小学奥数题目-四年级-简单逻辑推理类-游戏策略

合集下载

小学奥数---逻辑推理

小学奥数---逻辑推理

小学奥数---逻辑推理一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.64.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.65.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.06.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第位是疯子.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃,红桃,方块,梅花.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?小学奥数---逻辑推理参考答案与试题解析一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁【分析】①根据如果甲去,那么乙也去,可得甲在,乙必然也在;②又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,同时满足①②的条件和“如果丙去;那么丁不去”只能是乙、丙参加了活动,据此解答即可.【解答】解:根据如果甲去,那么乙也去,可得甲在,乙必然也在,又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,如果丙去;那么丁不去,可得:如果丙不去;那么丁去,同时乙也不去,则根据“甲去,那么乙也去”可得甲也不去,这样只有丁去,这与两个人参加一项活动相矛盾.同时满足条件只能是乙、丙参加了活动.故选:B.2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象【分析】通过分析可知:从题意出发:(1)狮子去则老虎去,逆否命题:老虎不去则狮子也不去,(2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子,(3)派豹子则大象不愿意去,逆否命题:大象去则不能派豹子从(2)出发可以看出答案为B.据此解答即可.【解答】解:题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也去.三个动物去,矛盾,所以狮子不去.若豹子不去则老虎不去,那么只有大象去,矛盾,所以豹子去.豹子去则大象不去,由两种动物去得到结论,老虎要去.所以答案是B,豹子和老虎去.故选:B.3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.6【分析】6人参加乒乓球赛,每两人都要比赛一场,即每人都要与另外5人赛一场,又比赛是在两人之间进行的,所以共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分为一人五场全胜5×2=10分,又比赛结果有两人并列第二名,两人并列第5名,由于30=10+6+6+4+2+2,所以第四名是4分.【解答】解:共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分5×2=10分,由于30=10+6+6+4+2+2,所以第四名是4分.故选:B.4.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.6【分析】第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.【解答】解:第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.因此第一名得了胜五场,因此得2×5=10(分)故选:A.5.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.0【分析】四人比赛乒乓球,每两人要赛一场,则每人都要和其他三人赛一场,每人要赛三场,共比赛4×3÷2=6场,由于没有平局,则每场都有一队胜,一队负.由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.【解答】解:由题意可知,每人要赛三场,共比赛4×3÷2=6场,由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.故选:D.6.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁【分析】由题意知,一排1号至4号的座位上分别坐一人,由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;据此解答.【解答】解:由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;故选:B.二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是2314.【分析】4人都是诚实的好孩子,也就是4人都是说真话,丁说它的右边没有人,那么丁排在4号;再从甲乙的话可知甲乙都不排在1号,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号,从而求解.【解答】解:首先根据“丁:我右边没有人”可以得出丁在4号;再根据“甲:我左右两人都比我高.乙:我左右两人都比我矮.”可知,甲乙两边都有人,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号;剩下的乙排在3号;综上可知:甲、乙、丙、丁的编号按顺序组成的4位数是2314.故答案为:2314.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.【分析】若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则小光要的是鸡块,然后进一步解答即可.【解答】解:若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则根据(1)小光只要的是鸡块,那么小亮要的是汉堡,也可以是鸡块;所以,已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.故答案为:小亮.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第3位是疯子.【分析】按题意,运用假设法,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,最后不难得出结论.【解答】解:根据分析,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,所以第三位是疯子.故答案是:3.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃A,红桃Q,方块K,梅花J.【分析】由(1)(2)(3)先排出个别扑克牌的顺序,再根据它们之间的位置关系,推出问题的答案.【解答】解:由(1)可知顺序为:红桃,A,J;由(2)可知顺序:Q,K由(3)可知顺序:黑桃,J由(1)(3)知,A是黑桃.由(1)(2)(3)可知顺序:K,Q,A,J,由A的左边是红桃,可知Q是红桃.又因为黑桃与方块不相邻,因此J不是方块,只能是梅花,因此,K是方块.黑桃是A 红桃是Q,方块是K,梅花是J.故答案为:A,Q,K,J.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是乙.【分析】据题意,假设结论(即会开车的分别是甲、乙或丙),然后根据他们所说的话,推出与题意矛盾的即为错误结论,从而得出正确答案.【解答】解:假设甲会开车,那么,甲和乙说的是真话,所以和已知矛盾,所以甲不会开车,假设乙会开车,那么甲和乙说的是假话,丙说的是真话,符合题意,假设丙会开车,那么乙和丙说的是真话,也和题意矛盾,所以,乙会开车.故答案为:乙.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?【分析】小强比小杰大4岁,小虎比小杰大3岁,则小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,所以小虎大.【解答】解:小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,答:小虎大.13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.【分析】由小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”,我们用大于号进行排列,小鹿>小兔,小兔>乌龟,所以,小鹿>小兔>乌龟.据此解答即可.【解答】解:由题意可知:小鹿>小兔小兔>乌龟所以小鹿>小兔>乌龟.所以小鹿最高,乌龟最矮.答:小鹿最高,乌龟最矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?【分析】因为他们中只有一个人讲的话错了,也就是只有一个人说了假话,从题中分析,因为乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断是乙是罪犯.【解答】解:乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断乙是罪犯.综上所述,罪犯一定是乙.答:乙是罪犯.15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?【分析】这四人中只有丁说了实话,那么根据“乙说是丁打的”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个,然后根据甲和丙说的话进行判断(甲丙说谎),从而得出结论.【解答】解:这四人中只有丁说了实话,那么根据丁说:“乙说得不对.”、乙说:“是丁打的.”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个;又因为甲说谎,所以可能是甲或丙;又因为丙也说谎,且丙说:“不是我打的.”,从而可以肯定是丙打碎了玻璃.答:是丙打碎了玻璃.第11页(共11页)。

