磨削原理
机械制造中的磨削工艺工作原理

机械制造中的磨削工艺工作原理磨削工艺是机械制造领域中常用的一种加工方法,通过磨削可以改善工件表面的粗糙度和形状精度,提高工件的质量和表面光洁度。
磨削工艺的工作原理涉及到磨削机床、磨削磨具和工件之间的相互作用,下面将从这三个方面进行详细阐述。
1. 磨削机床磨削机床是磨削工艺中的重要设备,它提供了对磨削磨具和工件进行相对运动的基础。
磨削机床一般由主要部件和辅助部件组成,主要部件包括主轴、磨削头、工作台等。
主轴通过驱动磨削头产生旋转运动,磨削头带动磨削磨具对工件表面进行磨削。
2. 磨削磨具磨削磨具是磨削工艺中实际进行磨削的工具,它包括磨削粒子和磨具基体。
磨削粒子的选择和排列方式直接决定了磨削的效果。
常用的磨削粒子有氧化铝、碳化硅等,它们具有硬度高、耐磨性好等特点。
磨具基体起到支撑和固定磨削粒子的作用,常用的磨具基体有陶瓷、金属、树脂等材料制成。
在磨削工艺中,磨具与工件之间的相互作用是通过磨削粒子与工件表面的接触来实现的。
磨削粒子在磨削过程中对工件表面产生一定的切削力,切削力的大小与磨削粒子的硬度、粒度、磨削速度等因素相关。
磨削粒子与工件表面的接触越大,切削力越大,磨削效果越好。
3. 工作原理磨削工艺的工作原理可以概括为磨削磨具与工件表面的相互研磨作用。
当磨削工艺开始时,磨削磨具接触到工件表面,磨削粒子通过切削力对工件表面进行破坏和剥离,同时产生磨渣和切削热。
磨渣被磨削磨具和工作台带走,切削热则通过磨削磨具和冷却液排出。
磨削工艺的工作原理中还存在磨削力和磨削温度的问题。
在磨削过程中,磨削力对工件表面产生一定的切削和热变形,而磨削温度则会影响磨削粒子与工件表面的接触。
过高的磨削力和磨削温度会导致工件表面的质量下降和工具的损坏。
为了提高磨削工艺的效果,需要采取适当的磨削参数和技术手段。
磨削参数包括磨削速度、进给量等,它们的选择需要考虑到工件材料、磨削粒度和切削力等因素。
技术手段包括冷却液的使用、磨削液的选用等,它们可以有效降低磨削温度和防止损伤。
简述磨削加工

磨削加工1. 简介磨削加工是一种常见的金属加工方法,通过使用磨料对工件表面进行摩擦磨损,以达到加工的目的。
它可以用于改善工件表面质量、调整尺寸精度和形状精度,以及去除杂质和残余应力等。
磨削加工广泛应用于机械制造、航空航天、汽车制造、模具制造等领域。
2. 磨削原理磨削加工是利用切削性能较差的材料(磨料)对工件进行切削,通过与工件表面的相对运动来实现切削作用。
其主要原理包括以下几个方面:•切削颗粒:磨料是由硬度较高的颗粒组成,通常为氧化铝、碳化硅等材料。
这些颗粒与工件表面摩擦产生很高的切向力,从而实现切削作用。
•切向力:当磨料与工件表面接触时,由于相对运动产生了摩擦力,使得磨料在切向方向上产生了切削力。
这种力对工件表面进行了切削作用。
•磨屑形成:在磨削过程中,磨料与工件表面的摩擦力和切向力使得工件表面的材料被切削下来,形成了磨屑。
这些磨屑会随着磨料的运动带走,并通过冷却液进行排出。
•热效应:由于切削过程中的摩擦力和切向力,会产生较高的温度。
为了避免温度过高引起工件变形或损坏,通常需要使用冷却液进行冷却。
3. 磨削方法根据加工目标和工件材料的不同,磨削加工可以采用多种方法。
下面介绍几种常见的磨削方法:3.1 平面磨削平面磨削是最基本、最常用的磨削方法之一。
它主要用于对平面工件进行加工,如平面零件、平底孔等。
平面磨削通常采用平面砂轮进行加工,通过对工件表面进行连续的摩擦来实现加工效果。
在平面磨削过程中,需要注意保持磨削面与砂轮之间的良好接触,以确保加工质量。
3.2 内圆磨削内圆磨削是用于加工孔内表面的一种方法。
它通常使用内圆砂轮进行加工,通过对孔内表面进行旋转磨削来实现加工效果。
在内圆磨削过程中,需要注意选择合适的砂轮尺寸和形状,并控制好加工参数,以确保加工质量。
