不等式的证明技巧[共五篇]

合集下载

不等式证明的基本方法

不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。

对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。

首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。

通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。

2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。

这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。

例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。

3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。

这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。

通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。

无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。

在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。

此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。

不等式的证明方法

不等式的证明方法

不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。

证明不等式的方法有很多,下面介绍几种常见的方法。

1.数学归纳法数学归纳法是一种常用的证明不等式的方法。

当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。

具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。

2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。

例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。

3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。

例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。

4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。

具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。

5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。

它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。

这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。

这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。

就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。

这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。

不等式的证明方法

不等式的证明方法

不等式的证明方法第一篇:不等式的证明方法几个简单的证明方法一、比较法:a>b等价于a-b>0;而a>b>0等价于ab>1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:要证a<b,又已知(或易证)a<c,则只要证c<b,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有:①添加或舍去一些项,如:a2+1>a;n(n+1)>n;②将分子或分母放大(或缩小);③利用基本不等式,如:log3⋅lg5<(n(n+1)<lg3+lg522)2=lg<lg=lg4; n+(n+1);④利用常用结论:k+1-k=1k+1+=11-k1k<12k1k;1k(k+1)1k+11k1k+11k<1k(k-1)1k;>=-(程度大)1k<-1=(k-1)(k+1)=2k-1(-);(程度小)五、换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知x2+y2=a2,可设x=acosθ,y=asinθ;已知x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);已知xaxa2+ybyb=1,可设x=acosθ,y=bsinθ;-=1,可设x=asecθ,y=btanθ;六、数学归纳法法:与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则(1)、设P(n0)成立,且对于任意的k>n0,从P(k)成立可推出P(k+1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1≤k<m)成立可推出P(k+1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n=2m),使得P(n)成立,且从P(k+1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1≤n≤k的n成立可推出P(k+1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k+1)成立可推出P(k+2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1<n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若P(1)成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k+1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m+1,n),P(m,n+1)成立,证明P(m+1,n+1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明n∑k=11ksinkx>0,(0<x<π)就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22例1 已知a,b∈R,且a+b=1.求证:(a+2)+(b+2)≥252.证法一:(比较法)Θa,b∈R,a+b=1∴b=1-a∴(a+2)+(b+2)-252=a+b+4(a+b)-12=2(a-12)≥0=a+(1-a)+4-=2a-2a+即(a+2)2+(b+2)2≥证法二:(分析法)252(当且仅当a=b=时,取等号).(a+2)2+(B+2)≥252⇐a+b+4(a+b)+8≥252⎧b=1-a⎪⇐⎨225122⇐(a-)≥0⎪a+(1-a)+4+8≥22⎩显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)假设(a+2)2+(b+2)2<252,则 a2+b2+4(a+b)+8<252252.由a+b=1,得b=1-a,于是有a2+(1-a)2+12<1⎫⎛所以(a-)<0,这与 a-⎪≥0矛盾.22⎭⎝.所以(a+2)+(b+2)≥252.证法五:(放缩法)∵a+b=1∴左边=(a+2)+(b+2)⎡(a+2)+(b+2)⎤2125≥2⎢=a+b+4=⎡⎤()⎥⎣⎦222⎣⎦=右边.点评:根据不等式左边是平方和及a+b=1这个特点,选用基本不等式⎛a+b⎫a+b≥2 ⎪.⎝2⎭证法六:(均值换元法)∵a+b=1,所以可设a=12+t,b=-t,1∴左边=(a+2)+(b+2)=(+t+2)2+(-t+2)25⎫5⎫2525⎛⎛2=右边.=t+⎪+t-⎪=2t+≥2⎭2⎭22⎝⎝当且仅当t=0时,等号成立.点评:形如a+b=1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法) 设y=(a+2)+(b+2),由a+b=1,有y=(a+2)2+(3-a)2=2a2-2a+13,所以2a2-2a+13-y=0,因为a∈R,所以∆=4-4⋅2⋅(13-y)≥0,即y≥故(a+2)+(b+2)≥252.252.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A≥0,B≥0,则(A+B)n≥An+nA(n-1)B,其中n∈N+.证明:由二项式定理可知n(A+B)=∑An-iBi≥An+nA(n-1)Bni=0∴(A+B)≥A+nAnn(n-1)B第二篇:证明不等式方法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。