四年级奥数简单推理

四年级奥数简单推理

数学中的简单推理
逻辑推理:通过已 知条件,按照一定 的逻辑规则,推导 出结论的过程。
数学证明:运用逻 辑推理来证明数学 命题的过程,是数 学中最为基本的推 理形式之一。
问题解决:在解决 数学问题时,常常 需要运用简单推理 来分析问题,找到 解决方案。
数学归纳法:基于 归纳思想的推理方 法,是数学中一种 重要的证明方法。
排列与组合推理
排列推理:根据给定的条件,对不同元素进行排列,得出符合条件的排列方式。
组合推理:根据给定的条件,从给定的元素中选出符合条件的组合,得出所有可能的组合方式。
排列与组合推理的解题思路:先分析题目中的条件,确定需要排列或组合的元素;然后根据排列 或组合的规则,逐一尝试不同的方式,得出符合条件的答案。
06
如何提高简单推理能力
多做练习题
练习题是提高简单推理能力的有效途径,通过大量练习可以加深对推理的理解和掌握。 练习题的选择要多样化,包括不同难度和类型的题目,以全面提高推理能力。 练习题的过程中要注意总结经验和方法,不断优化解题思路和技巧。 练习题还可以帮助发现自己的不足和弱点,从而有针对性地进行改进和提高。
排列与组合推理的注意事项:注意元素的顺序和组合的限制条件,避免出现重复或遗漏的情况。
空间推理
定义:根据空间关系,通过观察、 分析和想象,确定物体在空间中 的位置和运动轨迹。
解题方法:利用空间想象、观察、 分析、比较和归纳等思维方法, 结合实际生活经验,确定物体的 空间位置和运动轨迹。
添加标题
添加标题
题技巧
04
简单推理的解题技巧
寻找线索
确定推理目标:明确问题要求, 确定需要推理的结论。
筛选线索:根据推理需要,筛选 出添加标题

四年级奥数讲义-简单逻辑推理附答案

四年级奥数讲义-简单逻辑推理附答案

知识精讲知识点(简单逻辑推理【知识梳理】小文比小林高,小林比小佳高,那我们可以推断,小文一定比小佳长得高,这也是一种推理。

与前面推理题不同的是,这种推理解答时不需要或很少用到计算,而要求我们根据题目中给出的已知条件,通过分析和判断,得出正确合理的结论。

做推理题时,要根据已知条件认真分析,为了找到突破口,有时先假设一个结论是正确的,然后验证它是不是符合所给的一切条件,若没有矛盾,说明推理正确,否则再换个结论来验证。

【例题精讲】【例1】晴晴比珊珊高,珊珊比惠惠高。

她们三人中,谁最高?【试一试】1.青青比林林重,林林比力力重。

他们三人中,谁最轻?谁最重?2.爷爷的年龄比奶奶大,奶奶的年龄比外婆大。

他们三人中,谁最大?谁最小?【例2】桌上有三盘苹果,小猫说:“第一盘比第三盘多3个。

”小狗说:“第三盘比第二盘少5个。

”猜一猜,哪盘苹果最多?哪盘苹果最少?【试一试】1.三个小朋友比大小,根据下面的两句话,请你猜一猜,谁最大?谁最小? (1)芳芳比阳阳大3岁,(2)宁宁比芳芳小1岁。

芳芳最大,阳阳最小2.有三种水果,请根据动物们的话,猜一猜,哪种水果最重?哪种水果最轻? 小猪:“香蕉比桃重”;小龟:“苹果比香蕉轻”;小鹿:“苹果比桃重。

”香蕉最重,桃最轻【例3】红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,她们戴的帽子一个是红的,一个是黄的,一个是蓝的。

只知道红红没有戴黄帽子。

聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子?红红:蓝聪聪:红颖颖:黄【试一试】1.爸爸买回3双袜子,其中2双是花袜子,1双是红袜子,爸爸塞了1双花袜子给妹妹,又塞了1双红袜子给哥哥,把剩下的1双袜子藏在自己手中,让兄妹猜是什么颜色的,谁猜对就把袜子给谁。

你们说,谁肯定会猜对?哥哥2.黄颖、李红和马娜都穿着新衣服,她们穿的衣服一个是花的,一个是粉红的,一个是蓝的。

已知黄颖穿的不是花衣服,李红既不穿蓝衣服,又不穿花衣服,她们分别穿的是什么颜色的衣服?李红:粉马娜:花【例4】一个正方体有六个面,每个面分别涂有红、绿、黄、白、蓝、黑六种颜色,你能根据这个正方体的三种不同的摆法,判断出这个正方体每一种颜色的对面是什么颜色吗?红--蓝绿—-白黄一黑八、、【试一试】1.有一个正方体,每个面上分别写着1, 2, 3, 4, 5, 6,有三个人从不同的角度观察,结果如下图:这个正方体每个数字的对面是什么数?1--52--43--62.有一个正方体,每个面上都画有。

逻辑推理四年级奥数专题

逻辑推理四年级奥数专题

逻辑推理四年级奥数专题第一篇:逻辑推理四年级奥数专题逻辑推理之列表法、假设法(★★★)甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知:⑴教师不知道甲的职业;⑶律师是丙的法律顾问;⑸乙和丙从未见过面。

(★★★)⑵医生曾给乙治过病;⑷丁不是律师;根据以上条件判断甲的职业是________,乙的职业是________。

甲、乙、丙在2011年高考中,分别考取了北大,清华和理工大学的数学系,物理系和化学系,现知道下列情况⑴甲不在北大;⑶在北大的不学数学;⑸乙不学化学。

⑵乙不在清华;⑷在清华的学物理;根据以上情况判断甲、乙、丙三人各在哪个学校?哪个系?(★★★★)有这样三个的职业人,他们分别姓李、蒋和刘,他们每人身兼两职,三个人的六种职业是作家、音乐家、美术家、话剧演员、诗人和工人,同时还知道以下的事实:⑴音乐家以前对工人谈论过对“古典音乐”的欣赏;⑵音乐家出国访问时,美术家和李曾去送行;⑶工人的爱人是作家的妹妹;⑷作家和诗人曾经在一起探讨“百花齐放”的问题;⑸美术家曾与姓蒋的看过电影;⑹姓刘的善下棋,姓蒋的和那作家跟他对奕时,屡战屡败。

