全息照相实验报告

合集下载

全息照相实验报告_实验报告_

全息照相实验报告_实验报告_

全息照相实验报告如何做全息照相实验?实验报告又是如何写?那么,下面请参考公文站小编给大家分享的全息照相实验报告,希望对大家有帮助。

全息照相实验报告【实验目的】1.了解全息照相的基本原理。

2.掌握全息照相以及底片的冲洗方法。

3.观察物象再现。

【实验仪器】防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。

【实验原理】全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。

普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。

而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。

此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。

由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。

1.全息记录全息照相的光路图如下图所示:感光底板用激光光源照射物体,物体因漫反射发出物光波。

波场上没一点的振幅和相位都是空间坐标的函数。

我们用O表示物光波没一点的复振幅与相位。

用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。

这样在记录信息的底板上的总光场是物光与参考光的叠加。

叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为I=(O+R)(O*+R*)=OO*+RR*+OR*+O*R=IO+IR+OR*+O*R(式1)式子中,O*与R*分别是O和R的共轭量;I。

,IR分别为物光波和参考光波独立照射底版时的放光强度。

全息照相实验报告

全息照相实验报告

一、实验目的1. 了解全息照相的基本原理及其应用领域。

2. 掌握全息照相的拍摄方法和实验技术。

3. 通过实验观察全息图的记录和再现过程,理解全息成像的原理。

4. 分析实验结果,探讨全息照相技术的优缺点及其在相关领域的应用前景。

二、实验仪器1. 防震光学平台2. 氦氖激光器3. 高频滤波器4. 扩束透镜(两个)5. 分束器6. 反射镜(两个)7. 全息型干版8. 显影液和定影液9. 暗房设备三、实验原理全息照相是一种利用光的干涉和衍射原理进行三维成像的技术。