不等式证明常用技巧总结

不等式证明常用技巧总结

不等式的证明一、常用方法:作差、作商法;分析、综合法;换元法;构造函数法;反证法;放缩法;归纳法; (分析综合法).,2,0,022ab c c a ab c c b a c b a -+<<--+>>>求证:已知二、不等式证明中常用技巧:1.加减常数 求函数)1(11≠-+=x x x y 的值域。

2.巧变常数 已知210<<x ,求函数y =x (1-2x )的最大值。

3.分离常数 已知25≥x ,求4233)(2-+-=x x x x f 的最值。

4.巧用常数 若+∈R y x ,且满足1164=+y x ,求x +y 的最小值。

5.统一形式 已知+∈R c b a ,,,求)11)((c b a c b a ++++的最小值。

6.轮换对称 .,,222ac bc ab c b a c b a ++>++证:是互不相等的实数,求若. 7.重要不等式 16)(16,02≥-+>>b a b a b a 求证: 8.逆向运用公式型.22121,1,,≤+++=+∈+b a b a R b a 求证:且已知 (提示:将2121++b a ,转换成211211+⋅+⋅b a ,然后运用公式2b a ab +≤) 如何巧用常数: 1..22311,12,0,0+≥+=+>>ba b a b a 则且若 2..9111,1,,,≥++=++∈+cb ac b a R c b a 求证:且已知 3..91111,1,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证:且已知 4..311,,222≥++=++z y x z y x z y x ,则均为正数,且已知5..23,,≥+++++b a c a c b c b a z y x 均为正数,求证:已知 ().29111)()((21111)(111≥⎪⎭⎫ ⎝⎛++++++++++=⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++b a a c c b a c c b b a b a a c c b c b a b a b a c a c a c b c b c b a b a c a c b c b a )不等式证明中的放缩法 1..121111212*<++++<≥∈nn n n N n ,求证:,且已知 2..333221222*<++++∈n n N n ,求证:已知.2)111(2)1()1(2)1()1(21)1(2212)(≥--=---=-+-=-+-<+==k k k k k k k k k k k k k k k k k k k k k k k3. 设n ∈N ,求证:(2)引进辅助式,设比较两式的对应因式可知。