请问他们的职业是什么?(★★)一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。

当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。

第一个木牌上写着:“这条路上有宾馆”。

第二个木牌上写着:“这条路上没有宾馆”。

第三个木牌上写着:“那两个木牌有一个写的是事实,另一个是假的。

相信我,我的话不会有错”。

假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,哪条路上有宾馆?(★★★)在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。

这四对双胞胎中,姐姐分别是甲、乙、丙、丁,妹妹分别是a、b、c、d。

一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊?”乙说:“丙的妹妹是d。

四年级高思奥数之逻辑推理一含答案

四年级高思奥数之逻辑推理一含答案

第24讲逻辑推理一内容概述简单的逻辑推理问题,学会假设法和列表法.典型问题兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2.有三只盒子,一只盒子里装有两个黑球,另一只盒子装有两个白球,还有一只盒子里装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从其中一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?3.费叔叔手里握有两个硬币,他让小悦、冬冬和阿奇猜哪只手握有硬币.小悦说:“左手没有,右手有.”冬冬说:“右手没有,左手有.”阿奇说:“不会两手都没有,我猜左手没有.”结果三个人的话都说对一句,说错一句.请问:费叔叔是怎么握住硬币的?4. 甲、乙、丙、丁四位同学的运动衫上印上了不同的号码:赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是1号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.请问:丙的号码是几号?5.A、B、C、D四人在争论今天是星期几.A说:“明天是星期五.”B说:“昨天是星期日.”C说:“你们俩说的都不对.”D说:“今天不是星期六.”实际上这四人中只有一人说对了.请问:今天是星期几?6.爱丽丝梦游仙境时,误入一片魔法森林——健忘森林.在森林中徘徊了很久以后,爱丽丝很想知道今天是星期几.这时她刚巧碰到了老山羊.爱丽丝赶忙问它:“请问您知道今天是星期几吗?”老山羊回答说:“真糟糕,我也不记得了!不过,你可以去问问狮子和独角兽.狮钢在星期一、二、三是说谎的;独角兽在星期四、五、六是说谎的;其余的日子,它们利会说真话.”于是,爱丽丝就去找狮子和独角兽,并问它们今天是星期几.独角兽回答说:“昨天是我说谎的日子.”狮子也回答说:“昨天是我说谎的日子.”请你帮爱丽丝想一想,今天到底是星期几呢?7. 甲、乙、丙三位老师分别教四年级三班的语文、数学和英语.已知:甲老师不教英语;英语老师是一个学生的哥哥;丙是一位女老师,她比数学老师活泼.请问:乙老师教什么课?8.甲、乙、丙、丁四名同学同在一间教室里.他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丙既不是在看小说,也不在念英语.请问:在写信的是谁?9. 小悦、冬冬、阿奇去参加一次奥运活动.他们三人分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服.已知:①帽子和衣服的颜色都只有红、黄、蓝三种;②小悦没戴红帽子,冬冬没戴黄帽子;③戴红帽子的那个人没有穿蓝衣服;④戴黄帽子的那个人穿着红衣服;⑤冬冬没有穿黄色衣服.请问:小悦、冬冬、阿奇各戴什么颜色的帽子,穿什么颜色的衣服?10. 甲、乙、丙、丁、戊五人各从图书馆借来一本小说,他们约定读完后互相交换.这五本书的厚度以及他们五人的阅读速度都差不多,因此五人总是同时交换书.经过数次交换后,他们都读完了这五本书.已知:①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在一开始就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙~开始读的那本.设甲、乙、丙、丁、戊五个人最后读的书分别为A、B、C、D、E,请根据以上条件确定这五个人读的第四本书分别是什么?拓展篇1. 甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“丙是牧师.”乙说:“甲是赌棍”丙说:“乙是骗子.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2. 期末考试结束后,甲、乙、丙、丁四名同学在一起议论.甲说:“自然成绩第一名是丁.”乙说:“数学成绩第一名是丙.”丙说:“语文成绩第一名不是甲.”丁说:“英语成绩第一名是乙.”成绩公布后发现,这四名同学确实分别取得了语文、数学、英语、自然的第一名,但只有取得语文和自然第一名的学生做出的猜测是正确的.请问:数学成绩第一名是谁?3.甲、乙、丙、丁四人对A先生的藏书数目作了一个估计.甲说:“A先生有500本书.”乙说:“A先生至少有1000本书.”丙说:“A先生的书不到2000本.”丁说:“A先生最少有1本书.”实际上这四个人的估计中只有一句是对的.问:A先生究竟有多少本书?4.法官在审理一起盗窃案的过程中,对四名犯罪嫌疑人甲、乙、丙、丁进行审问.甲说:“罪犯在乙、丙、丁三人之中.”乙说:“我没有作案,是丙偷的.”丙说:“甲、丁之中有一个是罪犯.”丁说:“乙说的是事实.”如果这四个人中有两人说的是真话,另外两人说了假话,而且只有一个罪犯.