其基本原理如下:1. 全息记录:将物体发出的光波(物光波)与参考光波进行干涉,在感光材料(全息干版)上记录下干涉条纹,这些条纹称为全息图。

2. 全息再现:将全息图置于适当的照明条件下,通过衍射原理,使全息图中的干涉条纹重新产生干涉,从而再现物体的三维图像。

四、实验步骤1. 搭建实验装置:按照实验原理图搭建全息照相实验装置,包括光源、分束器、反射镜、扩束透镜、全息干版等。

2. 拍摄全息图:将物体放置于全息干版前,调整光源和反射镜的位置,使物光波和参考光波进行干涉。

使用相机拍摄干涉条纹,得到全息图。

3. 冲洗全息图:将拍摄得到的全息图放入显影液中浸泡,待显影完成后,取出放入定影液中定影。

4. 观察全息再现:将冲洗好的全息图放置于适当的位置,调整光源和反射镜的位置,观察全息再现的物体图像。

五、实验结果与分析1. 全息图的记录:通过实验,成功记录了物体的全息图,观察到的干涉条纹清晰可见。

2. 全息图的再现:调整光源和反射镜的位置后,成功再现了物体的三维图像,观察到的图像具有立体感和真实感。

六、实验总结1. 全息照相技术具有记录物体三维信息的能力,能够再现物体的立体图像,具有广泛的应用前景。

2. 全息照相实验操作较为复杂,需要精确控制实验装置和光源,才能获得高质量的全息图。

3. 全息照相技术在光学、医学、生物、材料等领域具有广泛的应用,如全息存储、全息显示、全息测量等。

全息照相 实验报告

全息照相 实验报告

全息照相实验报告全息照相实验报告引言:全息照相是一种利用光的干涉和衍射原理记录并再现物体的三维信息的技术。

它不同于传统的摄影技术,能够捕捉到更加真实的物体形态和细节。

本实验旨在探究全息照相的原理和应用,并通过实际操作进行验证。

一、实验装置与原理实验装置主要包括激光器、物体、全息板、参考光源和干涉平台。

激光器产生单色、相干的激光光源,物体是待记录的三维物体,全息板是记录物体信息的介质,参考光源提供参考光波,干涉平台用于固定和调整装置。

全息照相的原理是利用激光光源照射物体,物体的光波与参考光波相干叠加,形成干涉图样。

这些干涉图样被记录在全息板上,通过再次照射全息板,可以重建出物体的三维信息。

二、实验步骤1. 准备实验装置,确保激光器和参考光源的稳定输出。

2. 将物体放置在干涉平台上,并调整合适的位置和角度。

3. 调整全息板的位置和角度,使其与物体和参考光源的光波相交。

4. 打开激光器,照射物体和全息板,进行记录。

5. 关闭激光器,移除物体,重新照射全息板,进行重建。

三、实验结果与分析实验中,我们选择了一个小玩具作为物体,通过全息照相技术进行记录和重建。

在记录过程中,我们观察到物体的光波与参考光波相干叠加,形成了一幅干涉图样。

这个图样记录在全息板上,呈现出一种类似彩虹的条纹纹理。

在重建过程中,我们重新照射全息板,发现原先的条纹纹理被再次呈现出来,并且物体的三维形态也被恢复出来。

这种全息照相技术能够在一定程度上还原物体的真实形态,使得观察者能够从不同角度获得更加真实的观感。

四、全息照相的应用全息照相技术在科学研究、工程设计和艺术创作等领域都有广泛的应用。

在科学研究中,全息照相可以用于记录微小物体的形态和运动,为研究者提供更加详细的信息。

在工程设计中,全息照相可以用于检测和分析物体的缺陷和变形,提高产品的质量和可靠性。

在艺术创作中,全息照相可以用于创造立体感和动态效果,为艺术家带来更多的创作灵感。

然而,全息照相技术也存在一些挑战和限制。

全息照相的实验报告

全息照相的实验报告

全息照相的实验报告全息照相的实验报告引言:在现代科技的快速发展中,全息照相作为一种新兴的图像记录技术,引起了广泛的关注和研究。

本实验旨在通过实际操作,了解全息照相的原理、方法和应用,并探讨其在科学研究和工程领域中的潜在应用价值。

一、实验目的本次实验的主要目的有以下几点:1. 了解全息照相的基本原理和技术;2. 掌握全息照相的实验操作方法;3. 分析全息照相的优点和局限性;4. 探讨全息照相在现实生活和科学研究中的应用前景。

二、实验装置和步骤1. 实验装置:本次实验所使用的全息照相装置包括激光器、分束镜、物镜、参考光源、全息板等。

2. 实验步骤:(1)调整激光器和参考光源的位置,使其尽可能稳定;(2)将待拍摄的物体放置在全息板前方适当位置,并固定;(3)调整物镜位置,使物体的全息图像清晰可见;(4)打开激光器,使其发出一束单色、相干的激光;(5)用分束镜将激光分为两束,一束为参考光,另一束为物光,分别照射到全息板上;(6)关闭激光器,取下全息板;(7)将全息板放置在光学显影液中显影;(8)用显影液洗净全息板,使其干燥。

三、实验结果与讨论通过实验操作,我们获得了一张全息照片,并对其进行了分析和讨论。

1. 全息照片的特点:全息照片具有以下几个显著特点:(1)全息照片能够记录物体的全息信息,包括形状、光学特性等;(2)全息照片具有立体感,观看时可以从不同角度获得不同的视角;(3)全息照片具有高分辨率和高信息密度,能够保留更多的细节;(4)全息照片可以长时间保存,不易损坏。

2. 全息照相的应用:全息照相在科学研究和工程领域中具有广泛的应用前景,例如:(1)全息显微镜:通过全息照相技术,可以获得具有高分辨率的三维显微图像,有助于生物学和医学研究;(2)全息光学元件:全息照相可以制作出各种光学元件,如全息光栅、全息透镜等,用于光学通信、光学计算和光学存储等领域;(3)全息显示技术:全息照相可以实现真实感和立体感更强的显示效果,有望应用于虚拟现实、增强现实等领域。