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。

目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。

二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。

三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。

四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。

五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。

六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。

七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。

以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。

不等式证明基本方法

不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。

其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。

二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。

反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。

三、插值法插值法也是一种常见的不等式证明方法。

其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。

四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。

例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。

另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。

五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。

例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。

综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。

在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。

不等式证明方法

不等式证明方法

不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。

不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。

一、数学归纳法。

数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。

在不等式证明中,我们可以利用数学归纳法证明不等式的成立。

具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。

通过数学归纳法,我们可以比较简单地证明一些不等式的成立。

二、换元法。

换元法是不等式证明中常用的一种方法。

当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。

换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。

三、分析法。

分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。

在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。

四、综合利用不等式性质。

不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。

具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。

五、几何法。

在不等式证明中,几何法也是一种常用的证明方法。

通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。

在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。

六、数学推理法。

数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。

在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的证明技巧[共五篇]第一篇:不等式的证明技巧不等式的证明策略不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场[例1].已知a>0,b>0,且a+b=1.求证:(a+1125)(b+)≥.ba4[例2]求使x+y≤ax+y(x>0,y>0)恒成立的a的最小值.知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.解法一:由于a的值为正数,将已知不等式两边平方,得:x+y+2xy≤a2(x+y),即2xy≤(a2-1)(x+y),∴x,y>0,∴x+y≥2xy,①②当且仅当x=y时,②中有等号成立.比较①、②得a的最小值满足a2-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.解法二:设u= x+y(x+y)2==x+yx+yx+y+2xy2xy.=1+x+yx+y∵x>0,y>0,∴x+y≥2xy(当x=y时“=”成立),∴2xy2xy≤1,的最大值是1.x+yx+y从而可知,u的最大值为+1=2,又由已知,得a≥u,∴a的最小值为2.解法三:∵y>0,∴原不等式可化为x+1≤ayx+1,y设xπ=tanθ,θ∈(0,).y2∴tanθ+1≤atan2θ+1;即tanθ+1≤asecθ∴a≥sinθ+cosθ=2sin(θ+π4),③又∵sin(θ+π4)的最大值为1(此时θ=π4).由③式可知a的最小值为2.●锦囊妙计1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法、增量代换法,‘1’代换法等,换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练一、填空题ab1.已知x、y是正变数,a、b是正常数,且+=1,x+y的最小值为__________.xy2.设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是__________.3.)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________.二、解答题4.已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥13(2)3a+2+b+2+c+2< 612,证明:x,y,z∈[0,]23b+c2c+a2a+b26.若x,y,z∈R,a,b,c∈R+,证明:z≥2(xy+yz+zx)x+y+abc5.已知x,y,z∈R,且x+y+z=1,x2+y2+z2=7.若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1.8.设a,b,c∈R+,求证:9.证明下列不等式:(1x≥4);(2)证明:ab+cd 1+1+1≥1+1+1。

2a2b2cb+cc+aa+b10.已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a,不能均大于4。

(反证法)52211.a,b∈R,且a+b = 1,求证:(a+2)+(b+2)≥2;(增量代换法)12.(‘1’代换法)1 1+ b + c = 1,++≥ 9.已知 a , b , c ∈ R + , 且 aa b cx-xx-x13.已知 1<a<2,x≥1,f(x)=a+a,g(x)=2+2; 22(1)比较f(x)与g(x)的大小;(2)设n∈N,n≥1,求证:f(1)+f(2)+Λ+f(2n)<4n-x-xx-x(ax-2x)(2xax-1)a-a2-2-=解:(1)f(x)-g(x)=222x+1ax1。

2∴ax<2x,2xax-1>0,且2xax>0,∴f(x)-g(x)<0,即f(x)<g(x)。

(2)由(1)f(1)+f(2)+f(3)+⋅⋅⋅+f(2n)<g(1)+g(2)+g(3)+⋅⋅⋅+g(2n)=1(2+22+⋅⋅⋅+22n)+1(1+12+⋅⋅⋅+1)222222n)<4n-1=4n-1(1+12221∴f(1)+f(2)+Λ+f(2n)<4n-n,得证。

2不等式练习题一、选择题1、若a,b是任意实数,且a>b,则()(A)a2>b2(B)b11<1(C)lg(a-b)>0(D)()a<()ba222、下列不等式中成立的是()1+a≥2(a≠0)at+111(C)<(a>b)(D)a≥a(t>0,a>0,a≠1)ab(A)lgx+logx10≥2(x>1)(B)3、已给下列不等式(1)x3+ 3 >2x(x∈R);(2)a5+b5> a3b2+a2b3(a ,b∈R);(3)a2+b2≥2(a-b-1), 其中正确的个数为()(A)0个(B)1个(C)2个(D)3个4、设x2+y2 = 1, 则x +y()(A)有最小值1(B)有最小值2(C)有最小值-1(D)有最小值-25、不等式|x+5|>3的解集是()(A){x|-8<x<8}(B){x|-2<x<2}(C){x|x<-2或x>2(D){x|x<-8或x>-26、若a,b,c为任意实数,且a>b,则下列不等式恒成立的是()(A)ac>bc(B)|a+c|>|b+c|(C)a2>b2(D)a+c>b+cx+31x2+2x-327、设集合M={x|≤0},N={x|x+2x-3≤0},P={x|()≥1},则有()x-12(A)M⊂N=P(B)M⊂N⊂P(C)M=P⊂N(D)M=N=P8、设a,b∈R,且a+b=3,则2a+2b的最小值是()(A)6(B)42(C)22(D)269、若关于x的不等式ax2+bx -2>0的解集是 -∞,-⎪Y,+∞⎪,则ab等于()(A)-24(B)24(C)14(D)-1410、如果关于x的不等式(a-2)x2+2(a-2)x-4<0对一切实数x恒成立,则实数a 的取值范围是()(A)(-∞,2](B)(-∞,-2)(C)(-2,2](D)(-2,2)二、填空题⎛⎝1⎫⎛12⎭⎝3⎫⎭b24、a≥0,b≥0,a+=1,则a+b2的最大值是________.226、x>1时,f(x)=x+116x+2的最小值是________,此时x=________.xx+17、不等式log4(8x-2x)≤x的解集是________.8、不等式11〉的解集是________.xx4-12-3练习答案一、DAC DDDAB BC二、1、1+5322、8,2+33、(0,log2)4、0 24第二篇:不等式证明常用技巧总结不等式的证明一、常用方法:作差、作商法;分析、综合法;换元法;构造函数法;反证法;放缩法;归纳法;(分析综合法)已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.二、不等式证明中常用技巧:1(x≠1)的值域。