请你判断:罪犯是谁?5.某参观团根据下列条件从A、B、C、D、E这五个地方中挑选参观地点:①若去A地,则必须去B地;②B、C两地中至多去一地;③D、E两地中至少去一地;④C、D两地都去或者都不去;⑤若去E地,一定要去A、D两地.请问:参观团所去的地点有哪些?6.某校数学竞赛,A、B、C、D、E、F、G、月这8位同学获得前八名.老师让他们猜一下谁是第一名.A 说:“F或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A 说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.问:第一名是谁?7.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷.已知:①木工只和车工下棋,而且总是输给车工;②王、陈两位师傅和木工经常一起看球;③陈师傅与电工下棋互有胜负;④徐师傅比赵师傅下的好.问:徐、王、陈、赵四位师傅各是什么工种?8.甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名.已知:①教师不知道甲的职业;②医生曾给乙治过病;③律师是丙的法律顾问;④丁不是律师;⑤乙和丙从未见过面.请你根据上面的条件判断甲、乙、丙、丁的职业分别是什么?9.有三户人家,父亲分别姓王、张、陈,母亲分别姓刘、李、胡,每家一个孩子,分别叫明明(女)、宁宁(女)、松松(男).已知:①王爸爸和李妈妈的孩子都参加了女子体操队;②张爸爸的女儿不叫宁宁;③陈和胡不是一家.请问:哪些人是一家?10.甲、乙、丙、丁四位老师各教两门不同的课.已知:①甲在星期二没课;②乙在星期一不给一班上课;③丙星期二前两节都有课;④物理老师星期一前两节没课.请你根据上面的课程表判断他们各教哪两门课.11.甲、乙两校举行象棋比赛.两校各选五名选手进行循环赛,即每名选手都与对方五名选手各赛一盘,每天赛五场,共赛五天.甲校的五名选手是丁一、胡二、张三、李四、王五.已知:①丁一第一天的对手第二天与胡二相遇;②第三天被李四打败的选手第四天胜了王五:③王五第四天的对手第五天与胡---T成和棋;④第五天胜了张三的选手第三天败给胡二;⑤王五第二天的对手最后一天与丁一对阵.请问:第三天与丁一比赛的选手,最后一天与谁比赛?12. 在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈.他们分别用了汉语、英语、法语、日语4种语言.并且还知道:①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会;③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的条件,判断他们各会什么语言.超越篇1.如图24-1所示,8张相同大小的正方形纸片摆放在桌子上,其中正方形纸片A可以完全看到,其他7张正方形纸片由于互相重叠而只露出一部分.这些纸片从上到下的摆放次序是怎样的?2.五年级有四个班,每个班有两个班长,召开年级班长会议时每班都有一名班长参加.参加第一次会议的是A、B、C、D;参加第二次会议的是B、D、E、F;参加第三次会议的是A、B、E、G.又已知日三次会议都没参加.请问:和A、B、C、D同班的分别是谁?3.赛马比赛前,五位观众给A、B、C、D、E五匹赛马预测名次.甲说:“B第三,C第五.”乙说:“E 第四,D第五.”丙说:“A第一,E第四.”丁说:“C第一,B第二.”戊说:“A第三,D第四.”结果每个名次都有人猜中,请求出各匹马的名次.4.房问里有12个人,其中有些人总说假话,其余的人总说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”请问:房间里究竟有多少个老实人?5.在一列国际列车上,有A、B、C、D四位不同国籍的旅客,他们分别穿蓝、黑、灰、褐色的大衣,坐在一张桌子的两边.桌子每边坐两个人,而且他们正好与另一边的某人面对面.已知:①英国旅客坐在B先生左侧;②A先生穿褐色大衣;③穿黑色大衣的坐在德国旅客右侧;④D先生的对面坐着美国旅客;⑤俄国旅客穿着灰色大衣.问:A、B、C、D分别是哪国人?分别穿什么颜色的大衣?6. A、B、C、D四人分别到甲、乙、丙、丁四个单位办事.已知甲单位星期一不接待,乙单位星期三不接待,丙单位星期四不接待,丁单位只在星期二、四、六接待,星期日四个单位都不办公.一天,他们议论起哪天去办事A说:“你们可别像我前天那样,在人家不接待的日子去.”B说:“我今天必须去,明天人家就不接待了.”C说:“我和B正相反,今天不能去,明天去.”D说:“我从今天起,连着四天哪天去都行.”问:这天是星期几?他们分别去哪个单位办事?7. 一次羽毛球邀请赛,来自湖北、广东、福建、北京和上海的五名运动员相遇在一起,据了解:①李平仅和另外两名运动员比赛过;②上海运动员和另外三名运动员比赛过;③陈兵和广东运动员是好朋友,但他们从未比赛过;④福建运动员和林华比赛过;⑤赵新仅与一名运动员比赛过;⑥广东、福建、北京的三名运动员都相互交过手.请问:张强是哪个省/市的运动员?8. 有甲、乙、丙、丁、戊五个人,每个人都非常有特点,他们来自不同的城市,开不同品牌的车子,喝不同种类的茶,穿不同颜色的衬衫.一次聚会上他们遇到一起,把车从左到右排成了一行.已知:①甲开奔驰;②乙穿绿衬衫;③丙喝碧螺春;④宝马车紧挨在奥迪车的左边;⑤宝马车的主人喝铁观音;⑥北京人穿蓝衬衫;⑦丰田主人来自天津;⑧中问那辆车的主人喝龙井茶;⑨丁的车在最左边;⑩上海人的车在穿红衬衫人的车旁边;⑾穿白衬衫人的车在天津人的车旁;⑿广州人喝菊花茶;⒀戊是重庆人;⒁丁的车在别克车的旁边;⒂上海人的车挨着喝乌龙茶的人的车.请问:谁穿黑衬衫?他是哪里人?他开什么车?喝什么茶?第24讲逻辑推理一兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?答;甲是牧师,乙是赌棍,丙是骗子。