全息照相大学物理实验总结6篇

全息照相大学物理实验总结6篇

全息照相大学物理实验总结6篇第1篇示例:全息照相是一种利用光的干涉原理来记录和重现三维物体形态的技术。

在物理实验中,全息照相常常被用来展示光的波动性质、干涉现象以及光的衍射特性。

通过对全息照相的实验,我们可以更好地理解光的性质和物理规律。

在进行全息照相实验时,我们首先需要准备一块全息记录板和一个激光光源。

将三维物体放置在激光的光路上,并将全息记录板放置在物体后方适当的位置上。

然后打开激光光源,让光线照射到物体上,经过反射或透射后,光线通过全息记录板并记录下物体的三维信息。

实验中最重要的部分是照相过程,通过调整全息记录板和光源的位置,确保光线正确定位并记录下物体的干涉模式。

照相完成后,我们可以用激光光源再次照射全息记录板,这时会出现全息照相的重现效果,即我们可以看到物体的三维形态在全息图上精确还原。

通过全息照相实验,我们可以观察到光的波动性质。

根据干涉原理,当激光光线照射到物体表面时,光线会发生干涉现象,形成明暗交替的干涉条纹。

这些干涉条纹记录下了物体的表面形态信息,进而被全息记录板保存下来。

在重现过程中,光线再次照射到全息记录板上,干涉条纹会产生叠加效应,使得物体的立体形态得以重现。

全息照相还可以展示光的衍射特性。

当光线通过物体的边缘或孔隙时,会发生衍射现象,产生波纹状的光斑。

这些衍射图样也会被全息记录板记录下来,使得在全息图中可以清晰地看到物体的细微结构和表面特征。

全息照相是一种非常精密和高级的光学技术,通过实验可以更好地理解光的波动性质、干涉现象和衍射特性。

通过对全息照相的学习和实践,我们可以更深入地了解光的行为规律,为日后的光学研究和应用打下坚实的基础。

希望以上内容能对大家有所帮助,谢谢阅读!第2篇示例:全息照相大学物理实验总结全息照相是一种利用光的干涉原理来记录物体三维形状的技术,广泛应用于科学研究、医学成像、艺术创作等领域。

在物理学实验中,全息照相也是一个重要的实验项目,通过全息照相实验可以深入理解光的波动性和干涉原理,提高学生对光学现象的认识和理解。

全息照相实验报告_2

全息照相实验报告_2

西安交通大学高级物理实验报告课程名称:高级物理实验实验名称:光全息照相系列实验第1 页共6页系别:实验日期:2014年12月9日姓名:班级:学号:实验名称:光全息照相系列实验一、实验目的:1.了解全息照相基本方法和原理。

2.掌握拍摄全息图的实验方法。

二、实验仪器:全息台、He-Ne激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底板等。

三、实验原理:1.全息照片的拍摄:全息照片是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程。

两列相干光波,一列直接来自于激光源,另一列通过物体反射,分别入射到感光板上,由于二者是相干光,所以在感光板上干涉形成明暗相间的干涉条纹,感光板上的光强分布及干涉条纹间距与光的振幅和相位都有关,这样就不仅能记录物体的颜色,还能够记录物体的位置远近等信息。

2.物体的再现:由于全息照相在感光底板上形成的是干涉图样,所以观察全系照片时必须用和与原来参考光完全相同的光束去照射,称为再现光。

再现过程是干涉图样的衍射过程。

3.全息照相的特点:全息照相是利用光的干涉和衍射原理,而普通的照相则是利用广德透镜成像原理;全息照片上的每个点都记录了整个物体的信息,因此全息照片具有可分割的特点;由于全息照片记录了物光的全部信息,所以再现出的物体的象是一个与被摄物体完全相同的三维立体象。

四、实验任务环境温度:18.5℃。

1.激光全息图的拍摄(1)按照如图所示的光路图调节实验仪器(各仪器之间距离如图所示),注意所有的透镜光轴应基本在同一水平线上并与激光光束平行;参考光和物光的光程46.0+95.0=141.0cm=92.5+27.5+21,光程差为0.(2)曝光;在周围环境尽量安静黑暗的情况下开始,打开激光发射器月一秒钟关闭。

(3)显影:浸泡时间约为1分钟。

显影液配方:蒸馏水500ML、米土尔2g、无水亚硫酸钠90g、对苯二酚8g、无水碳酸钠48g.(4)清洗;(5)定影:浸泡时间约为三分钟。

全息照相物理实验报告

全息照相物理实验报告

全息照相物理实验报告目录1. 实验目的1.1 研究对象2. 实验原理2.1 全息照相的基本原理2.2 全息照相的工作流程3. 实验材料3.1 全息照相设备3.2 感光胶片4. 实验步骤4.1 准备工作4.2 曝光4.3 显影5. 实验结果5.1 观察结果5.2 实验数据分析6. 实验讨论6.1 误差分析6.2 实验改进7. 实验结论实验目的研究对象本实验旨在通过全息照相物理实验,探究全息照相技术的基本原理和工作流程,加深对全息照相的理解。