3.3 外圆磨削外圆磨削是用于加工轴类零件外表面的一种方法。
它通常使用外圆砂轮进行加工,通过对零件外表面进行旋转磨削来实现加工效果。
在外圆磨削过程中,同样需要注意选择合适的砂轮尺寸和形状,并控制好加工参数。
磨削加工原理

磨削加工原理
磨削加工是一种常见的金属加工方法,通过磨削工具对工件进
行切削,以达到精密加工的目的。
磨削加工原理是在磨削过程中,
磨料颗粒不断接触工件表面,将工件表面的金属材料逐渐磨除,从
而形成所需的形状和尺寸。
磨削加工原理的关键在于磨料颗粒与工件表面的接触。
在磨削
过程中,磨料颗粒以一定的速度和压力接触工件表面,通过不断的
摩擦和冲击作用,磨削掉工件表面的金属材料。
这种磨削过程需要
一定的能量输入,通常是通过旋转的磨削工具或者工件本身的旋转
来提供。
磨削加工原理的另一个重要方面是磨削工具的选择和使用。
不
同的磨削工具适用于不同的工件材料和加工要求。
常见的磨削工具
包括砂轮、砂带、砂纸等,它们的磨料颗粒大小、形状和硬度都会
影响磨削加工的效果。
此外,磨削工具的转速、进给速度、磨削压
力等参数也会对磨削加工产生影响。
在磨削加工原理中,还需要考虑磨削过程中产生的热量和磨屑。
磨削过程中,由于摩擦和冲击作用,会产生大量的热量,如果不能
及时散去,会对工件和磨削工具造成损坏。
同时,磨削过程中产生的磨屑也需要及时清除,以免对加工质量产生影响。
总的来说,磨削加工原理是通过磨料颗粒不断接触工件表面,将工件表面的金属材料逐渐磨除,从而实现精密加工的目的。
在实际应用中,需要根据工件材料和加工要求选择合适的磨削工具和加工参数,同时要注意散热和清屑,以确保磨削加工的效果和质量。
磨削过程及磨削原理

六、砂轮的磨损与耐用度
形态:磨耗磨损(A)、磨粒破碎(B-B) 和脱落磨损(C-C)。 砂轮耐用度:砂轮钝化、变形后加工 质量和效率降低。~用砂轮在两次修 整之间的实际磨削时间度时,工件将发 生颤振,表面粗糙度突然增大,或出 现表面烧伤现象。
由图可知,缩 短初磨阶段和稳定 阶段可提高生产效 率,而保持适当清 磨进给次数和清磨 时间可提高表面质 量。
五 磨削热和磨削温度
1. 磨削温度的基本概念 2. 影响磨削温度的主要因素
砂轮速度V: V ↑→θ↑ 工件速度Vw : Vw ↑→θ↓ 径向进给量fr: fr↑→θ↑ 工件材料: 导热性↓→θ↑ 砂轮硬度与粒度:硬度↓→θ↓ 磨粒大小↑→θ↓
二 磨屑的形成过程
滑擦阶段:磨粒切削厚度非常小,在 工件表面上滑擦而过,工件仅产生弹 性变形。
刻划阶段:工件材料开始产生塑性变 形,磨粒切入金属表面,磨粒的前方 及两侧出现表面隆起现象,在工件表 面刻划成沟纹。磨粒与工件间挤压摩 擦加剧,磨削热显著增加。
切削阶段:随着切削厚度的增加,在 达到临界值时,被磨粒推挤的金属明 显的滑移而形成切屑。
磨削过程及磨削原理
1 磨料特征 2 磨屑的形成过程 3 磨削力 4 磨削阶段 5 磨削热和磨削温度 6 砂轮磨损与耐用度
一 磨料特征
很不规则,大多数呈菱形八面体; 顶尖角大多数为90度~120度,以很大的负前角进行切 削; 磨粒切削刃几乎都存在切削刃钝圆半径; 在砂轮表面分布不均匀,高低也不同。
磨粒常见形状
三 磨削力
➢磨削力的的来源:工件材料产生变形时的抗力和 磨粒与工件间的摩擦力。
➢磨削力的特征: (1) 单位磨削力很大 (2) 径向分力很大---径向力虽不做工,但会使
工件产生水平方向的弯曲,直接影响加工精度。
磨削加工中的磨削力分析

磨削加工中的磨削力分析磨削加工是一种高精度的加工方式,可以用于加工各种材料的零部件。
其原理是使用磨料与加工物体之间的相对运动来去除材料表面的毛刺和瑕疵,制造出精密的表面和形状。
磨削加工的质量和效率与磨削力大小有着密切关系,因此对磨削力的分析和计算是磨削加工过程中极为重要的一环。