四年级奥数数字游戏中的规律探索

四年级奥数数字游戏中的规律探索

四年级奥数数字游戏中的规律探索数字游戏一直是孩子们喜欢的活动之一,除了能够娱乐之外,数字游戏也可以培养孩子的逻辑思维和数学能力。

在四年级奥数课程中,数字游戏中的规律探索成为了一项重要的训练内容。

本文将围绕四年级奥数数字游戏中的规律探索展开讨论,探索其中的数学奥秘。

1. 游戏一:找规律这是一个简单的数字游戏,要求孩子找出数列中的规律,然后预测下一个数字。

例如,给出数列2,4,6,8,孩子们可以发现规律是每次加2,因此下一个数字应该是10。

通过这个游戏,可以培养孩子的观察力和逻辑思维能力。

2. 游戏二:奇偶变换在这个游戏中,孩子们需要将给定数列中的奇数和偶数进行位置变换。

例如,给出数列1,3,4,6,9,孩子们需要将奇数1和3与偶数4和6进行位置交换,得到新的数列3,1,6,4,9。

通过这个游戏,孩子们可以加深对奇偶数的理解,并锻炼他们的数学操作能力。

3. 游戏三:找规律填空这个游戏需要孩子们在给定的数列中填入符合规律的数字。

例如,给出数列1,2,4,7,11,孩子们可以发现每个数字与前一个数字的差依次增加了1,因此可以填入数列为1,2,4,7,11,16。

通过这个游戏,孩子们可以培养观察规律和推断的能力。

4. 游戏四:错位排序在错位排序这个游戏中,孩子们需要将给定的数列按照一定的规律进行排序。

例如,给出数列3,7,1,5,9,孩子们可以发现每次按照大小顺序排列两个数字,再将得到的数列组合起来,因此可以得到排序后的数列1,3,5,7,9。

通过这个游戏,孩子们可以提高数学操作和排序的技能。

在以上的数字游戏中,通过找规律、奇偶变换、填空和排序等方式,孩子们可以逐渐熟悉数列中的规律,并运用这些规律进行逻辑推理。

这些游戏不仅可以培养孩子的数学能力,还可以提高他们的注意力和思维灵活性。

总结起来,四年级奥数数字游戏中的规律探索是一个寓教于乐的过程,通过游戏的方式激发孩子们对数学的兴趣和学习动力。

同时,这些数字游戏也是锻炼孩子逻辑思维和数学能力的良好途径。

最新版 四年级奥数 逻辑推理

最新版  四年级奥数  逻辑推理

逻辑推理例1:卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。

现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。

问:谁是工程师、谁是医生、谁是飞行员?练习1:(1)有三个小朋友们在谈论谁做的好事多。

冬冬说:“兰兰做的比静静多。

”兰兰说:“冬冬做的比静静多。

”静静说:“兰兰做的比冬冬少。

”这三位小朋友中,谁做的好事最多?谁做的好事最少?(2)小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。

小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。

谁是教师、谁是数学家、谁是工程师?例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。

三个人从不同角度观察的结果如下图所示。

这个正方体的每个汉字的对面各是什么字?(1)奥匹林(2)数奥学(3)林数克练习2:(1)下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。

请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?(2)一个正方体,六个面分别写上A 、B 、C 、D 、E 、F ,你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么吗?例3:甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。

”乙说:“我没有打碎破璃。

”丙说:“是乙打碎的。

”他们当中有一个人说了谎话,到底是谁打碎了玻璃?练习3:(1)已知甲、乙、丙三人中,只有一人会开汽车。

甲说:“我会开汽车。

”乙说:“我不会开。

”丙说:“甲不会开汽车。

”如果三人中只有一人讲的是真话,那么谁会开汽车?(A )黄黑白(B )红白绿(C )红蓝黄D A FA CBCD E(2)某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。

A说:“是B做的。

”B说:“不是我做的。

”C说:“不是我做的。

”这三个学生中只有一人说了实话,这件好事是谁做的?例4:A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A赛了4盘,B赛了3盘,C赛了2盘,D赛了一盘。