实验原理全息照相的基本原理全息照相是一种基于干涉原理的照相技术,通过记录物体的全息图像来实现物体的三维再现。

全息照相的工作流程全息照相的工作流程包括记录全息图、显影、复原等步骤,其中记录全息图是实现全息照相的关键步骤。

实验材料全息照相设备本实验所使用的全息照相设备主要包括激光器、分束器、衍射镜、感光胶片等。

感光胶片感光胶片是记录全息图像的重要介质,其特性将直接影响全息照相的效果。

实验步骤准备工作1. 搭建好全息照相设备,并调试好各个部件。

2. 将要拍摄的物体放置在适当位置。

曝光1. 将激光器照射到物体上,产生干涉效应。

2. 记录全息图像,使感光胶片曝光。

显影1. 将感光胶片进行显影处理,使全息图像显现出来。

实验结果观察结果经过显影处理后,可以清晰地观察到记录的全息图像,其中包含了物体的三维信息。

实验数据分析通过分析全息图像的内容和质量,可以评估实验的效果,并获取有关被拍摄物体的信息。

实验讨论误差分析在全息照相过程中,可能会受到环境光干扰、器材问题等因素影响,导致全息图像质量下降。

实验改进为了提高全息照相效果,可以对设备进行优化,增加环境控制等措施,减小误差的影响。

实验结论通过全息照相物理实验,我们深入了解了全息照相技术的基本原理和实际应用,为今后的研究和应用奠定了基础。

全息技术照相实验报告

全息技术照相实验报告

一、实验目的1. 了解全息技术的基本原理和拍摄方法。

2. 掌握全息技术拍摄过程中的操作技能。

3. 通过实验,观察全息图像的再现效果,加深对全息技术原理的理解。

二、实验原理全息技术是一种记录和再现光波振幅和相位信息的照相技术。

其基本原理是利用光的干涉和衍射现象,将物体光波和参考光波进行干涉,形成干涉条纹,将干涉条纹记录在感光材料上,从而获得全息图像。

当用激光照射全息图像时,由于干涉条纹的存在,光波发生衍射,从而再现出物体的三维立体图像。

三、实验仪器与材料1. 全息实验台2. 半导体激光器3. 分束镜4. 反射镜5. 扩束镜6. 载物台7. 底片夹8. 被摄物体9. 全息干板10. 曝光定时器11. 显影及定影器材四、实验步骤1. 搭建实验装置:将全息实验台、半导体激光器、分束镜、反射镜、扩束镜等仪器连接好,确保光路畅通。

2. 调整光路:根据实验要求,调整光路参数,使物光束和参考光束满足干涉条件。

3. 拍摄全息图像:a. 将被摄物体放置在载物台上,调整物体位置,确保物体与全息干板之间的距离适中。

b. 开启激光器,调节曝光时间,使全息干板充分感光。

c. 拍摄全息图像,记录曝光参数。

4. 显影及定影:将拍摄好的全息干板进行显影和定影处理,以增强图像质量。

5. 观察全息图像:a. 用激光照射全息图像,观察再现效果。

b. 从不同角度观察全息图像,比较立体效果。

五、实验结果与分析1. 通过实验,成功拍摄出全息图像,并观察到再现的三维立体效果。

2. 实验过程中,调整光路参数和曝光时间对全息图像的质量有很大影响。

合适的参数可以使全息图像更加清晰、立体感更强。

3. 全息技术在艺术、防伪、光学测量等领域具有广泛的应用前景。

六、实验总结本次实验使我们对全息技术的基本原理和拍摄方法有了深入的了解,掌握了全息图像的再现效果。

在实验过程中,我们学会了调整光路参数和曝光时间,提高了实验技能。

全息技术在现代社会具有广泛的应用价值,通过本次实验,我们对全息技术有了更加浓厚的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全息照相实验报告程子豪12 少年班01一、实验目的:1.了解全息照相记录和再现的基本原理和主要特点;2.学习全息照相的操作技术;3.观察和分析全息图的成像特性。

二、实验原理:全息照相原理的文字表述:普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。

全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。

这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。

全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。

目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。

伽伯也因此而获得了1971年度的诺贝尔物理学奖。

全息照相在记录物光的相位和强度分布时,利用了光的干涉。

从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。

在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。

具体来说,全息照相包括以下两个过程:1、波前的全息记录利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。