一、磨削加工的基本原理磨削加工是利用磨料与工件之间的相对运动,在压力的作用下,去除工件表面的毛刺和瑕疵,进而达到加工目的的过程。
在磨削加工中,磨料既是一个加工工具,也是一种加工介质。
其磨削力主要由切削力、磨合力和磨料轴向力三部分组成。
其中,切削力是主要作用力,因其大小和方向对于磨削加工的影响最为显著。
二、磨削力分析的原则磨削力是磨削加工过程中产生的一种重要力,其大小和方向对于成形精度、加工效率和工件表面质量等方面都有着显著的影响。
因此,了解磨削力的大小和方向,对于进行磨削加工质量的保证和高效率的实现都具有非常重要的作用。
在磨削力分析中,我们需要掌握以下几个基本原则:1.磨削力的大小和方向是磨削加工过程中的重要指标之一,需要进行精确的测量和分析。
2.在磨削加工过程中,应尽量降低磨削力的大小,实现高效率、高精度的加工目标。
3.在磨削力分析中,需要考虑到各个因素的综合影响,不能简单地直接计算或估算。
4.针对不同的磨削加工过程和实际需要,需要采用不同的磨削力分析方法和手段。
三、磨削力的计算方法磨削力的计算方法可以分为两种:经验计算法和基于力学原理的计算方法。
在实际应用中,一般采用经验计算和力学原理相结合的方法进行磨削力的估算。
一般情况下,磨削力的计算方法根据材料的硬度和材料的粘合程度分为两种:理论计算法和实验计算法。
其中,理论计算法以理论分析为基础,通过分析材料硬度和材料粘合程度之间的关系,计算出磨削力的大小和方向。
而实验计算法则以实验结果为依据,通过不同实验条件下的测量结果,计算出磨削力的大小和方向。
在实际应用中,常采用理论计算法和实验计算法相结合的方法,进行磨削力的估算。
机械加工的工艺原理是

机械加工的工艺原理是
机械加工是利用机械设备对工件进行切削、磨削、拔拉、钻削等加工过程的技术。
其工艺原理主要包括以下几个方面:
1. 切削原理:利用刀具与工件之间的相对运动,以切削刃对工件进行削除材料的操作。
刀具通过推刀进给或工件旋转提供所需的运动,切削刃将工件上的材料削除,形成所需的形状和尺寸。
2. 磨削原理:利用磨料颗粒在工件表面的相对运动,将磨削粒子对工件材料的切削和磨擦作用,使工件表面达到所要求的精度和光洁度。
3. 拔拉原理:通过拔拉设备,将工件在规定的力下进行拉伸,使其形成所需的形状,如拉制金属线材和伸长钢材等。
4. 钻削原理:通过旋转运动和向前进给的力,通过刀具的刃部对工件进行孔洞加工,同时将削屑排除。
总的来说,机械加工的工艺原理是通过机械设备对工件进行切削、磨削、拔拉、钻削等操作,以实现工件形状、尺寸和表面质量的加工要求。
整个过程依靠机械设备提供运动和力量,通过切削或磨削等方式将工件的材料削除或变形,从而得到所需的产品或工件。
磨削加工原理

磨削加工原理
磨削加工是一种通过磨削工具对工件进行切削加工的方法,它是一种高效的加
工工艺,可以用于加工各种硬度的材料。
磨削加工的原理是利用磨削工具的高速旋转和对工件施加的压力,通过摩擦和磨削将工件表面的材料去除,从而达到加工工件的目的。
磨削加工的原理包括磨削工具、磨削方式和磨削参数三个方面。
首先,磨削工具是磨削加工的关键。
常见的磨削工具有砂轮、砂带、砂布等,
它们通常由磨料、结合剂和孔隙三部分组成。
磨料是磨削工具的主要切削部分,它的硬度和尺寸决定了磨削工具的磨削性能。
结合剂起到固定磨料和提供切削支撑的作用,而孔隙则可以有效排除磨屑和冷却润滑。
其次,磨削方式是磨削加工的关键。
常见的磨削方式包括平面磨削、外圆磨削、内圆磨削、表面磨削等。
不同的工件和加工要求需要选择不同的磨削方式,以达到最佳的加工效果。
最后,磨削参数是磨削加工的关键。
磨削参数包括磨削速度、进给量、切削深度、冷却润滑等。
这些参数的选择直接影响着磨削加工的效率和质量。