四年级高思奥数之逻辑推理一含答案

四年级高思奥数之逻辑推理一含答案

第24讲逻辑推理一内容概述简单的逻辑推理问题,学会假设法和列表法.典型问题兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2.有三只盒子,一只盒子里装有两个黑球,另一只盒子装有两个白球,还有一只盒子里装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从其中一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?3.费叔叔手里握有两个硬币,他让小悦、冬冬和阿奇猜哪只手握有硬币.小悦说:“左手没有,右手有.”冬冬说:“右手没有,左手有.”阿奇说:“不会两手都没有,我猜左手没有.”结果三个人的话都说对一句,说错一句.请问:费叔叔是怎么握住硬币的?4. 甲、乙、丙、丁四位同学的运动衫上印上了不同的号码:赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是1号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.请问:丙的号码是几号?5.A、B、C、D四人在争论今天是星期几.A说:“明天是星期五.”B说:“昨天是星期日.”C说:“你们俩说的都不对.”D说:“今天不是星期六.”实际上这四人中只有一人说对了.请问:今天是星期几?6.爱丽丝梦游仙境时,误入一片魔法森林——健忘森林.在森林中徘徊了很久以后,爱丽丝很想知道今天是星期几.这时她刚巧碰到了老山羊.爱丽丝赶忙问它:“请问您知道今天是星期几吗?”老山羊回答说:“真糟糕,我也不记得了!不过,你可以去问问狮子和独角兽.狮钢在星期一、二、三是说谎的;独角兽在星期四、五、六是说谎的;其余的日子,它们利会说真话.”于是,爱丽丝就去找狮子和独角兽,并问它们今天是星期几.独角兽回答说:“昨天是我说谎的日子.”狮子也回答说:“昨天是我说谎的日子.”请你帮爱丽丝想一想,今天到底是星期几呢?7. 甲、乙、丙三位老师分别教四年级三班的语文、数学和英语.已知:甲老师不教英语;英语老师是一个学生的哥哥;丙是一位女老师,她比数学老师活泼.请问:乙老师教什么课?8.甲、乙、丙、丁四名同学同在一间教室里.他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丙既不是在看小说,也不在念英语.请问:在写信的是谁?9. 小悦、冬冬、阿奇去参加一次奥运活动.他们三人分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服.已知:①帽子和衣服的颜色都只有红、黄、蓝三种;②小悦没戴红帽子,冬冬没戴黄帽子;③戴红帽子的那个人没有穿蓝衣服;④戴黄帽子的那个人穿着红衣服;⑤冬冬没有穿黄色衣服.请问:小悦、冬冬、阿奇各戴什么颜色的帽子,穿什么颜色的衣服?10. 甲、乙、丙、丁、戊五人各从图书馆借来一本小说,他们约定读完后互相交换.这五本书的厚度以及他们五人的阅读速度都差不多,因此五人总是同时交换书.经过数次交换后,他们都读完了这五本书.已知:①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在一开始就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙~开始读的那本.设甲、乙、丙、丁、戊五个人最后读的书分别为A、B、C、D、E,请根据以上条件确定这五个人读的第四本书分别是什么?拓展篇1. 甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“丙是牧师.”乙说:“甲是赌棍”丙说:“乙是骗子.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?2. 期末考试结束后,甲、乙、丙、丁四名同学在一起议论.甲说:“自然成绩第一名是丁.”乙说:“数学成绩第一名是丙.”丙说:“语文成绩第一名不是甲.”丁说:“英语成绩第一名是乙.”成绩公布后发现,这四名同学确实分别取得了语文、数学、英语、自然的第一名,但只有取得语文和自然第一名的学生做出的猜测是正确的.请问:数学成绩第一名是谁?3.甲、乙、丙、丁四人对A先生的藏书数目作了一个估计.甲说:“A先生有500本书.”乙说:“A先生至少有1000本书.”丙说:“A先生的书不到2000本.”丁说:“A先生最少有1本书.”实际上这四个人的估计中只有一句是对的.问:A先生究竟有多少本书?4.法官在审理一起盗窃案的过程中,对四名犯罪嫌疑人甲、乙、丙、丁进行审问.甲说:“罪犯在乙、丙、丁三人之中.”乙说:“我没有作案,是丙偷的.”丙说:“甲、丁之中有一个是罪犯.”丁说:“乙说的是事实.”如果这四个人中有两人说的是真话,另外两人说了假话,而且只有一个罪犯.请你判断:罪犯是谁?5.某参观团根据下列条件从A、B、C、D、E这五个地方中挑选参观地点:①若去A地,则必须去B地;②B、C两地中至多去一地;③D、E两地中至少去一地;④C、D两地都去或者都不去;⑤若去E地,一定要去A、D两地.请问:参观团所去的地点有哪些?6.某校数学竞赛,A、B、C、D、E、F、G、月这8位同学获得前八名.老师让他们猜一下谁是第一名.A 说:“F或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A 说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.问:第一名是谁?7.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷.已知:①木工只和车工下棋,而且总是输给车工;②王、陈两位师傅和木工经常一起看球;③陈师傅与电工下棋互有胜负;④徐师傅比赵师傅下的好.问:徐、王、陈、赵四位师傅各是什么工种?8.甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名.已知:①教师不知道甲的职业;②医生曾给乙治过病;③律师是丙的法律顾问;④丁不是律师;⑤乙和丙从未见过面.请你根据上面的条件判断甲、乙、丙、丁的职业分别是什么?9.有三户人家,父亲分别姓王、张、陈,母亲分别姓刘、李、胡,每家一个孩子,分别叫明明(女)、宁宁(女)、松松(男).已知:①王爸爸和李妈妈的孩子都参加了女子体操队;②张爸爸的女儿不叫宁宁;③陈和胡不是一家.请问:哪些人是一家?10.甲、乙、丙、丁四位老师各教两门不同的课.已知:①甲在星期二没课;②乙在星期一不给一班上课;③丙星期二前两节都有课;④物理老师星期一前两节没课.请你根据上面的课程表判断他们各教哪两门课.11.甲、乙两校举行象棋比赛.两校各选五名选手进行循环赛,即每名选手都与对方五名选手各赛一盘,每天赛五场,共赛五天.甲校的五名选手是丁一、胡二、张三、李四、王五.已知:①丁一第一天的对手第二天与胡二相遇;②第三天被李四打败的选手第四天胜了王五:③王五第四天的对手第五天与胡---T成和棋;④第五天胜了张三的选手第三天败给胡二;⑤王五第二天的对手最后一天与丁一对阵.请问:第三天与丁一比赛的选手,最后一天与谁比赛?12. 在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈.他们分别用了汉语、英语、法语、日语4种语言.并且还知道:①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会;③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的条件,判断他们各会什么语言.超越篇1.如图24-1所示,8张相同大小的正方形纸片摆放在桌子上,其中正方形纸片A可以完全看到,其他7张正方形纸片由于互相重叠而只露出一部分.这些纸片从上到下的摆放次序是怎样的?2.五年级有四个班,每个班有两个班长,召开年级班长会议时每班都有一名班长参加.参加第一次会议的是A、B、C、D;参加第二次会议的是B、D、E、F;参加第三次会议的是A、B、E、G.又已知日三次会议都没参加.请问:和A、B、C、D同班的分别是谁?3.赛马比赛前,五位观众给A、B、C、D、E五匹赛马预测名次.甲说:“B第三,C第五.”乙说:“E 第四,D第五.”丙说:“A第一,E第四.”丁说:“C第一,B第二.”戊说:“A第三,D第四.”结果每个名次都有人猜中,请求出各匹马的名次.4.房问里有12个人,其中有些人总说假话,其余的人总说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”请问:房间里究竟有多少个老实人?5.在一列国际列车上,有A、B、C、D四位不同国籍的旅客,他们分别穿蓝、黑、灰、褐色的大衣,坐在一张桌子的两边.桌子每边坐两个人,而且他们正好与另一边的某人面对面.已知:①英国旅客坐在B先生左侧;②A先生穿褐色大衣;③穿黑色大衣的坐在德国旅客右侧;④D先生的对面坐着美国旅客;⑤俄国旅客穿着灰色大衣.问:A、B、C、D分别是哪国人?分别穿什么颜色的大衣?6. A、B、C、D四人分别到甲、乙、丙、丁四个单位办事.已知甲单位星期一不接待,乙单位星期三不接待,丙单位星期四不接待,丁单位只在星期二、四、六接待,星期日四个单位都不办公.一天,他们议论起哪天去办事A说:“你们可别像我前天那样,在人家不接待的日子去.”B说:“我今天必须去,明天人家就不接待了.”C说:“我和B正相反,今天不能去,明天去.”D说:“我从今天起,连着四天哪天去都行.”问:这天是星期几?他们分别去哪个单位办事?7. 一次羽毛球邀请赛,来自湖北、广东、福建、北京和上海的五名运动员相遇在一起,据了解:①李平仅和另外两名运动员比赛过;②上海运动员和另外三名运动员比赛过;③陈兵和广东运动员是好朋友,但他们从未比赛过;④福建运动员和林华比赛过;⑤赵新仅与一名运动员比赛过;⑥广东、福建、北京的三名运动员都相互交过手.请问:张强是哪个省/市的运动员?8. 有甲、乙、丙、丁、戊五个人,每个人都非常有特点,他们来自不同的城市,开不同品牌的车子,喝不同种类的茶,穿不同颜色的衬衫.一次聚会上他们遇到一起,把车从左到右排成了一行.已知:①甲开奔驰;②乙穿绿衬衫;③丙喝碧螺春;④宝马车紧挨在奥迪车的左边;⑤宝马车的主人喝铁观音;⑥北京人穿蓝衬衫;⑦丰田主人来自天津;⑧中问那辆车的主人喝龙井茶;⑨丁的车在最左边;⑩上海人的车在穿红衬衫人的车旁边;⑾穿白衬衫人的车在天津人的车旁;⑿广州人喝菊花茶;⒀戊是重庆人;⒁丁的车在别克车的旁边;⒂上海人的车挨着喝乌龙茶的人的车.请问:谁穿黑衬衫?他是哪里人?他开什么车?喝什么茶?第24讲逻辑推理一兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?答;甲是牧师,乙是赌棍,丙是骗子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