通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。

典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。

由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。

干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。

所以全息图不是别的,正是参考光波和物光波干涉图样的记录。

显然,全息照片本身和原来物体没有任何相似之处。

2、衍射再现物光波前的再现利用了光波的衍射。

用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。

这是一个虚像,它具有原始物体的一切特征。

此外还有一个实像,称为共轭像。

应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

双曝光全息技术用于微小位移(形变)的测量:图一双曝光法光路图(上述文字节选自《利用双曝光全息干涉场测物体微小位移》的论文)、像面全息的实验原理:将物体靠近全息记录介质,或利用成像系统将物体成像在记录介质附近,再引入一束与之相干的参考光束,即可制作像全息图。

当物体紧贴记录介质或物体的像跨立在记录介质表面上时,得到的全息图称为像面全息图。

因此,像面全息图是像全息图的一种特例。

像面全息图的特点是可以用宽光源和白光再现。

对于普通的全息图,当用点光源再现时,物上的一个点的再现像仍是一个像点。

若照明光源的线度增大,像的线度也随之增大,从而产生线模糊。

计算表明,记录时物体愈靠近全息图平面,对再现光源的线度要求就愈低。

当物体或物体的像位于全息图平面上时。

再现光源的线度将不受限制。

这就是像面全息图可以用宽光源再现的原因。

全息图可以看成是很多基元全息图的叠加,具有光栅结构。

当用白光照明时,再现光的方向因波长而异,故再现像点的位置也随波长而变化,其变化量取决于物体到全息图平面的距离。

可见,各波长的再现像将相互错开又交叠在一起,从而使像变得模糊不清,产生色模糊。

当全息干板处于离焦位置(即不在成像面上)时,再现像的清晰度将下降。

离焦量越大,再现像就越模糊不清。

然而,像面全息图的特征,是物体或物体的像位于全息图平面上,因而再现像也位于全息图平面上。

此时,即使再现照明光的方向改变,像的位置也不发生变化,只是看起来颜色有所变化罢了。

这就是像面全息图可以用白光照明再现的原因所在。

、实验基本条件:1、一个好的相干光源。

全息原理在1948年就已提出,但由于没有合适的光源而难以实现。

激光的出现为全息照相提供了一个理想的光源,这是因为激光具有很好的空间相干性和时间相干性。

,应尽可能使两光束的光程接近,以使光程差在激光的相干长度内。

2、一个稳定性较好的防震台。

由于全息底片上所记录的干涉条纹很细,相当于波长量级,在照相过程中极小的干扰都会引起干涉条纹的模糊,不能形成全息图,因此要求整个光学系统的稳定性良好。

从布拉格法则可知:条纹宽度2sin 2d λθ=⎛⎫ ⎪⎝⎭,由此公式可以估计一下条纹的宽度。

当物光与参考光之间的夹角︒=60θ时,nm 8.632=λ,则m d μ6328.0=。

可见,在记录时条纹或底片移动1 m ,将不能成功地得到全息图。

因此在记录过程中,光路中各个光学元件(包括光源和被摄物体)都必须牢牢固定在防震台上。

从公式可知,当θ角减小时,d 增加,抗干扰性增强。

但考虑到再现时使衍射光和零级衍射光能分得开一些,θ角要大于300,一般取450左右。

还有适当缩短曝光时间,保持环境安静都是有利于记录的。

3、高分辨率的感光底片。

普通感光底片由于银化合物的颗粒较粗,每毫米只能记录几十至几百条,不能用来记录全息照相的细密干涉条纹,必须采用高分辨率的感光底片要获得最终的全息图,充分了解和学习感光底片的显影、定影、冲洗等有关摄影的暗室技术知识也是不可缺少的。

三、实验步骤:、同轴全息照相实验:1、调节防震台,调节各光学元件的中心等高,,使激光光束大致与实验台平行。

2. 打开He-Ne 激光器,摆好光路,使光路系统满足下列要求: (1)物光和参考光的光程大致相等;(2)经扩束镜扩展后的参考光应均匀照在整个底片上,被摄物体各部分也应得到较均匀照明。

