个速度分量对时间取全导数,
并将式(3-7)代入,即可得流体质点在某一时刻经过某
空间点时的三个加速度分量
2021/3/7
8
ax
u t
u
u x
v
u y
w
u z
ay
v t
u
v x
v
v y
w
v z
(3-8)
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
化(增加或减少),则管道中每一点上流体质点的速
2021/3/7
10
图 3-1 中间有收缩形的变截面管道内的流动
2021/3/7
11
度将相应发生变化(增大或减少),从而产生了当地加速 度。
应该注意,流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点,流体质点不断流过空间
点,空间点上的速度指流体质点正好流过此空间点时的速
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
段微小距离时的速度变化率,于是可按复合函数的求导法
则,分别将式(3-4)中三个速度分量对时间取全导数,
并将式(3-7)代入,即可得流体质点在某一时刻经过某
空间点时的三个加速度分量
2021/3/7
8
ax
u t
u
u x
v
u y
w
u z
ay
v t
u
v x
v
v y
w
v z
(3-8)