数学分析中不等式证明的若干方法
不等式证明的几种常用方法

不等式证明的几种常用方法
不等式证明的几种常用方法
不等式证明是数学分析中的一种重要方法,它可以用来证明一个不等式的真实性。
一般来说,常用的不等式证明方法有三种:反证法、极限法和数学归纳法。
反证法是一种常用的不等式证明方法,它的基本思想是:如果要证明某个不等式成立,那么我们可以假设它不成立,然后用反证的方法来证明它的真实性。
极限法是另一种常用的不等式证明方法,它的基本思想是:如果要证明某个不等式成立,那么我们可以用极限的方法来证明它的真实性。
数学归纳法是最常用的不等式证明方法之一,它的基本思想是:如果要证明某个不等式成立,那么我们可以用数学归纳法来证明它的真实性。
反证法、极限法和数学归纳法是不等式证明的常用方法,它们可以用来证明不等式的真实性。
含参数不等式的解题方法与技巧

含参数不等式的解题方法与技巧含参数不等式的解题方法与技巧引言含参数的不等式是数学中常见的一种形式,它具有一定的复杂性,需要一些解题的方法和技巧来求解。
本文将详细介绍一些解题的技巧,帮助读者更好地理解和解决含参数的不等式问题。
技巧一:确定参数范围在解决含参数不等式的问题时,首先需要确定参数的取值范围。
通过分析不等式中的条件和限制,可以推导出参数的范围。
参数的取值范围决定了不等式的解集的性质,是解题的重要依据。
技巧二:代入法代入法是解决含参数不等式问题的一种常用方法。
通过选择合适的值代入参数,并观察不等式的变化情况,可以得到不等式解集的一些性质或范围。
多次尝试不同的取值,可以逐步缩小解集的范围。
技巧三:证明法证明法是解决含参数不等式问题的一种常见方法。
通过对不等式进行推导和变形,运用数学分析的知识,可以得到不等式解集的一些性质或范围。
使用证明法需要具备较强的数学推理能力和逻辑思维能力。
技巧四:图像法图像法是解决含参数不等式问题的一种直观方法。
通过将不等式表示为图形,并分析图形的特征和变化趋势,可以得到不等式解集的一些性质或范围。
图像法可以帮助读者更好地理解和直观地判断不等式的解集。
技巧五:数学归纳法数学归纳法是解决含参数不等式问题的一种有效方法。
通过对不等式进行递推和归纳,可以得到不等式解集的一些性质或范围。
数学归纳法需要具备较强的数学推理能力和逻辑思维能力。
技巧六:一般化方法一般化方法是解决含参数不等式问题的一种常用技巧。
通过对不等式进行变量替换和常数化简,可以将复杂的不等式问题转化为简化的形式,从而更好地进行求解。
一般化方法可以帮助读者更好地理解不等式的本质和规律。
总结解决含参数不等式问题需要综合运用多种技巧和方法。
通过确定参数范围、代入法、证明法、图像法、数学归纳法和一般化方法等,可以更好地解决含参数不等式问题,得到准确的解集和结论。
挖掘不同方法的优势,结合实际问题的特点,能够更高效地解决含参数不等式问题,提高数学解题的能力。
积分不等式证明

积分不等式证明
【原创版】
目录
1.积分不等式的基本概念
2.积分不等式的证明方法
3.积分不等式的应用实例
正文
一、积分不等式的基本概念
积分不等式是微积分学中的一个重要概念,主要研究函数在一定区间上的积分值与其在区间内某个子区间上的最大值或最小值之间的关系。
积分不等式在数学分析、物理学、经济学等各种学科中都有广泛的应用。
二、积分不等式的证明方法
积分不等式的证明方法有很多,下面我们介绍两种常用的证明方法:
1.直接证明法
直接证明法是利用数学分析中的极限、导数等基本概念和性质,通过一系列的推导和变换,最终证明积分不等式成立。
这种方法要求对数学基础知识掌握较为扎实,对证明思路有较高的要求。
2.间接证明法
间接证明法是通过构造辅助函数,利用已知的不等式和函数性质,将积分不等式转化为求解某个函数的最值问题,从而简化证明过程。
这种方法要求对函数性质和求最值方法有一定的了解,能够灵活运用数学方法。
三、积分不等式的应用实例
积分不等式在实际应用中有很多例子,下面我们举一个简单的例子来说明:
例:设函数 f(x) = x^2 - 2x + 1,求证∫[0, 1] f(x) dx ≤ 0。
解:首先,我们可以将 f(x) 写成完全平方的形式:f(x) = (x - 1)^2。
由此可知,在区间 [0, 1] 上,函数 f(x) 的最大值为 0,即 f(x) ≤ 0。
因此,∫[0, 1] f(x) dx ≤ 0。
这就是一个典型的积分不等式应用实例。
数学分析中几类证明不等式的方法

㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。
递推不等式证明极限

递推不等式证明极限递推不等式是数学中常见的一类证明方法,通过递推关系可以得到一个不等式序列,并通过数学归纳法证明其成立。
这种证明方法常用于证明极限存在以及极限值的性质等问题。
本文将重点介绍递推不等式的证明方法,并给出一些相关参考内容。
递推不等式的证明方法分为两个步骤:首先通过递推关系得到一个递推序列,然后利用数学归纳法证明这个递推序列的不等式成立。
其中,数学归纳法是一种常见的证明方法,它是通过证明某个命题在某个特定情况下成立,并推论在其他情况下也成立。
以下是一个典型的递推不等式的证明过程:(1)确定递推关系:首先要确定递推序列的递推关系,即形如$a_{n+1} = f(a_n)$的关系式,其中$a_n$是序列的第n个元素,$f$是一个函数。
(2)找出初始条件:递推序列的初始条件通常是已知的,例如$a_1\geq0$。
(3)证明初始条件成立:通过验证初始条件$a_1\geq0$是否满足递推关系$a_{n+1} = f(a_n)$,可以开始证明。
(4)数学归纳法证明递推不等式:假设对于任意的$n\geq1$,$a_n\geq0$成立,即$P(n)$成立。
需要证明当$n+1$时,也有$a_{n+1}\geq0$成立。
(5)证明递推不等式:通过使用递推关系$a_{n+1} =f(a_n)$以及归纳法的假设$P(n)$,证明$a_{n+1}\geq0$成立。
(6)证明递推序列的单调性:如果递推序列是单调递增或单调递减的,可以利用单调性来进一步证明递推不等式。
递推不等式的证明方法比较灵活,具体的证明过程会因问题的不同而有所变化。
以下是一些常见的递推不等式问题以及相关参考内容:1. 斯特林公式推论:$n!^{\frac{1}{n}} < \frac{n}{e}$参考内容:《挑战程序设计竞赛》(第2版)(书籍)2. Bernoulli不等式证明:$(1+x)^n\geq1+nx$,其中$n\in N^*$,$x\geq-1$参考内容:《数学分析教程》(数学类教材)3. Nesbitt不等式证明:$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$参考内容:《数学奥林匹克竞赛》(教辅材料)4. Cauchy-Schwarz不等式证明:$(a_1^2+a_2^2+\ldots+a_n^2)(b_1^2+b_2^2+\ldots+b_n^2)\geq(a _1b_1+a_2b_2+\ldots+a_nb_n)^2$参考内容:《线性代数及其应用》(教材)总之,递推不等式证明是数学中常见的证明方法之一。