游戏策略本视频学习起来比较轻松,主要通过玩几个游戏,1、农夫、狼、羊、菜过河,2、牧羊人过河,3、倒水游戏,让我们知道这几个如何操作才能够取胜。

当然这些游戏都是可以在网上找到的,我们也可以自己试着玩一下,看你是不是会玩。

后边的几个例题也会教我们如何玩这些游戏,当然也还有其他操作类型的问题,包括称金币辨真假问题、遗产分牛问题和烧绳计时问题等,通过学习这些问题的解决办法,锻炼我们的思维,让我们思维更加的开阔。

农夫、狼、羊、菜过河游戏假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为A升和B升(A < B)。

问题是如何只用这2个水壶从池塘里取得 X 升的水?1.1.据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。

聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?(回答能或者不能)2.2.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?(回答能或者不能)3.3.假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为5升和6升。

问题是如何只用这2个水壶从池塘里取得3升的水。

(回答能或者不能)有一个装满葡萄酒的8升罐子,另有一个3升,一个5升的空罐子,问怎么倒可以把葡萄酒分成两个4升的?1.1.两位妇人分别拿着4斤的奶瓶和5斤的奶瓶去奶店各买2斤奶,适逢店的称坏了,这时店里只有两大满奶桶和一些不均匀的空桶(空桶能装奶的重量大于5斤,但是不知道具体能装多少),但聪明的店老板却成功地凭借现有的条件满足了两位妇人的要求。

她是如何做的?(回答能或者不能)2.2.现在有两个空壶,容积分别为65升和78升,能够用这两个空壶到池塘取得38升水吗?能够取得39升水吗?(回答“38”、“39”、“38和39”或者不能)3.3.现在有三个壶,容积分别为6升,10升和45升,能够用这三个空壶到池塘取得31升水吗?(回答能或者不能)对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2;这算一次操作。

现在对231连续进行这种操作,在操作过程中是否可能出现1000?为什么?1.1.对于任意一个自然数n,当n为奇数时,加上121;当n为偶数时,除以2;这算一次操作。

现在对253连续进行这种操作,在操作过程中是否可能出现1011?为什么?(只需回答能或者不能)2.2.对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。

如对18和42可进行这样的连续变换:18,42—→18,24—→18,6—→12,6—→6,6。

直到两数相同为止。

问:对12345和54321进行这样的连续变换,最后得到的两个相同的数是几?(只需回答即可,例如:5)3.3.右图是一个圆盘,中心轴固定在黑板上。

开始时,圆盘上每个数字所对应的黑板处均写着0。

然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上。

问:经过若干次后,黑板上的四个数是否可能都是999?(回答能或者不能)视频描述话说有十二个金币,其中11个是真币,有1个是假币,已知假币比较轻,现要求用无砝码的天平称三次,称出哪个是假币,能够做到吗?如何操作?1.1.13个球和一个天平,现知道只有一个比其它的轻,问怎样称才能用三次就找到那个球?回答是否能够做到即可(能或者不能)有9个乒乓球中有一个因超重关系不合格,现有一架天平,要求称两称,用怎样的称法找出超重的乒乓球。

(回答“能”或“不能”)3.3.18个金币中只有一个假币,已知假币比真币轻,现在有,你能够用一个没有砝码的天平找出假币吗?最少用_____步就能保证一定能够找出.(只需回答几步即可,例如:5)10箱黄金,每箱100块,每块一两。