合理的磨削参数可以减少磨削工具的磨损,提高加工效率,同时还可以减少工件的变形和提高加工表面的质量。
总的来说,磨削加工的原理是通过磨削工具对工件进行切削加工,其关键包括
磨削工具、磨削方式和磨削参数。
只有合理选择磨削工具、磨削方式和磨削参数,才能达到最佳的加工效果。
机械制造工艺之磨削概述

通过调整砂轮转速、切削深度和进给速度等参数,优化磨削力的 大小和方向,提高加工质量和效率。
砂轮磨损与再生
1 2 3
砂轮磨损
在磨削过程中,砂轮与工件之间的摩擦会导致砂 轮磨损,影响磨削效果和加工精度。
再生技术
为了减少砂轮磨损,采用金刚石或立方氮化硼等 超硬材料对砂轮进行修整和再生,恢复砂轮的磨 削性能。
热影响
冷却技术
为了控制磨削热,采用切削液、喷雾 冷却和油雾冷却等技术,降低工件表 面温度,减少热影响。
磨削热会导致工件表面烧伤、裂纹和 变形等问题,影响工件质量和精度。
磨削力影响及优化
磨削力产生
在磨削过程中,砂轮与工件之间的相互作用力产生磨削力。
磨削力影响
磨削力的大小和方向对工件表面质量、加工精度和砂轮磨损有重 要影响。
磨削的应用领域
01
02
03
机械制造
磨削广泛应用于机械制造 领域,如汽车、航空、能 源、轨道交通等。
精密加工
由于磨削加工精度高,因 此也广泛应用于精密加工 领域,如光学、钟表、医 疗器械等。
难加工材料
对于硬脆、高强度、高精 度要求的难加工材料,磨 削是一种有效的加工方法 。
02
磨削工艺流程
磨料与磨具选择
再生方法
包括在线修整、离线修整和超声波振动修整等方 法,根据不同的加工需求选择合适的再生方法。
06
案例分析
航空发动机叶片磨削工艺
总结词
高精度、高效率
详细描述
航空发动机叶片磨削工艺是机械制造中的重 要环节,要求高精度和高效率。采用先进的 磨削设备和工艺技术,确保叶片的几何形状 、尺寸和表面质量达到设计要求,同时提高 生产效率,降低制造成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磨削原理
讨论磨具与工件在磨削加工过程中的各种物理现象及其内在联系
的一门学科。
磨削原理的讨论内容重要包括磨屑形成过程、磨削力和磨
削功率、磨削热和磨削温度、磨削精度和表面质量、磨削效率等,目的
在于深入了解磨削的本质,并据以改进或制造磨削方法。
磨削原理的讨论始于1886年,美国的C.H.诺顿和C.艾伦合作讨
论砂轮和磨削过程,20年之后订立出正确选择砂轮类别和砂轮速度的原则;同时发觉为了提高磨削效率和精度,必需对砂轮进行平衡,并在磨
削过程中正确地修整砂轮(见砂轮修整)和使用切削液。
1914~1915年,英国的J.格斯特和美国的G.奥尔登对磨削用量、磨屑大小和选择砂轮
等问题又作了进一步的讨论。
此后,磨削原理的讨论不断深入。
在磨屑
形成方面,德国的K.克鲁格对砂轮上磨粒与工件的接触弧长和影响单颗
磨粒的切深的因素进行了几何计算和讨论在1925年提出了讨论报告。
德国的M.库莱恩和G.施勒辛格尔以及日本的关口八重吉等人对磨削力
作了讨论,在20时代末至30时代先后提出了磨削过程中影响磨削力的
诸因素,并使磨削力的测量技术不断进展。
从30时代起,随着测量磨
削表面温度试验技术的进展推动了有关磨削热的理论讨论。
对于砂轮磨
削性能的理论讨论导致一系列新型高速砂轮的显现进展了砂带磨削。
由
于金刚石和立方氮化硼磨料的应用,磨削原理又得到新的进展。
70时代
以来,应用扫描电子显微镜对磨削的微观过程和超精密磨削的机理作了
深入的分析。
磨屑形成过程
磨粒在磨具上排列的间距和高处与低处都是随机分布的,磨粒是
一个多面体,其每个棱角都可看作是一个切削刃,顶尖角大致为90~120,尖端是半径为几微米至几十微米的圆弧。
经精细修整的磨具其磨
粒表面会形成一些微小的切削刃,称为微刃。
磨粒在磨削时有较大的负