(3)使两光束在底片处重叠时之间的夹角范围为15到45度为宜。

(4)在底片处物光和参考光的光强比在合适的范围之内。

3. 关上照明灯(可开暗绿灯),确定曝光时间,调好定时曝光器。

可以先练习一下快门的使用。

4.关闭快门挡住激光,将底片从暗室中取出装在底片架上,应注意使乳胶面对着光的入射方向。

静置后进行曝光。

曝光过程中绝对不准触及防震台,并保持室内安静。

5.显影及定影。

显影液与定影液由实验室提供。

显影定影温度以20摄氏度最为适宜。

显影时间到1分钟,定影时间3~5分钟。

定影后的底片应放在清水中冲洗5~10分钟,晾干。

图2、双曝光全息术测微小位移:过程与类似,只是将物体替换为小铁片,将它处于竖直位置及加应力之后偏离竖直位置时的全息图都记录在一块底版上,观察干涉条纹以获取数据。

、像面全息图(白光再现):1.选择元件:根据光路图选择合适的光学元件及镜架。

2.调整光路:选择其中一条光路按照光路图拼搭和调整光路。

通过移动反射镜调整参考光的光程,使参考光与物光的光程差接近于零。

物光与参考光的夹角不要太大,一般在15到45度之间。

全息干板应位于物体的共轭面(即成像面)上。

物体像的大小可通过调整物体和全息干板的位置来控制。

最好将物体置于两倍焦距处,使之1:1成像。

以防止像的失真。

3.调整光束比:根据物体的反射性能,通过调节分束镜,使参考光与物光的光束比为处于一个合适的范围。

4.曝光记录:在暗室中稳定后进行曝光。

显影时间到1分钟,定影时间3~5分钟。

定影后的底片应放在清水中冲洗5~10分钟,,即得到吸收型像面全息图。

5.漂白处理:为了提高衍射效率,用漂白液进行漂白处理,把黑色部分消除后再稍做浸泡,水洗数分钟后晾干,即得到相位型像面全息图。

图3四、实验记录与数据分析:数据记录表一 D-19显影液配方成分用量作用温水(50℃)800ml米吐尔2g显影剂(快速还原,显像较软)无水亚硫酸钠90g保护剂(防止药液氧化)对苯二酚8g显影剂(慢速显影,显影较硬)无水硫酸钠48g促进剂溴化钾5g抑制剂(防止产生灰雾)注:溶解后加水至1000ml。

成分用量作用温水(60℃-70℃)600ml硫代硫酸钠240g定影(溶去未感光的溴化银)无水亚硫酸钠15g保护剂(使硫代硫酸钠遇酸不分解)醋酸45ml停显剂(中和显影液,以停止显影)硼酸8g坚膜剂(使乳剂药膜坚固)硫酸铝钾矾15g抑制剂(防止亚硫酸铝沉淀产生)注:溶解后加水至1000ml。

成分重铬酸铵浓硫酸溴化钾水用量20g14ml92g1000ml表四全息照相(及双曝光全息测微小位移)实验数据(请结合图2)分束镜全反镜M1物光光程全反镜M1物体物体感光底版分束镜全反镜M2参考光光程全反镜M2感光底版室温℃显影时间1min定影时间3min曝光时间2sHe-Ne激光器波长分束镜全反镜M1物光光程全反镜M1物体物体感光底版分束镜全反镜M2参考光光程全反镜M2感光底版室温℃显影时间30s定影时间3min曝光时间2sHe-Ne激光器波长实验掠影按照图2搭建的光路全息照相双曝光全息法测微小位移白光再现像面全息实验结果分析:对全息照相实验的分析:一、系统稳定性对实验结果的影响:由于全息图上所记录的是参考光和物光的干涉条纹, 而这些条纹非常细, 在曝光过程中, 极小的振动和位移都会引起干涉条纹的模糊不清, 甚至使干涉条纹完全不能记录下来。

二、光路对实验结果的影响:(1) 参考光和物光的光程差的影响。

参考光和物光的光程差不能太大, 不能大于所用激光的相干长度, 否则两者不能相干, 无法在全息干板上获得干涉条纹。

(2) 参考光和物光的夹角的影响。

假如全息干板上干涉条纹的间距为d, 光源波长为λ。

根据干涉原理, d 与参考光和物光之间的夹角θ有关d=λ/2sin(θ/2), 而干板分辨率η 与d 有关η=1/d=2sin(θ/2)/ λ。

可以看出, θ角愈大, 所记录的干涉条纹就越细, 对干板的分辨率要求越高,故夹角θ不能太大。

而夹角θ对全息图再现象时的观察窗(视角) 有影响, 夹角大, 可在较大范围内从不同角度观察物象, 反之, 观察窗则小, 因此夹角θ也不能太小。

(3) 参考光和物光的光强比的影响。

全息照相是物光与参考光的双光束干涉. 对于一般双光束干涉来说, 如果2束光的光强相同, 干涉条纹可得到最大的对比度, 这对一般线性接受元件是合适的。

相关文档
最新文档