均值不等式的证明方法及应用

均值不等式的证明方法及应用摘要均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一。
应用均值不等式,可以使一些较难的问题得到简化处理。
本文首先系统全面地总结了均值不等式的十种证明方法,其中包括柯西法、数学归纳法、詹森不等式法、不等式法、几何法、排序法、均值变量替换法、构造概率模型法、逐次调整法、泰勒公式法;其次, 结合相关例题给出均值不等式在证明不等式、比较大小、求最值、证明极限的存在性、判断级数敛散性、证明积分不等式方面的应用。
关键词:均值不等式;数学归纳法;最值;极限;积分不等式PROOFS AND APPLICATIONS ON AVERAGE VALUEINEQUALIT YABSTRACTAverage value inequality occupies a core position in inequality theory and is one of the most widely used inequalities in modern mathematics. Using average inequality can make some difficult problems simple. In this paper, ten proof methods of average value inequality are first systematically summarized, including Cauchy method, mathematical induction, Jensen inequality, inequality method, geometry method, sorting method, variable substitution method of average value, constructing probability model method, successive adjustment method, Taylor formula method, respectively. Secondly, we give applications of average value inequality combining the corresponding examples on comparing the size, solving maximum and minimum, proving the existence of the limit, judging convergence of series and proving integral inequality.Key words: average value inequality; mathematical induction; maximum and minimum; limit; integral inequality目录前言 --------------------------------------------------------------------- 4 1 均值不等式的证明方法 --------------------------------------------------- 51.1 柯西法 ----------------------------------------------------------- 51.2 数学归纳法 ------------------------------------------------------- 61.3 詹森不等式法 ----------------------------------------------------- 71.4 不等式法 --------------------------------------------------------- 71.5 几何法 ----------------------------------------------------------- 81.6 排序法 ----------------------------------------------------------- 91.7 均值变量替换法 --------------------------------------------------- 91.8 构造概率模型法 --------------------------------------------------- 91.9 逐次调整法 ------------------------------------------------------ 101.10 泰勒公式法 ----------------------------------------------------- 102 均值不等式的应用 ------------------------------------------------------ 122.1 均值不等式在证明不等式中的应用 ---------------------------------- 122.2均值不等式在比较大小问题中的应用--------------------------------- 132.3 均值不等式在求最值问题中的应用 ---------------------------------- 132.3.1 均值不等式求最值时常见错误 -------------------------------- 142.3.2 均值不等式求最值“失效”时的对策 -------------------------- 162.4 均值不等式在证明极限的存在性时的应用 ---------------------------- 172.5 均值不等式在判断级数敛散性中的应用 ------------------------------ 192.6 均值不等式在证明积分不等式中的应用 ------------------------------ 193 结论 ------------------------------------------------------------------ 21 参考文献: --------------------------------------------------------------- 22 致谢 -------------------------------------------------------------------- 23前言不等式在数学的各个领域和科学技术中都是不可缺少的基本工具, 而均值不等式是重中之重. 