前角(见刀具),其平均值为—60左右。
磨粒的切削过程可分3个阶段。
①滑擦阶段:磨粒开始挤入工件,滑擦而过,工件表面产生弹性
变形而无切屑。
②耕犁阶段:磨粒挤入深度加大,工件产生塑性变形,耕犁成沟槽,磨粒两侧和前端堆高隆起;
③切削阶段:切入深度连续增大,温度达到或超过工件材料的临
界温度,工件材料明显地沿剪切面滑移而形成磨屑。
依据条件不同,磨粒的切削过程的3个阶段可以全部存在,也可
以存在。
磨屑的形状有带状、挤裂状和熔融的球状等,可据以分析各重
要工艺参数、砂轮特性、冷却润滑条件和磨料的性能等对磨削过程的影响,从而寻求提高磨削表面质量和磨削效率的措施。
磨削力和磨削功率
磨削时磨粒受到工件材料变形的阻力以及磨粒与工件表面间的摩
擦力,形成磨削力。
磨削力可按工件与磨具的相对位置分解为切向分力Ft,法向分力Fn和轴向分力Fa。
一般法向分力较大,随着工件材料和
砂轮特性的不同,Fn/Ft=1.5~3;当采纳润滑性能好的切削液时,由于
摩擦力削减,Fn/Ft可高达4。
轴向分力较小,一般可不予考虑。
磨削
功率Pm(千瓦)与切向分力F(N)和磨削速度(米/秒)的关系如下式:Pm=Ftv/1000。
在特定的磨削条件下,都有一个最佳磨削力区间,采纳
该区间的磨削力加工可获得较高的金属切除率、较小的表面粗糙度和较
长的砂轮寿命,因此进展了在磨削过程中使磨削力按预定数值保持恒定
的掌控力磨削技术。
磨削热和磨削温度
磨削过程中所消耗的能量几乎全部变化为磨削热。
试验讨论表明,依据磨削条件的不同,磨削热约有60~85%进入工件,10~30%进入砂轮,0.5~30%进入磨屑,另有少以传导、对流和辐射形式散出。
磨削
时每颗磨粒对工件的切削都可以看作是一个瞬时热源,在热源四周形成
温度场。
磨削区的平均温度约为400~1000℃,至于瞬时接触点的最高
温度可达工件材料熔点温度。
磨粒经过磨削区的时间极短一般在0.01~
0.1毫秒以内,在这期间以极大的加热速度使工件表面局部温度快速上升,形成瞬时热聚集现象会影响工件表层材料的性能和砂轮的磨损。
磨削精度和表面质量
大多数情况下磨削是最后加工工序,因此直接决议工件的质量。
磨削力造成磨削工艺系统的变形和振动,磨削热引起工艺系统的热变形,两者都影响磨削精度。
磨削表面质量包括表面粗糙度、波纹度、表层材
料的残馀应力和热损伤(金相组织变化、烧伤、裂纹)。
影响表面粗糙
度的重要因素是磨削用量、磨具特性、砂轮表面状态(也称砂轮地形图)、切削液、工件材质和机床条件等。
产生表面波纹度的重要原因是
工艺系统的振动。
由于磨削热和塑性变形等原因,磨削表面会产生残馀
应力。
残馀压应力可提高工件的疲乏强度和寿命;残馀拉应力则会降低
疲乏强度,当残馀拉应力超过材料的强度极限时,就会显现磨削裂纹。
磨削过程中因塑性变形而发生的金属强化作用,使表面金属显微硬度明
显加添,但也会因磨削热的影响,使强化了的金属发生弱化。
例如砂轮
钝化或切削液不充分,在磨削表面的肯定深度内就会显现回火软化区,
使表面质量下降,同时在表面显现明显的褐色或黑色斑痕,称为磨削烧伤。
磨削效率
评定磨削效率的指标是单位时间内所切除材料的体积或质量,用mm3/s或kg/h表示。
提高磨削效率的途径有:①加添单位时间内参加磨
削的磨粒数,如采纳高速磨削或宽砂轮磨削;②加添每颗磨粒的切削用量,如采纳强力磨削。
在砂轮两次修整之间切除金属的体积与砂轮磨损
的体积之比称为磨削比(也有以两者的重量比表示的)。
磨削比大,在
肯定程度上说明砂轮寿命较长。
磨削比减小,将加添修整砂轮和更换砂
轮的次数,从而加添砂轮消耗和磨削成本。
影响磨削比的因素有:单位
宽度的法向磨削分力、磨削速度以及磨料的种类、粒度和硬度等。
一般
单位法向磨削分力越小或磨削速度越高,则磨削比越大;砂轮粒度较细
和硬度较高时,磨削比也较大。