1.加减常数求函数y=x+x-112.巧变常数已知0<x<,求函数y=x(1-2x)的最大值。

25x2-3x+33.分离常数已知x≥,求f(x)=的最值。

22x-44.巧用常数若x,y∈R+且满足+416+=1,求x+y的最小值。

xy11+)的最小值。

a+bc5.统一形式已知a,b,c∈R,求(a+b+c)(证:a2+b2+c2>ab+bc+ac..6.轮换对称若a,b,c是互不相等的实数,求7.重要不等式a>b>0,求证:a+216≥16b(a-b)8.逆向运用公式型已知a,b∈R,且a+b=1,求证:a++11+b+≤2.22a+b1111(提示:将a+,b+转换成1⋅a+,)1⋅b+然后运用公式ab≤22222如何巧用常数:111.若a>0,b>0,且a+2b=1,则+≥3+22.ab1112.已知a,b,c∈R+,且a+b+c=1,求证:++≥9.abc⎛1⎫⎛1⎫3.已知a,b∈R+,且a+b=1,求证: 1+⎪1+⎪≥9.⎝a⎭⎝b⎭1已知x,y,z均为正数,且x+y+z=1,则x2+y2+z2≥.4.3 5.已知x,y,z均为正数,求证:a+b+c≥3.b+cc+aa+b2⎛a⎫⎛b⎫⎛c⎫⎛a+b+c⎫⎛b+c+a⎫⎛c+a+b⎫+1++1++1 ⎪⎪ ⎪=⎪+⎪+⎪⎝b+c⎭⎝c+a⎭⎝a+b⎭⎝b+c⎭⎝c+a⎭⎝a+b⎭11⎫111⎫9⎛1⎛1=(a+b+c) + ++(b+c)+(c+a))++⎪=((a+b)⎪≥.b+cc+aa+b2b+cc+aa+b⎝⎭⎝⎭2不等式证明中的放缩法1111+K+<1.1.已知n∈N*,且n≥2,求证:<+2nn+12n2.已知n∈N*,求证:1+222+332+K+nn2<3.kk2==1kk=222<=kk+kk(k-1)k+kk-1k(k-1)(k +k-1)2(k-k-1)11=2(-()k≥2).k(k-1)k-1k3.设n∈N,求证:(2)引进辅助式,设比较两式的对应因式可知第三篇:不等式证明的技巧欢迎光临《嘉兴市高中数学学科基地》不等式证明的技巧知识与方法证明不等式的方法很多,技巧性强;如较低要求的,在所证不等式两端同乘以一个常数;1的代换;利用函数的单调性,等等。

不等式证明的技巧,本人的理解有如下三个方面:一.基本技巧我认为不等式的证明的基本思想和技巧是通过“放大和缩小”的思想和方法,对两个数、两个量、两个式的值的大小关系的“确定”过程,这种大小关系的确定一般有比较法、分析法、综合法三种基本方法。

二.构造法1.构造重要不等式的结构,再利用相关的重要不等式来证明不等式。

相关文档
最新文档