通过学习均值不等式,不仅可以帮助我们解决一些实际问题,还可以培养逻辑推理论证能力和抽象思维能力,以及养成勤于思考、善于思考的良好学习习惯. 因此,研究均值不等式的证明方法及应用,是一个既有理论意义又有广泛现实意义的问题.均值不等式的证明及运用均值不等式来解决数学中的某些问题,在数学研究中历历可见. 如,比较大小、求函数的最值、证明不等式常利用均值不等式的方法进行解答. 均值不等式还是高等数学中最基本的运算之一,作为最基本不等式,在解决高等数学问题中也发挥着重要的作用. 运用均值不等式可以使复杂的问题简单化,繁琐的问题清晰化.著名数学家阿基米德[]1最先运用了均值不等式,证明了球和圆柱的相关问题.此后科学家们对均值不等式的证明方法进行了深入的研究,并在此基础上把均值不等式应用到了其他领域. 当前, 我国许多学者对均值不等式的证明方法及应用进行了大量的研究[]214-. 如,陈益琳在学生利用均值不等式解题时遇到的常见问题作了总结性的工作[]8.冉凯[]9对均值不等式在数学分析中的应用做了探讨. 均值不等式在解决许多问题中发挥着重要的作用.本文将对均值不等式的证明方法及应用进行归纳和总结.1 均值不等式的证明方法首先,我们给出均值不等式. 定理1 设12,,...,n a a a 是n 个正数,则 1212nn n a a a a a a n+++≥⋅, ()11-上式当且仅当12n a a a ===时等号成立.上述不等式我们称之为算术—几何平均不等式,以后简称均值不等式. 我们把12na a a n+++和12n n a a a ⋅分别叫做这n 个数的算术平均数和几何平均数,分别记做()n A a 和()n G a ,(1-1)式即为()()n n a G A a ≥.下面给出均值不等式的几种证明方法.1.1 柯西法当2n =时,由于120,0a a >>.有212()0a a -≥,得12122a a a a +≥. 当4n =时,12341234()()a a a a a a a a +++=+++41234123412342244a a a a a a a a a a a a ≥+≥=.当8n =时,12345678()()a a a a a a a a +++++++441234567844a a a a a a a a ≥+8123456788a a a a a a a a ≥. 这样的步骤重复n 次之后将会得到, 令1211122,,;n nn n n n a a a a a a a a a a A n+++++======= ()12-有1122221212(2)()2n nnnn n nn n n nA n A A a a a Aa a a A--+-=≥⋅=⋅即1212nn n a a a a a a n+++≥⋅.这个归纳法的证明是柯西首次提出的,我们将它称之为柯西法.1.2 数学归纳法证法一当2n =时,不等式显然成立. 假设当n k =时,命题成立. 则当1n k =+时,12111k k K a a a a A k ++++++=+,11121k K k G a a a +++=⋅.因为i a 具有全对称性,所以不妨设1min 1,2,,|,1{}i a a i k k ==+,1{|,,1}1,2,k i a ma a x i k k +==+.显然 111K k a A a ++≤≤,以及()()11110K k K a A a A +++--≤.于是,111111()K k K k A a a A a a +++++-≥. 所以12111111()(1)k K K K K K a a a A kA k A A A k k k +++++++++-+-====211121111()()k k K kk k K a a a a A a a a a A k+++++++++-≥⋅+-.即12111()k k k k K A a a a a A +++≥+-两边乘以1K A +,得111211112111()()k K k k K k K k k K A a a A a a A a a a a G ++++++++≥+-≥=.从而,有11K K A G ++≥.所以,由数学归纳法,均值不等式对一切n 成立,即 ()()n n A a G a ≥. 证法二当2n =时,不等式显然成立; 假设当n k =时成立.则当1n k =+时,有1111(1)k k k k k a k G k G -++++-≥⋅,于是11111122111(1)()()k k k k k k k k k k a k G G G a GG k-++++++-=≤⋅11(1)1()2k k k a k G G k +++-≤+ 11(1)1()2k k k a k G A k+++-≤+.所以 1112(1)(1)k k k k G k A k G +++⋅≤++-,所以 11k k G A ++≤. 当且仅当11k k a G ++=且1(1)k k k k G a k G +⋅=+-时等号成立. 由数学归纳法知,均值不等式对一切n 成立,即 ()()n n A a G a ≥.1.3 詹森不等式法引理1(Jensen 不等式)若()f x 为区间I 上的凸函数,对任意i x I ∈,0(1,2,,)i i n λ>=,且11ni i λ==∑,则11()()i nni i i i i f x f x λλ==≤∑∑ (1-3)成立.下面利用詹森不等式证明均值不等式.令 ()ln f x x =-,(0)x >,易知()f x 在(0,)+∞是凸函数.由于0(1,2,,)i a i n >=,令1i nλ=,则由引理1有下式,12121)(ln ln ln )ln(nn a a a a a a nn +++≤-+++-.则12121211)(ln ln ln )ln()ln(nn n a a a a a a a a n n na +++≥+++=,因此11212)ln()ln(nnn a a a a a na +++≥,即1212nn n a a a a a a n+++≥⋅,当且仅当12n a a a ===时等号成立.1.4 不等式法在均值不等式的证明中,可以运用一个特殊的不等式1x e x ≥+进行推导. 设()x f x e =,对()x f x e =应用迈克劳林展开式并取拉格朗日余项得:2112x x e x x e θ=++, 其中, 0x ≠, 01θ<<. 因此, 1x e x >+,0x ≠.当0x =时,等号成立.下面给出均值不等式的证明过程. 取一组数k x ,1,2,,k n =,使10nk k x ==∑.令 (1)k k n a x A =+.则由(1)k x k x e +≤(k x 全为零时,取等号)可得,111111()(1)k nnn nx nn n k k n n n k k k G a x A A e A ===⎡⎤==+≤=⎢⎥⎣⎦∏∏∏,所以 ()()n n A a G a ≥.1.5 几何法作函数nx G y e =的图像,它是凸曲线,并在点(),n G e 处作切线 ny exG =,可见这条切线在函数的下面(见图11-),因此,可以得到0i na G inea eG ≥>1,2,3,,i n =().