有贪官,把某一箱的每块都磨去一钱,现在有一个带有砝码的天平,请称一次找到不足量的那个箱子。

你有四个装药丸的罐子,其中有一瓶被污染了,已知每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1。

只称量一次,如何判断哪个罐子的药被污染了?(回答能或者不能)2.2.有5瓶药,每瓶里都装有100片药,其中有3瓶里的药每片重10克,另有2瓶里的药每片重9克。

用一个蛮精确的小秤,只称一次,如何找出份量较轻的那两个药瓶?(回答能或者不能)古印度有一位老人,临终前留下遗嘱要把17头牛分给3个儿子。

他在遗嘱里写明:老大得总数的二分之一,老二得总数的三分之一,老三得总数的九分之一。

你认为应该怎么分呢?1.1.11只羊,老大得1/2,老2得1/4,老3得1/6,问怎么分?(按照老大、老二、老三得羊的只数回答,中间用一个空格分隔,例:老大3只,老二4只,老三5只,则回答3 4 5)2.2.19匹马,老大得1/2,老2得1/4,老3得1/5,问怎么分?(按照老大、老二、老三得马的匹数回答,中间用一个空格分隔,例:老大3匹,老二4匹,老三5匹,则回答3 4 5)3.3.23头牛,老大得1/2,老2得1/3,老3得1/8,问怎么分?(按照老大、老二、老三得牛的只数回答,中间用一个空格分隔,例:老大3头,老二4头,老三5头,则回答3 4 5)有一位老人去世后,留下了7头耕牛,他在遗嘱上写明:“长子得一半;余下的次子得一半;再余下的,小儿子得;不得杀牛,不得剩余。

”应该如何分这几头牛?1.1.41头猪,老大得1/2,老二得1/3,老三得1/7,问怎么分?(按照老大、老二、老三得猪的只数回答,中间用一个空格分隔,例:老大3只,老二4只,老三5只,则回答3 4 5)2.2.7头牛,老大得1/2,老2得1/4,老3得1/8,问怎么分?(按照老大、老二、老三得牛的头数回答,中间用一个空格分隔,例:老大3头,老二4头,老三5头,则回答3 4 5)3.3.23间房子,老大得1/2,老2得1/3,老3得1/8,问怎么分?(按照老大、老二、老三得房子的数量回答,中间用一个空格分隔,例:老大3间,老二4间,老三5间,则回答3 4 5)烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?现在有若干条材质相同的绳子,问最少用多少根绳子可以计时一个小时十五分钟呢?如何计时?1.1.烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断15分钟?(回答能或者不能)2.2.烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断45分钟?(回答能或者不能)3.3.烧一根不均匀的绳要用一个小时,现在有3根同样的绳子,如何用它来判断7.5分钟?(回答能或者不能)游戏策略测试卷A1、玩牧羊人过河游戏(回答“过关了”或者“没有过关”)规则:1、牧羊人不在,狼会吃羊2、大黑羊不在,大白羊会欺负小黑羊3、大白羊不在,大黑羊会欺负小白羊4、能驾驶木筏的只有牧羊人、大黑羊、大白羊5、木筏一次只能载其中的两个2、如果你有无穷多的水,一个8公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?(回答能或者不能)3、如果你有无穷多的水,一个8公升的提捅,一个13公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出6公升的水?(回答能或者不能)4、如果你有无穷多的水,一个8公升的提捅,一个5公升的提捅,一个20公升的提桶,三只提捅形状上下都不均匀,问你如何才能准确称出18公升的水?(回答能或者不能)5、对于任意一个自然数n,当n为奇数时,加上143;当n为偶数时,除以2;这算一次操作。

现在对195连续进行这种操作,在操作过程中是否可能出现1000?为什么?(回答能或者不能)6、15个球和一个天平,现知道只有一个比其它的轻,问怎样称才能用三次就找到那个球?(回答能或者不能)7、19个球和一个天平,现知道只有一个比其它的轻,问怎样称才能用三次就找到那个球?(回答能或者不能)8、你有8个装药丸的罐子,其中有一瓶被污染了,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1。

只称量一次,如何判断哪个罐子的药被污染了?(回答能或者不能)9、19匹马,老大的1/2,老2的1/4,老3的1/5,问怎么分?(按照老大/老二/老三得形式回答,例:老大分14头,老二分4头,老三分1头,则回答14/4/1)10、烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断45分钟?(回答能或者不能)游戏策略测试卷B1、玩人鬼过河游戏(回答“过关了”或者“没有过关”)规则:1、船一次最多能载两个人2、当某一岸上的鬼的数量大于人的数量时,鬼会把人吃掉2、假设有一个池塘,里面有无穷多的水。

现有3个空水壶,容积分别为6升、18升和32。

问题是能否使用这三个水桶取得25升水?如果能,取水的过程是什么?(回答能或者不能)3、在黑板上任意写一个大于1的自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作。

问:最多经过_____次操作,黑板上就会出现2?4、对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。

如对18和42可进行这样的连续变换:18,42→18,24→18,6→12,6→6,6。

直到两数相同为止。

问:对209和407进行这样的连续变换,最后得到的两个相同的数是_____?5、有19个乒乓球中有一个因超重关系不合格,现有一架天平,要求称三称,用怎样的称法找出超重的乒乓球?(回答能或者不能)6、20个箱子,每个箱子100个苹果,其中一个箱子的苹果是9两/个,其他的都是1斤/个。

要求利用一个秤,只秤一次,找出那个装9两/个的箱子。

只需回答能不能做到即可(回答能或者不能)7、有7克、2克砝码各一个,天平一只,如何只用这些物品,称三次,将140克的盐分成50、90克各一份?(回答能或者不能)8、41头猪,老大的1/2,老2的1/3,老3的1/7,问怎么分?(两个答案之间用一个空格分隔,例:老大分14头,老二分4头,老三分1头,则回答14 4 1)9、有101元钱,现在要分给A同学总数的二分之一,分给B同学剩下的二分之一,最后剩下的分给C同学,如何分这101元钱?(两个答案之间用一个空格分隔,例:A分到50元,B分到40元,C分到11元,则回答50 40 11)10、烧一根不均匀的绳要用一个小时,现在有2根同样的绳子,如何用它来判断45分钟?(回答能或者不能)。

相关文档
最新文档