所以12()12()()()n na a a G n nn nnea ea ea e e G G G +++≥⋅=,于是n n nA n G ≥,即n n A G ≥,且从上述证明中可知,当且仅当12n n a a a G ====时,等号成立.图1-11.6 排序法做序列: 11n a x G =,1222n a ax G =,…,12111n n n n a a a x G ---=,121n n n na a a x G ==,取其中的一个排列:11nb x ==,21b x =,…,1n n b x -=,则111n x a b G =,222n x a b G =,…,n n n nx a b G =. 不妨设120n x x x ≥≥≥>.则121110n x x x <≤≤≤.由排序原理可知3121212312111n n n nx x x x x x x n b b b b x x x ++++≥⋅+⋅++⋅=, 即12n nn n a a a n G G G +++≥,1212nn n a a a a a a n+++≥⋅,所以 ()()n n A a G a ≥.1.7 均值变量替换法本节运用数学归纳和变量替换相结合的方法证明均值不等式. 易证2n =时,不等式显然成立. 假设当n k =时,不等式成立. 则当1n k =+时,设1(1,2,,)i i k x a A i n +=-=,则110k i i x +==∑.设i x 不全为零,必有一个ix 为正,另一个为负,不妨设10i x x <<,由于 1211121112()()()k k k k a a A x A x A A x x ++++=++++<, 从而112311123411()()k k k k k k A x x a a A x x a a a kA ++++++++++>++=111234111k k kkk k k G a a a a a A A +++++>=.所以 1111k k k k A G ++++>,即11k k A G ++>.易证,当且仅当0i x =时(即12n a a a ===时)取等号,故原不等式()()n n A a G a ≥成立.1.8 构造概率模型法首先给出证明过程中要用到的一个引理.引理 2 设X 是一个随机变量,并且数学期望EX 存在,则有22()EX EX ≥,ln (ln )EX E X ≥. ()14-建立概率模型,设随机变量X 的概率分布为1()i P X a n==,其中0i a ≥,1,2,,i n =.由引理2可知,1111ln ln nni i i i a nn a ==≥∑∑,112ln ln 1ni i n n a a a a n =≥∑,即1212nn n a a a a a a n+++≥⋅成立.1.9 逐次调整法12,,...,n a a a 中必存在最值数,不妨设1min{}i a a =,2max{}i a a =. 易见21212()[]2a a a a +≥.于是,用122a a+取代12,a a .n A 不变,但是n G 增大,即 121231()()11()22nn i i a a a a a a a n n =++++++=∑,1212123()()22n nn n a a a a a a a a a ++≤⋅⋅.对于各个n ,这种代换至多进行1n -次(有限次).因此,212123()2n n n n n n n nn n a a G a a a a a A A A A +=≤⋅≤≤=.即 n n G A ≤,当且仅当12n a a a ===时,取等号.1.10 泰勒公式法设()log (01,0)xaf x a x =<<>,则21''()0ln f x x a=->,将()f x 在0x 处展开,有 '''200000()()()()()()2f x f x f x f x x x x x =+-+-.因此有'000()()()()f x f x f x x x ≥+-,取011,(,),(1,2,,)ni i i x a a a b i n n ==∈=∑,从而'111111()()()()(1,2,,)n nn i i i i i i i i f a f a f a a a i n n n n ===≥+-=∑∑∑.故'111111111()()()()()nn n n nn i i i i i i i i i i i i f a nf a f a a a nf a n n n ======≥+⋅-=∑∑∑∑∑∑, 即 1111()()n ni i i i f a f a n n ==≤∑∑.因此有 12121()1log (log log log )n na a a a a a naa a a n+++≤+++,即 12121()()1log log n n a a a a a a n a an+++⋅≥,亦即112121()()loglog (01)nn n a a a a a a n aaa +++⋅≥<<,故有1212nn n a a a a a a n+++≥⋅,(0,1,2,,)i a i n >=.2 均值不等式的应用2.1 均值不等式在证明不等式中的应用一般不等式的证明,常常考虑比较法,综合法,分析法,这是高中比较常用的方法,但有些不等式运用上述方法不好入手,故考虑均值不等式或者均值不等式与综合法相结合,这样处理,常常使复杂问题简单化,从而达到证明的目的.下面举几个例子予以说明.例1 已知,,a b c 为互不相等的正数,且1abc =.求证111a b c a b c++<++. 证明1111/1/1/1/1/1/111222b c a c a b a b c bc ac ab a b c+++++=++<++=++. 故原不等式得证.例2 证明 221a b ab a b ++≥++.证明 由均值不等式得,212a a +≥,212b b +≥,222a b ab +≥.以上三式相加得,()()22212a b ab a b ++≥++,即有,221a b ab a b ++≥++. 原不等式得证.例3 设圆o 的半径为12,两弦CD 和EF 均与直径AB 交45︒,记AB 与CD 和EF 的交点分别为P 和Q,求证 221PC QE PD QF ⋅+⋅<.图21-证明 如图21-,设M 为弦CD 的中点,连接CO ,MO ,则△POM 为等腰直角三角形,且MP MO =.222222222()()2()2()2PC PD MC MP MC MP MC MP MC MO CO +=-++=+=+=211222⎛⎫== ⎪⎝⎭.同理,2212QE QF +=. 由均值不等式得,222222PC QE PD QF PC QE PD QF ++⋅+⋅≤+ 2222()()2PC PD QE QF +++=1112222+==.即 221PC QE PD QF ⋅+⋅<,原不等式得证.2.2均值不等式在比较大小问题中的应用比较大小问题是高中数学中常见的问题,准确巧妙地运用均值不等式是快速解决这类问题的关键.例4 若1a b >>,lg lg p a b =⋅,1(lg lg )2Q a b =+,lg 2a bR +=,试判断,,P Q R 之间的大小关系.解 由均值不等式,得1(lg lg )lg lg 2Q a b a b P =+≥⋅=.1lg lg (lg lg )22a b R ab a b Q +=≥=+=.由于,a b a b >≠,所以不能取等号,即R Q P >>.2.3 均值不等式在求最值问题中的应用均值不等式在求函数最值,解决一些取值范围问题时运用非常广泛,是重要知识点之一.在实际应用问题中,我们应因题而宜地进行变换,并注意等号成立的条件,达到解题的目的,变换题目所给函数的形式,利用熟悉知识求解是常用的解题技巧,熟练运用该技巧,对于提高思维的灵活性和严密性大有益处.例5 求下列函数的值域:(1)22132y x x =+; (2)1y x x=+. 解 (1)因为,222211323x =622y x x x =+≥⋅. 所以,值域为[6,+)∞. (2)当0x >时,112 2y x x x x=+≥⋅=. 当0x <时,111()2 -2y x x x x x x=+=---≤-⋅=故,值域为[.],22∞⋃+∞(--,) 例6 若02x <<,求函数()3(83)f x x x =-的最大值. 解 因为, 02x <<.所以,()3(83)3(83)24x x x f x x =≤+-=-,故()f x 的最大值是4.例7 制作容积一定的有盖圆柱形罐头, 当圆柱高h 和底面半径r 的比为何值时,使用的材料最省? (不计加工损耗)解 设圆322222222232V V V S rh r r r V r r rπππππ=+=+=++≥,当且仅当22Vr r π=,即32V r π= 时, 材料最省. 此时有322r r h ππ= ,故 :2:1h r =,即圆柱形的高与底面半径之比为2:1时,使用的材料最省.2.3.1 均值不等式求最值时常见错误运用均值不等式解题是一项重要内容,运用这种方法有三个条件:(1)正;(2)定;(3)相等.在此运用过程中,往往需要对相关对象进行适当地放大、缩小, 或不等式之间进行传递等变形,在此过程中,学生常常因为忽视条件成立而导致错误,而且错误不易察觉.因此,就这一问题列举几个例子进行说明.例8 求()111y x x x =+≠-的值域. 分析 在解题时,我们常常写成()111112113111y x x x x x x =+=-++≥-+=---, 故[)3,y ∈+∞.虽然111x x --与的积是常数,但1x -不一定是正数,忽视均值不等式中的各项为“正”致错, 因此解法是错误的.下面给出正确解法.解 当 1x >时,()111112113111y x x x x x x =+=-++≥-+=---,当且仅当111x x -=-,即 2x =时等号成立; 当1x <时,()111112111111y x x x x x x-=-+=-+-≥--=---,所以 1y ≤-,当且仅当0x =时取等号,所以原函数的值域为(][),13,-∞-⋃+∞.例9 求2254x y x +=+的最小值.分析 在解题时,我们常常写成 222222225411142424444x x y x x x x x x +++===++≥+=++++,所以y 的最小值是 2.可是在2y ≥ 中,当且仅当22144x x +=+,即23x =-,这是不可能的,所以等号不成立,这个问题忽视均值不等式中等号成立条件.故原式的最小值不是2.下面给出正确解法.解 在22144y x x =+++中,令24t x =+, 则1y t t =+(2t ≥),易证1y t t =+在[2,)+∞上递增,所以y 的最小值是15222+=,当且仅当2t =时,即242x +=,0x =,取“”=号.例10 若正数,x y 满足26x y +=,求xy 的最大值.分析 在解题时,我们常常写成22x y xy +⎛⎫≤ ⎪⎝⎭,当且仅当x y =且26x y +=,即2x y ==时取“”=号, 将其代入上式,可得xy 的最大值为4.初看起来,很有道理, 其实在用均值不等式求最值时,在各项为正的前提下,应先考虑定值,再考虑等号是否成立.但在22x y xy +⎛⎫≤ ⎪⎝⎭中,x y +不是定值,所以xy 的最大值不是4.这个问题忽视了均值不等式中积或和是定值的条件.下面给出正确解.解 因2112922222x y xy x y +⎛⎫=⨯≤⨯= ⎪⎝⎭, 当且仅当2x y =时(此时33,2x y ==)取“”=号, 所以()max 92xy =. 2.3.2 均值不等式求最值“失效”时的对策.运用均值不等式是求最值的一种常用方法, 但由于其约束条件苛刻,在使用时往往顾此失彼,从而导致均值不等式“失效”. 下面例说几种常用的处理策略.例11 已知0 1x <<,求4lg lg y x x=+的最大值. 解 因为0 1x <<,所以lg 0x <,lg 0x ->,从而有()4lg 244lg y x x ⎛⎫-=-+-≥= ⎪⎝⎭,即 4y ≤-,当且仅当4lg lg x x -=-即1100x =时等号成立,故max 4y =-. 本题满足4lg 4lg x x⋅= 为定值,但因为0 1x <<,lg 0x <,所以此时不能直接应用均值不等式,需将负数化正后再使用均值不等式.例12 求 1 () 2y x x =- 102x ⎛⎫<< ⎪⎝⎭ 的最大值.解 ()()2112121122122228x x y x x x x +-⎛⎫=-=⋅⋅-≤⋅= ⎪⎝⎭,当且仅当212x x =-,即14x =时等号成立.故max 18y =. 本题)2(1x x +-不是定值,但可通过平衡系数来满足和为定值.例13 已知0a b >>,求()64y a a b b=+-的最小值.解 ()()()3646436412y a a b b a b b a b b =+=-++≥=--,当且仅当()64a b b a b b-==-,即 8a =, 4b =时等号成立.故min 12y =.本题 ()64a ab b⋅-不是定值,但可通过添项、减项来满足积为定值.例14 已知0 x π<<,求4sin sin y x x=+的最小值. 解 41313sin sin 2sin 5sin sin sin sin 1y x x x x x x x ⎛⎫=+=++≥⋅+= ⎪⎝⎭. 当且仅当1sin sin x x =且33sin x=,即sin 1x = 时等号成立. 故min 5y =. 本题虽有4sin sin x x ⋅为定值,但4sin sin x x=不可能成立. 故可通过拆项来满足等号成立的条件.例15 已知52x ≥,则()24524x x f x x -+=- 有______.()A 最大值54 ()B 最小值54()C 最大值1. ()D 最小值1. 解 ()()()()2221451121242222x x x f x x x x x -+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当()122x x -=-,即3x =时等号成立.故选()D .本题看似无法使用均值不等式,但对函数式进行分离,便可创造出使用均值不等式的条件.2.4 均值不等式在证明极限的存在性时的应用极限概念是高等数学中的重要概念,在证明数列极限的存在性时,需证明数列单调及数列有界.而在此过程中便运用了均值不等式的相关内容.下面举例说明.例16 证明重要极限1lim(1)n n e n →∞+=的存在性.证明 先证数列{1(1)n n +}单调递增.令1211n a a a n===+=,11n a +=,则由均值不等式()11-得,111111(1)(1).1[(1)(1)1]1n n n nn n nn++++++<+++个个.即 111(1)11n n n n ++<++,所以 111(1)(1)1n n n n ++++<.所以 数列{1(1)n n +}单调递增.再证数列{1(1)n n+}有上界.下面的证明可以看到一个更强的命题:数列{1(1)n n +}以11(1)k k M ++=(k 为正整数)为上界.先证不等式, 当n k >时, 1111(1)(1)n k n k++<++.设 1211k ka a a k +====+,21k n a a +===.由均值不等式111()1[(1)()]1111k n k n k k n k n k k n k n +-+⋅+⋅+-=++<++, 所以 11()()11k n k n k n ++<++,因此,1111(1)(1)n k n k ++<++. 其次由111n +>,有111(1)(1)n n n n +<++,所以111(1)(1)n k n k+<++.当n k >时,任取一个正整数k ,11(1)k k M ++=均是数列{1(1)n n+}的上界.又数列{1(1)n n +}单调递增,所以,当n k ≤时,不等式111(1)(1)n k n k+<++仍然成立.因此,对于数列 {1(1)n n +}1,2n =(), 恒有111(1)(1)n k n k +<++(k 为正整数). 任意选定一个k 值,11(1)k k M ++= 均是数列{1(1)n n+}的上界.所以数列{1(1)n n +} 单调有界,由单调有界定理,数列{1(1)n n +} 极限存在.极限值为e ,即1lim(1)n x e n→∞+=.例17 证明数列{11(1)n n ++}极限存在且其极限是e .证明 令 11{(1)}n n x n+=+.11221(1)11111()()[]()1122n n n n n n nn n n n n x n n n n x ++++++⋅+++==≤==++++. 所以,数列{}n x 单调减少.又0n x >,则数列{}n x 有下界.1111lim(1)lim (1)(1)n n n n nn n +→∞→∞⎡⎤+=+⋅+⎢⎥⎣⎦. 因为 1(1)n n +和1(1)n+的极限都存在, 所以1111lim(1)lim (1)(1)n n n n e n n n +→∞→∞⎡⎤+=+⋅+=⎢⎥⎣⎦. 因此, 数列{11(1)n n++}极限存在且其极限是e .例18 证明lim 1n n n →∞=.证明 由均值不等式(1-1)有:121111nnn n n n n n n -⎛⎫++++=⋅⋅≤⎪⎝⎭个2221n n n n+-=<+, 从而有201n n n≤-<,故 lim 1n n n →∞=.2.5 均值不等式在判断级数敛散性中的应用均值不等式的应用很广泛,在证明级数的敛散性时也有很重要的应用. 例19 已知正项级数1n n a ∞=∑收敛,证明级数11n n n a a ∞+=∑也收敛.证明 因为,0n a >(1,2,)n =,由均值不等式,有111()2n n n n a a a a ++≤+,已知级数1n n a ∞=∑收敛,所以级数112n n a ∞=∑与1112n n a ∞+=∑都收敛,从而级数111()2n n n a a ∞+=+∑也收敛,再由比较判别法,知级数11n n n a a ∞+=∑收敛.2.6 均值不等式在证明积分不等式中的应用积分不等式是一种特殊的不等式,而均值不等式又是证明不等式的重要方法.因此,在积分不等式的证明中我们自然会想到运用均值不等式来进行证明.例20 证明函数f x ()在[],a b 上是正值可积的, 1,2,k n =,且0a b <<,则[]11111212()()()()()()bbbbnnnnn n aa a a f x f x f x dx f x dx f x dx f x dx ⎡⎤⎡⎤⎡⎤⋅≤⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰. 证明 利用1212nn n a a a a a a n+++≥⋅.有,1212()()()()()()n bbbnn aaaf x f x f x f x dxf x dxf x dx⋅⎰⎰⎰1212()()()1()()()n b bbn a a af x f x f x n f x dx f x dx f x dx ⎡⎤⎢⎥≤+++⎢⎥⎢⎥⎣⎦⎰⎰⎰.于是 1111212()()()()()()n n nb n b bba n a a a f x f x f x dx f x dx f x dx f x dx ⎧⎫⎡⎤⎡⎤⎡⎤⎪⎪⎪⎪⎢⎥⎢⎥⎢⎥⋅⎨⎬⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭⎰⎰⎰⎰ 1212()()()11()()()b bbn a a a b b b n a a af x dx f x dx f x dx n f x dxf x dx f x dx ⎡⎤⎢⎥≤+++=⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰,即 []11111212()()()()()()bbbbnnnnn n aa a a f x f x f x dx f x dx f x dx f x dx ⎡⎤⎡⎤⎡⎤⋅≤⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰. 例21 设f x ()在[0,1]上非负连续,证明101ln ()0()f x dxe f x dx ⎰≤⎰.证明 由题设知f x ()在[0,1]上可积,将[0,1]n 等分,作积分和111()lim()n n i i f x dx f n n →∞==∑⎰,110111ln ()lim ln ()limln ()nn nn n i i i i f x dx f f n n n →∞→∞==⎡⎤==⎢⎥⎣⎦∑∏⎰. 所以 01111li ln (n )m l ()1lim ()n nn i i f nnn f x n dxi i e f n e →∞=⎡⎤⎢⎥⎢⎥⎣⎦→∞=∏⎡⎤=⎢⎣⎰⎥⎦=∏. 由均值不等式1212...n nn a a a a a a n+++≥⋅得,110111lim ()lim ()()nn nn n i i i i f f f x dx n n n →∞→∞==⎡⎤≤=⎢⎥⎣⎦∑∏⎰.故 11ln ()0()f x dx e f x dx ⎰≤⎰.3 结论均值不等式是数学中的重要内容,对培养数学思维发展有很大帮助.本文重在梳理均值不等式的相关证明方法和应用.如,运用均值不等式时,一定时刻谨记一正、二定、三相等原则,具体问题具体分析,有时可以通过转化达到运用均值不等式解题的目的.本文系统地归纳总结均值不等式的各种证明方法及其在具体解题分析和论证推理过程中的应用.通过本论文的撰写,更深刻地理解均值不等式在证明问题和解题中的重要作用.参考文献:[1]中译本(朱恩宽、李文铭等译):《阿基米德全集》[M]. 西安:陕西科学技术出版社,1998.[2]陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,6(3):129-130.[3]熊桂武 .概率方法在不等式证明中的应用[J].重庆师范大学学报,2003,12:89-91.[4]敦茂.算术平均值与几何平均值不等式的各种证法[J].云梦学刊,1980,1(3):65-80.[5]Norman schaumberger.A coordinate approach to the AM-GM inequality[J].MathematicsMagazine,1991,64:273.[6]刘鸿雁.由Jensen不等式导出某些重要不等式[J].成都大学学报,2003,22(3):32-35.[7]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.[8]陈益琳.高中教学导练(高二)[M].北京:冶金工业出版社,2004.[9]冉凯.均值不等式在数学分析中的应用[J].青海师专学报,1997,4(2):35-38.[10]赵建勋.浅谈均值不等式的应用[J].高中数学教与学,2011,5(3):7-10.[11]蓝兴苹.均值不等式的推广与应用[J].云南民族大学学报,2006,15(4):22-24.[12]高飞、朱传桥《高中数学教与学》[M]. 济南:山东科学技术出版社,2007.[13]章国凤.均值不等式在高等数学中的应用[J].广西教育学院学报,2008,05(1):151-152.[14]陈复华.均值不等式在微积分中的应用及其它[J].湖北民族学院学报(自然科学版),1994,2(3):88-89.致谢毕业论文暂告收尾,这也意味着我在鞍山师范学院四年的学习生活既将结束。
高等数学中利用辅助函数证明不等式的几种方法

高等数学中利用辅助函数证明不等式的几种方法作者:沈秀娟来源:《文化产业》2016年第06期摘要:高等数学中证明不等式的方法多种多样,而且有些题目适合一题多解.常用的方法有:比较法、反证法、判别式法等.本文从构造辅助函数出发,利用拉格朗日定理和函数的单调性,对于不等式的证明做了较系统的归纳和总结.关键词:拉格朗日定理;单调性;不等式;辅助函数在高等数学的学习过程中,不等式的证明是一个重点和难点,大多数人在遇到不等式证明的问题是就不知所措,对不等式的证明,常用以下情形证明不等式,如:拉格朗日中值定理法、Taylor展开式公式法、泰勒中值定理、极值法、定积分的一些性质等.本文以作辅助函数为出发点,对不等式的证明做了一下探讨.一、用拉格朗日中值定理构造函数证明不等式该定理证明不等式的关键是构造适当的函数和闭区间[a,b],使得:(一)要证不等式的一部分可以写成或;(二)在上满足拉格朗日公式的适当放大或缩小,即可证出要证明的不等式.二、用函数的单调性构造函数证明不等式构造辅助函数,取定闭区间;构造辅助函数方法:1、利用不等式两边之差构造辅助函数;2、利用不等式两边相同“形式”的特征构造辅助函数;3、若所证的不等式涉及到幂指数函数,则可通过适当的变形将其化为易于证明的形式,再如前面所讲那样,根据不等式的特点,构造辅助函数.(一)利用不等式两边之差构造辅助函数(二)利用不等式两边相同“形式”的特征构造辅助函数(三)利用公式法构造函数三、结论不等式的证明在整个数学学习中占有舉足轻重的作用,是进行计算、推理、数学思想方法渗透的重要内容.不等式的证法多种多样,针对本文所存在的局限性,在以后的学习中一定注重题型的复杂多变形,把问题简单化,找到合适的解决方法.本文从构造辅助函数为出发点,把题目变形整形,利用拉格朗日定理和函数单调性,对于不等式的证明给出了系统的归纳和总结,然后找到最简洁的证明方法.该方法对不等式的证明具有极其重要的意义,对学生在证明不等式时选择恰当的方法有一定的指导作用.参考文献:[1]郭大钧,陈玉妹.数学分析[M].山东科学技术出版社,2005,35-38.[2]王晓锋,李静.证明不等式的若干方法[J].数理医学杂志,2008.[3]田玉伟.微积分在解方程和不等式中的应用[J].长江大学学报,农学卷,2009.[4]李长明,周焕山.初等数学研究[M].北京:高等教育出版社,1995.[5]叶慧萍.反思性教学设计-不等式证明综合法[J].数学教学研究,2005,10(3):89-91.。
定积分不等式证明方法

f x dx 表示由曲线 y f x ,x
b a b a
轴及直线
x a , x b 所围成的曲边梯形的面积的相反数.
(3) 如果连续函数 f x 正负不定, 则
f x dx 表示由曲线 y f x ,x 轴及直
线 xa , xb 所 围 成 的 一 些 小 曲 边 梯 形 的 面 积 的 代 数 和 , 有
a c a
性质 5
d
[1]
若
f x 在 a, b 上可积,且 f x 0 , c, d a, b ,则
b
f x dx f x dx .
c a
性质 6
[1]
若
f x 在 a, b 上可积, x a, b ,则
b
b a i f a ,即 n
定积分
f x dx 为一序列和的极限,这样我们可由一些序列和的不等式得到积分不
[3]
等式,下面首先给出著名的 Jensen 不等式 ,即 设 f x 为 a , b 上 的 连 续 下 凸 函 数 , 证 明 对 于 任 意 xi a, b 和 i 0 , (i=1,2,……,n),
1.2 利用泰勒公式
定理 1
[2]
(泰勒定理)
若函数 f x 在 a , b 上存在直至 n 阶的连续导函数,在 x, x0 a, b ,至少存在一点 a, b ,
a, b 内存在{n+1}阶导函数,则对任意给定的
使得
f x f x0 f ' x0 x x0
f n x0 n!
f '' x0 2!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析中不等式证明的若干方法作者学号:0700000(巢湖学院数学系安徽巢湖238000)摘要:不等式的证明问题在高等数学通用教材数学分析中经常会遇到,是数学分析课程学习中的一个重要内容,灵活的运用函数的单调性、最值、凹凸性,以及微分中值定理,泰勒公式、赫尔德不等式、柯西、施瓦兹不等式等数学知识对不等式问题进行分析、构造与转化,是解决不等式证明的常用方法。
本文通过对几个不等式例题的解答,对这些常用的不等式证明方法进行简单的论述。
关键字:不等式;单调性;中值定理;泰勒公式Several Methods of Proof of Inequalities inMathematical AnalysisZhou Lina StuNo:0700000(Department of Mathematics,Chaohu College,Chaohu Anhui 238000)Abstract: We often encounter the problem of inequality proof in higher mathematics which is an important part in the mathematical analysis. There are some methods for proving inequalities by using the monotonicity of function, maximum and minimum, convexity, differential mean value theorem, Taylor formula, Hölder's inequality, Cauchy inequality and Schwarz inequality. In this paper, we utilize several examples to review these methods.Keywords: inequality;Monotonicity;mean value theorem;Taylor formula引言不等式这部分知识,渗透在数学分析的各部分内容中,有着十分广泛的应用。
不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融汇贯通,起到了很好的促进作用。
在解决不等式的证明问题时,要依据题目、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的证明。
不等式在数学中占有重要地位,由于其本身的完美性及证明的困难性,使不等式成为各类考试中的热门试题。
本文通过灵活运用函数的单调性、极值、最值、凸性函数、以及中值定理与泰勒公式、柯西不等式、赫尔德不等式、施瓦兹不等式等数学知识, 借助实例对不等式问题进行分析、构造、转化,总结几种常见的不等式证明方法,举例如下。
一、利用函数单调性证明不等式函数不等式是函数之间的大小关系,应用函数单调性的判别法可证明一些函数的不等式。
定义1[1,pp.17]若函数()y f x =在[,]a b 上单调递增,则有()()()f a f x f b ≤≤;若函数()y f x =在[,]a b 上单调递减,则有()()()f a f x f b ≥≥。
例1 证明当02x π<<时,3tan 3x x x >+。
证明:令3()tan 3x f x x x =--,则(0)0f =,而'22()sec 1(tan )(tan )f x x x x x x x --=+-。
当02x π<<时,tan 0x x +>。
记()tan g x x x =-,有(0)0g =又22()sec 1tan 0g x x x '=-=>,所以()g x 单调递增,有()(0)0,(0,)2g x g x π>=∈,从而'()0,()f x f x >单调递增。
又有()(0)0,(0,)2f x f x π>=∈,即有3tan ,(0,)32x x x x π>+∈另外,也可以利用辅助函数的单调性来证明不等式。
辅助函数方法比较常用,其主要思想是将不等式通过等价变形,寻找到一个辅助函数,通过求导确定辅助函数在所给区间上的单调性,即可证明出结论。
常用的辅助函数构造方法是,直接将不等号右端项移到不等号左端,令不等号右端为零,左端即为所求辅助函数。
例2 设,b a e >>证明不等式ab ba >成立。
分析:要证ab ba >,只需要证明ln ln aa bb >或者ln ln b a a b >。
解法一:构造辅助函数()ln ,f x xx x e =>,则有'()1ln 20()f x xx x e =-<>,因此()f x 单调递减。
故当b a e >>时 有ln ln aa bb >,即ab ba >。
解法二:构造辅助函数()ln ln ()f x x a a x x a =-≥。
因为'()ln 10()f x a ax ax x a =-=-≥≥,所以()f x 在x a ≥时单调递增,因此当b a >时,有()()0f b f a >=,即有ln ln b a a b >,即ab ba >。
二、利用函数的最值证明不等式定理1(最大、最小值定理)函数f 在闭区间[,]a b 上连续,则f 在[,]a b 上有最大值与最小值[1,pp.76]。
函数()y f x =在闭区间[,]a b 上连续,根据最值定理可知,函数必在该闭区间上取得最大值和最小值。
当函数取得最小值m 时,对任意的[,]x a b ∈,有()f x m ≥,当函数取得最大值M 时,对任意的[,]x a b ∈,有()f x M ≤例3若1p >,证明不等式111(1),[0,1]2p p p x x x -≥+-≥∈成立[2]。
证明:设()(1),[0,1]p p f x x x x =+-∈,则'()(1),[0,1]p p f x px p x x =--∈。
令'()0f x =,得12x =。
又因为111()(1),(0)1,(1)122p f p f f -=>==,可得 11max ()1,min ()2p f x f x -==。
所以有111(),[0,1]2p f x x -≥≥∈,即不等式111(1),[0,1]2p pp x x x -≥+-≥∈成立。
例4 设,p q 是大于1 的常数,且111,p q +≥证明对任意的0x >,不等式11p x x p q+≥恒成立。
证明:令11()p f x x x p q=+-,则'1''2()1,()(1)p p f x x f x p x ---==。
令'()0f x =,得''1,(1)1x f p ==-。
所以当1x =时,函数取得极小值,即最小值,从而对于任意的0,()(1)0x f x f >≥=,有11p x x p q+≥恒成立。
注:由上例可以看出,将待证明的不等式换成它的等价的形式,从而使问题得以简化,也就是说,在证明一些不等式时,将不等式进行适当的变形是很必要的。
三、利用函数的凹凸性证明不等式定义2[1,pp.148]如果),()(b a x f 在内存在二阶导数()f x '',则 (1) 若对(,)()0x a b f x ''∀∈>有,则函数)(x f 在),(b a 内为凸函数。
(2) 若对(,)()0x a b f x ''∀∈<有,则函数)(x f 在),(b a 内为凹函数。
定义3[1,pp.151]若函数),()(b a x f 在内是凸(或凹)函数时,对),(,,,21b a x x x n ∈∀ 及∑==ni i11λ,有Jensen(琴森)不等式∑∑∑∑====⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛n i ni i i n i i i i i n i i i x f x f x f x f 1111)()( 或 λλλλ。
等号当且仅当n x x x === 21时成立。
例5 证明下列不等式),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ 分析:上式只要能证明),2,1,0(2121n i a na a a a a a i nnn =>+++≤⋅ ,如果用前面所述的几种方法来证明显然不合适,因为对它求导后不等式会更复杂。
而这里的i a 可以看作是同一函数的多个不同函数值,设x x f ln )(=那么就可以用Jensen 不等式来证明它。
然后只要令xx f 1ln)(=,同理可得 n n na a a a a a n2121111⋅≤+++。
证明:令)0(ln )(>=x x x f 。
因为 01)(2<-=''xx f ,所以),0()(+∞在x f 是凹函数,则对),0(,,,21+∞∈∀n a a a 有[])()()(1)(12121n n a f a f a f na a a n f +++≥⎥⎦⎤⎢⎣⎡+++ , 即[]n n a a a na a a n ln ln ln 1)(1ln 2121+++≥⎥⎦⎤⎢⎣⎡+++ , 又因为[]n n n a a a a a a n2121ln ln ln ln 1⋅=+++, 所以 na a a a a a nnn +++≤⋅ 2121。
令 xx f 1ln)(=,则同理可得n n na a a a a a n2121111⋅≤+++ 所以),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ 。
例6证明不等式3()a b c a b c abc a b c ++≤,其中,,a b c 均为正数。
证明:设()ln ,0f x x x x =>。
由()f x 的一阶和二阶导数1()ln 1,()f x x f x x'''=+=可见,()ln f x x x =在0x >时为严格凸函数,依詹森不等式有1()(()()())33a b c f f a f b f c ++≤++, 从而1ln (ln ln ln )333a b c a b c a a b b c c ++++≤++, 即()3a b ca b c a b c a b c ++++≤,3a b c++≤,所以3()a b c a b c abc a b c ++≤。